Feature Weighting by Explaining Case-Based
Problem Solving Episodes

Héctor Muifioz-Avila & Jochem Hiillen
University of Kaiserslautern, Dept. of Computer Science
P.O. Box 3049, D-67653 Kaiserslautern, Germany
E-mail: {munioz|huellen}@informatik.uni-kl.de

Abstract

We present a similarity criterion based on feature weighting. Feature weights
are recomputed dynamically according to the performance of cases during prob-
lem solving episodes. We will also present a novel algorithm to analyze and
explain the performance of the retrieved cases and to determine the features
whose weights need to be recomputed. We will perform experiments and show
that the integration in a feature weighting model of our similarity criterion with
our analysis algorithm improves the adaptability of the retrieved cases by con-
verging to best weights for the features over a period of multiple problem solving
episodes.

1 Introduction

An essential factor influencing the effectiveness of case-based problem solving is the
retrieval phase (Aamodt and Plaza, 1994). In the context of planning and design,
retrieval means searching for adaptable cases (Smyth and Keane, 1994; Marir and
Watson, 1995; Smyth and Keane, 1995). Thus, any similarity criterion should measure
the adaptation effort of the cases with respect to a new problem. Because the adapta-
tion effort is difficult to determine a priori, learning from previous retrieval episodes
has been proposed (Veloso, 1992; Fox and Leake, 1995; Thrig and Kambhampati, 1995).

In Robbie (Fox and Leake, 1995), introspective reasoning (Leake et al., 1995) is used
to determine the features that should be considered during retrieval. The validity of
pre-defined assertions related to indexing criteria is tested after each retrieval episode.
If a failure occurs, the criteria is restated resulting in a refinement of the index.

In the context of domain independent planning, EBL (Minton, 1988) has been used in
a system called derSNLP+FEBL (Ihrig and Kambhampati, 1995) to ezplain retrieval
failures. An EBL-rule that indicates combinations of features causing a failure is
constructed. The rule is used as a filter to avoid selecting the case when a given
problem matches the indicated combination of features.

Another approach toward learning from retrieval failures in the context of domain
independent planning was proposed in PRODIGY/ANALOGY (Veloso, 1992; Veloso,
1994a): each feature is assigned a so-called relevance-bias, which is a number indicating
the preference of the feature. The relevance-bias of a feature in the case is incremented
dynamically when a failure occurs and the feature was not matched in the new problem.
PRODIGY/ANALOGY divides features into relevant and non relevant. The foot-printed
similarity metric counts features of the problem matched by relevant features in the
cases. The relevant features are indexed so that features with higher relevance-bias are
matched first.

In this paper we will extend PRODIGY/ ANALOGY’s similarity metric by explicitly in-
corporating feature weights in a new similarity metric, the weighted foot-printed simi-
larity metric. The weighted foot-printed similarity metric counts the weights of relevant
features matching features in the new problem and can be integrated with a feature
weighting model. We will a also present a novel algorithm to analyze and explain
the performance of the retrieved cases. This algorithm serves as a bridge between the
similarity metric and the weighting model. We will evaluate our approach with exper-
iments and will conclude that the integration in the feature weighting model of the
weighted foot-printed similarity metric with the algorithm improves the adaptability
of the retrieved cases by converging to best weights for the relevant features over a
period of multiple problem solving episodes.

This paper is organized as follows: the next section presents the weighted foot-printed
similarity metric and a model for feature weighting. Section 3 presents the algorithm
for analyzing and explaining the performance of the cases retrieved. Then, the results
of the experiments performed are shown. Limitations of our work are discussed in
section 5. Finally, we make concluding remarks of our work in the last section.

2 Weighting Relevant Features

The foot-printed similarity metric compares relevant features of a case with features
of a new problem. Informally, a feature is considered relevant to a goal with respect
to a solution, if the feature contributes to achieve the goal in the solution (Veloso,
1994b). This notion can be illustrated with an example in the logistics transportation
domain (Veloso, 1994a). A typical problem in this domain is, starting from a certain
configuration of objects, locations, and transportation means, to place the objects at
different locations. There are different sorts of locations and means of transportation.
In addition, the means of transportation have certain operational restrictions. For
example, a truck can only be moved between places located within the same city.

Figure 1 (a) shows an example of a possible configuration in this domain describing
an initial state. The final state, shown in figure 1 (b), consists of one goal: the object
objl must be placed at the post office post2. Figure 2 shows a possible solution (i.e., a
plan). Continuous boxes represent plan steps and continuous lines represent the order
of execution among the plan steps. Dashed boxes represent goals (in figure 2, only one
-sameCity(postl, post2)- is shown, which corresponds to a precondition of the plan
step move(truckl, postl, post2).). Notice that the truck2 was not used for achieving

cityl cityl

postl post2 post1l post2
Il obj1 obj1

Eruckl %truckz [

(a) Initial State (b) Final State

Figure 1: A problem in the logistics transportation domain

the goal. Thus, truck2 is not relevant to the goal with respect to this solution.

load(obj1,truckl) H move(truckl,postl,post2) ‘—{ unload(obj1,truckl)
i

,,,,,,,,,,,,,,,,,,,,

Figure 2: A solution in the logistics transportation domain

2.1 The Foot-printed Similarity Metric

As defined, the foot-printed similarity metric counts the number of relevant features in
the case that match features in the new problem. If the percentage of relevant features
that are included in the new problem is greater than a certain threshold, the case is
retrieved independent of which features were matched. However, not all features have
the same importance to the solution. To illustrate this affirmation consider the initial
state illustrated in figure 3. Suppose that the final state is to place 0bj? in post/
and that the problem shown in figure 1 and the solution shown in figure 2 conform
a case. The case partially match the new problem with the substitution: {postl —
post3, post2 — postd, objl — 0bj3, truckl — truck3}. However, the solution of the
case can not be reused in the new problem because post3 and post4 are in different
cities, so truckd can not be moved from post3 to post4. Thus, the retrieval of the case
is considered to have failed in this situation.

2.2 The Weighted Foot-printed Similarity Metric

Incrementing the value of the threshold fixing the percentage of relevant features that
must be matched may significantly reduce the number of retrieval failures. However,
a high value of the threshold over restricts the situations for which the cases can be
retrieved.

city2 city3

post3 airportl alrport2 post4

Eruckg % wrucm

Figure 3: Initial state of a new problem

Ranking the relevant features to establish an order of evaluation improves the adapt-
ability of the cases retrieved (Veloso, 1994a). However, certain features should not
only be matched first, but they should be given more relevance when deciding if the
case is to be retrieved. To illustrate this affirmation, consider the same case as before
and a new problem with a similar initial state to the one shown in figure 1. The only
difference is that truckl is in a third post office, post3, placed in the same city as
the other two. In this situation 50% of the relevant features in the case match fea-
tures in the new problem. Thus, unless the threshold has a very low value, the case
is not retrieved. However, setting the threshold in a lower value increases the num-
ber of failed retrievals. Interestingly, retrieving the case may be adequate depending
on the adaptation strategy. For example, the new problem can be solved by adding
move(truckl, post3, postl) as first step to the solution shown in figure 2.

The weighted foot-printed similarity metric overcomes these limitations by counting
feature weights. Before continuing, some notation must be introduced: a problem P
consists of a pair (I¥, GT), where I* is the set of features conforming the initial state
and G* is the set of goals conforming the final state of the problem. Cases consist
of pairs ((I¢,G%), Sol), where (I¢,G®) is a problem and sol a solution (i.e., a plan).
We will suppose for the sake of simplicity that /¢ only contains relevant features and
that all the goals in G¢ interact!. We define sz’m“}’g (C, P), the weighted foot-printed
similarity metric between C' and P, as follows: if G¢ matches a subset of G¥ with a
substitution @ (i.e., G0 C G”), then:

simp (C,P) =G+ > wic (Bql)

i€IC ﬂg IP

Where I¢ N, I¥ denotes the set of all features in I matching a feature in I¥ with the
substitution #. The factor w; ¢ denotes the weight of the relevant feature 7 in C. If G¢
does not match a subset of G¥, then sim7(C, P) is defined to be zero.

Let P be a new problem, a case, C, is retrieved if: (1) G¢ matches a subset of GF with
a substitution , and (2) if the weighted proportion of relevant features in I matching

!The concept of interacting goals (Veloso, 1994a) may be defined as follows: two goals interact if
they have at least one relevant feature in common or if there is a third goal they both interact with.

4

a feature in I is greater than a certain threshold, thr. Condition (2) may be written
as follows:

(Y wie)/ (X wie)>thr (Eq2)

iclC N, IP iclC

2.3 Weighting Model

For weighting features, a feedback model based on incremental optimizers is used
(Salzberg, 1991; Wettschereck and Aha, 1995). Each case, C, contains two counters:
ke and feo. The first one indicates the number of times a case was adequately retrieved,
and the second one the number of times in which not. The weight, w; ¢, of each relevant
feature 7 is updated as follows:

wi,c = Wi,c + Akc,fc (’UJ’Lth 0 S Akc,fc S ﬂ X ’I”Lc) (Eq3)

if not matching the feature i caused a failure. On the other hand, if the feature ¢ was
not matched, and the retrieval was adequate, then w; ¢ is updated as follows:

Wwic = Wic — Akc,fc (UJZth 0 S Ak‘C,fC S ,6 X nc) (Eq4)

If the value of w; ¢ is smaller than 1 then w; ¢ is assigned the value 1 and the weight of
the other features in the case is incremented proportionally. The number of features
in the initial state of C'is denoted by nc. The change of a feature weight is bounded
by a factor, 3 X n¢, directly proportional to the number of features in the case. The
incremental factor Ay, s, depends on the values of kc and fc in the following way:
the larger the ratio of k¢ to f¢ is, the smaller the value of Ay, s, is. Thus, as the
number of adequate retrieval episodes increases, the effect of a retrieval episode on
the feature weights decreases. In contrast, the smaller the ratio of k¢ to f¢ is, the
closer Ay, s, to B X ne is. If the weights of the relevant features were normalized so
that wi, ¢ + wi,,c + ... + Wi O = 1, then the factor >4k wij,c/ >.; wic expresses the
reliability of making an adequate retrieval, when the feature i is the only one not to be
matched in the new problem. Thus, the feature weights measure the relative relevance
of the features in the case.

3 Analysis of Case-Based Problem Solving Episodes
in CAPLAN/CBC

The problem solving cycle in our case-based planner, CAPLAN/CBC (Muiioz-Avila
et al., 1995; Mufioz-Avila and Hiillen, 1995), consists of four steps: first, cases meeting
the retrieval condition stated in the last section are retrieved. Then, the cases are
adapted into the new problem. At the third step, an analysis of the adaptation effort
is performed and certain features are identified. Finally, the weights of those features
are updated.

3.1 Adaptation Strategy in CAPLAN/CBC

CAPLAN/CBC is built on a first-principles planner called CAPLAN (Weberskirch,
1995; Paulokat and Wess, 1994). CAPLAN is a plan-space planner (McAllester and
Rosenblitt, 1991). Thus, first-principles planning proceeds by achieving goals and
solving conflicts. A goal can be achieved in two ways:

e by establishing it with the initial state of the problem, that is, by matching
the goal with a feature in the initial state. For example, in figure 2, the goal
sameC'ity(postl, post2) has been established with the initial state shown in figure

1 (a).

e by establishing it with a plan step, that is, by matching the goal with the effects
of the plan step. For example, in figure 2, the plan step unload(objl,truckl)
is used to achieve the goal: “the object objI must be placed at the post office
post2” (this goal is not shown in figure 2.).

The adaptation strategy followed in CAPLAN/CBC is known as eager replay (Ihrig
and Kambhampati, 1994). Eager replay is done in two phases: in the first phase,
each plan step contained in the retrieved cases is replayed in the new situation when
replaying the step introduces no inconsistency to the new solution. Once this phase is
finished, a partial solution, also known as the “skeletal plan” (Ihrig and Kambhampati,
1994), is obtained. Skeletal plans may contain unsolved goals. A goal remains unsolved
because either a corresponding goal does not exist in the cases or a corresponding goal
exists, but the way it is achieved in the case can not be replayed in the new problem.
At the second phase, the skeletal plan is completed by first-principles planning.

3.2 Evaluating the Adaptation Effort

To evaluate the adaptation effort, three numbers are calculated: n.q,., the number of
plan steps in the case, ngi, the number of plan steps in the skeletal plan, and, nsggin,
the number of plan steps in the skeletal plan that remain after the completion process
is finished. The algorithm evaluating the adaptation effort is shown in figure 4. Its
input consists of the three numbers, ncqse, N5k, and nsgrin, the case, C', and the skeletal
plan, Sk. The outcome of this algorithm is the recomputation of the weights of certain
relevant features in the case C.

If the percentage of plan steps replayed is smaller than a certain threshold, thrl, or
the percentage of plan steps in the skeletal plan that were rejected after completion is
smaller than another threshold, thr2, the retrieval is said to have failed. Otherwise, the
retrieval is said to be adequate. In both situations, the weights of the set of features,
Fail, returned by the function FilterFeatures(C,Sk) are recomputed (this function
will be presented later.).

If the retrieval of the case failed, the weights of features in Feat are increased according
to equation 3 (step 2). The argumentation for increasing the weights of those features
is that their absence was important in this situation because either only few plan steps

evaluateAdaptation(C, Sk, ncase, NSk, "SkFin)
1. Fail « FilterFeatures(C,Sk)
2. If (nsk/Nease < thrl) or (nsgpin/nsk < thr2)
For-each i € Fail
wi,c = wi,c + Dke, fo
3. Else
For-each i € Fail

wi,c = wi,c = D, fo

Figure 4: Algorithm evaluating the adaptation effort

were replayed or too many plan steps in the skeletal plan were rejected during the
completion process.

If the retrieval of a case is adequate, the weights of the features in F'ail are decreased
according to equation 4 (step 3). The reason for decreasing the weights of those features
is that their absence was not important in the retrieval episode because enough plan
steps were replayed, and the first-principles planner was able to complete the solution
without rejecting too many plan steps of the skeletal plan.

Consider the case formed by the problem and solution shown in figures 1 and 2 respec-
tively, and the new problem shown in figure 3. Each of the three plan steps can be
replayed in the new situation (i.e., nese = Nk = 3). As a result, the skeletal plan shown
in figure 5 is obtained. In this plan, the subgoal sameCity(post3, post4) remains un-
solved (represented with a question mark in figure 5). Because sameC'ity(post3, post4)
can not be achieved, the first-principles planner rejects the solution step
move(truck3, post3, postd), and pursues other alternatives (i.e., nsgmin < 2). Thus,
a retrieval failure takes place, if, for example, thr2 is equal to 2/3.

‘Ioad(objS,truckB) H move(truck3,post3,post4) ‘—{ unload(obj 3,truck3) ‘
i

,,,,,,,,,,,,,,,,,,,,

Figure 5: An skeletal plan

3.3 Filtering Non Matched, Relevant Features

To identify the relevant features whose weights must be recomputed, CAPLAN/CBC
examines the contribution of the feature to the solution of the case by taking as basis
the skeletal plan. For example, the feature sameC'ity(post3, postd) of the skeletal plan
shown in figure 5 was the only one not matched in the new problem, and, as explained
before, the retrieval failed. Thus, the weight of this feature must be increased.

In more complex situations non matched, relevant features may not be included in the

7

skeletal plan. Consider, for example, the feature g; in the abstract situation described
in figure 6. A question arises, namely, whether the weight of g3 must be recomputed
or not. The filtering function, Filter Features(C,Sk), returns a set, Fail, of non
matched, relevant features whose weight must be recomputed. The set F'ail meet the
following conditions:

1. Fail explains the failed establishments in the skeletal plan. In this con-
text, explaining a failed establishment means that if any feature in Fail would
have been also present in the new problem, at least one additional goal, g,
in the skeletal plan would have been achieved. This condition is trivial if g
is established with the initial state in the case. Examples of such goals are
sameC'ity(post3, postd) that occurs in the skeletal plan shown in figure 5, and
¢1 that occurs in the skeletal plan shown in figure 6. However, if g is established
with a plan step in the case, a careful analysis must be done to meet this condi-
tion. For example, in figure 6, it is assumed that g, remains unsolved because a
failed establishment with the plan step s, occurs.

2. Fail constitutes the minimal set explaining the failed establishments.
That is, if any feature in Fail is removed, at least one failure of a goal in the
skeletal plan can not be explained in the sense described at point 1.

Skeletal Plan

Figure 6: Abstract configurations of an skeletal plan and a case

The function Filter Features(C, Sk) is shown in figure 7. Its input are the retrieved
case, C', and the skeletal plan, Sk, and returns the set Feat. This function uses two
global variables: Arg and G. The set, Arg, contains all arguments of features in Feat
and is computed dynamically. Initially, Arg is empty because Feat is empty (steps 1
and 2). The idea of the function Filter Features(C,Sk) is to examine each unsolved
goal in the skeletal plan. To accomplish this, G' contains the unsolved goals in Sk that
have not been examined. Initially, G is assigned all unsolved goals in Sk that have
a corresponding goal in C' (step 3). Thus, the goals in the skeletal plan that remain
unsolved because they have no corresponding goal in the case are not examined.

Recall that a goal can be achieved by establishing it either with the initial state or
with a plan step. Thus, there are only two possible reasons why the way a goal was
achieved in the case can not be replayed in the new problem:

e The establishment with the initial state can not be performed because there is no
feature in the initial state of the new problem that matches the goal. Examples
of failed establishment with the initial state are sameCity(post3, post4) in figure
5 and g¢; in figure 6. This failure is considered in the first control block of
the algorithm (step 4): each goal, g, whose plan step in C is established with
the initial state (i.e., isEstl(g,C) is true), is stored in Feat (step e.l) and its
arguments are collected in Arg (step e.2).

e The establishment with a plan step can not be performed because an incon-
sistency in the variable bindings will be introduced. An inconsistency can be
expressed as follows (Kambhampati et al., 1995): there are two variables x; and
2o bound with the constants a and b respectively, and the constraint z; = x5
is stated in the plan step. For example, in figure 6, it is assumed that s, can
not be replayed because a failed establishment with a plan step occured. Thus,
the goal g5 remains unsolved in the skeletal plan. This failure is considered in
the second control block of the algorithm (step 5). If the inconsistent arguments
of the plan step are included already in Arg, nothing is done (step p2). Other-
wise, two steps are performed: first, each argument, c;, that was not included in
Arg already is added to Arg (steps p3.1, e2). Second, for each argument ¢;, the
feature found by calling the function searchFeat(g,c;,C) is add to Feat (steps
p3.2, el). This function returns a feature in the case that has ¢; as argument and
whose distance? to ¢ is minimal.

FilterFeatures(C, Sk) processEst(g)
1. Feat < {} el. Feat < Feat U {¢}
2. Arg «+ {} e2. Arg + ArgJargIn(g)

3. G <+ unsolvedGoalsMatched(Sk,C). :
4. while (exists g € G with isEstI(g,C)) | |ProcessInconsistency(g,C,Sk)

4.1 processEst(g) pl. I «+ argInconsz'ste.ntStep(g, C)
4.2 G + G — {g} p2. If I.C Arg then S.klp
5. while (G # {}) p3. while (I — Arg) isNotEmpty

5.1 processInconsistency(yg,C,Sk) p3.1 Let ¢; € I — Arg
52 G« G — {g} p3.2 g’ « searchFeat(g,c;,C)
p3.3 processEst(g’)

6. return Feat

Figure 7: Algorithm for filtering features

4 Empirical Results

The experiments were made in two different domains: the logistics transportation
domain and the domain of process planning (Mufioz-Avila and Weberskirch, 1996).
During problem solving, the former is characterized by the high number of occurrences

2The number of arcs of the shortest path connecting two goals in the plan.

of goal blocks caused by goal loops® whereas the latter by the high number of interac-
tions between goals. Thus, both domains provide a wide spectrum of problems for our
experiments in which we validate the following hypothesis:

Over a period of multiple problem solving episodes, weighting relevant features in a case
increases the reliability that the retrieval of the cases is adequate by converging to best
weights.

4.1 The experiments

This hypothesis was validated with an experiment performed with two collections of
problems (one for each domain). The collections were formed in the following way: a
problem, that we called the pivot problem, was manually stated. Then, some features
in the initial state were randomly fixed. A new goal and new features that do not occur
in the pivot problem were also given. Taking as basis the pivot problem, new problems
were formed by varying the fixed features, or/and by adding the new goal and the new
features. The problem collection met also the following conditions: (1) every problem
in the collection can be solved within 300 seconds in the logistics transportation domain
and 350 seconds in the domain of process planning. (2) The pivot case meets the foot-
printed retrieval condition for every problem with thr = 75% for the transportation
domain and thr = 80% for the domain of process planning (thr as in equation 2.).
The reason for the parameter thr to be higher the domain of process planning is the
high level of interactions taking place in this domain, which obligates a more accurate
retrieval. (3) The number of times that fixed features where changed in the collection
is the same. For example, in the transportation domain, if a truck and a post-office
are fixed, then, in the initial state, the number of problems in which the truck is
changed of location is the same as the number of times the post office is changed of
city. (4) If n denotes the number of fixed features, then problems were ordered in a
way that within a sequence of problems, Problem 1, ..., Problemp,.m, the number
of changes of every fixed feature is the same. For this reason, the number of problems
in the collection is a multiple of the number of selected features.

The ideal experiment to validate our hypothesis is to form all possible combinations of
every collection of problems and show that, in average, our hypothesis holds. Because
this implies a combinatorial explosion, we stated conditions (3) and (4), in pursue of
equally distributing the effect of every change in the fixed features and of capturing
the average situation. Condition (3) ensures that no feature takes advantage of the
others by changing them the same number of times. As explained before, the ratio
of k¢ to fc determines the incremental rate of the weigths. Thus, if not matching a
fixed feature causes an inadequate retrieval, then the change of weights will be greater
when problems changing that feature are allocated at the beginning of the collection.
In contrast, if those problems are allocated at the end of the collection, the changes
in weights are reduced. For this reason, condition (4) ensures that the final weight of
each fixed feature is closer to the average by distributing the problems changing the
feature equally throughout the collection.

3Informally, a goal loop occurs when to achieve a goal, the planner pursues to achieve another goal
that unifies the first one.

10

In each domain three collections of problems were formed. In the transportation do-
main 6 features were fixed in every collection, and 8 in the domain of process planning.
The size of each collection was 5 times the number of fixed features. Before each run,
a solution to the pivot problem was found. The pivot problem and its found solution
are taken as a pivot case. At each run, each problem in the collection was given and
a complete problem-solving episode was performed (see section 3).

4.2 The results

Tables 1 and 2 summarize the results of this experiment for the domain of process
planning and for the logistics transportation domain respectively. Tables 1 (a) and 2
(a) show the results when weights were recomputed. The first row of the tables 1 (a)
and 2 (a) present the percentage of times the pivot case was retrieved. The second row
of the same tables present the percentage of times that retrieving the pivot case caused
a retrieval failure. The third row presents the percentage of times in which retrieving
the pivot case would have been adequate, but it was not retrieved. Each column, m,
presents the results for the sequence of problems, Problem,,,+1, ..., Problem,, 1.

[Ttems |1 [2 [3 [4 [5 |[Items [80%]85%]90%]95% |
% Retr. [80 [70 [60 [50 [50 |[% Retr. [100 [80 [30 [30
% Failed [37 [29 [17 [0 |0 |[%Failed |50 |25 [25 |0

% Nret. |0 [0 o 0o [0 |J[%Nret. [0 [0 29 |29

Table 1: Measures of effectiveness of retrieval in the domain of process planning (a)
by weighting features, and (b) by varying the fixed threshold.

Tables 1 (b) and 2 (b) summarize the results of changing the fixed percentage, thr,
without considering the feature weights. Each column summarizes the results when
the corresponding percentage was fixed, and all the problems in the collections were
given.

[Ttems [1 [2 [3 [4 [5 |[Items | 75% | 80% | 85% | 90% |
% Retr. 100 [86 [71 [71 |71 |[% Retr. 100 [8 [86 [0
% Failed 43 |33 |17 |17 |17 % Nadeq. | 43 33 33 0
% Nret. [0 [0 [0 [0 |0 %Nret. |0 |0 [0 [100

Table 2: Measures of effectiveness of retrieval in the logistics transportation domain
(a) by weighting features, and (b) by varying the fixed threshold.

These experiments show that feature weighting increases the probability that the re-
trieval is adequate as the number of problem solving episodes increases. This can be
seen by comparing the fifth column of table 1 (a) (resp. 2 (a)) with the first column
of table 1 (b) (resp. 2 (b)). That is, comparing the effectiveness of retrieval by recom-
puting weights as several problem solving episodes took place and the effectiveness of
retrieval without recomputing weights respectively. Further, these experiments show

11

that an increase in the effectiveness of the retrieval can not be gained by changing the
fixed percentage thr of initial features that must be matched (see tables 1 (b) and 2
(b)). Finally, by comparing the fourth and fifth columns of table 1 (a) (resp. 2 (a)),
we conclude that the feature weights converge.

5 Discussion

The feature weights may be interpreted as a hypothesis about the relative importance
of the features in a case. This hypothesis is validated or rejected in problem solving
episodes where one or more relevant features are absent. The effect on the adaptation
effort caused by the absence of a relevant feature in a new problem depends on (1)
the contribution of the feature to the solution of the case, (2) the characteristics of
the domain, (3) the adaptation strategy, and (4) the features that are present in the
new problem but not in the case. The first three factors are considered implicitly by
the algorithm evaluateAdaptation. The last factor could be important in situations
in which the retrieval fails, or the retrieval is adequate exclusively because of the ad-
ditional features in the new problem. Thus, in these situations, the feature weights
should not be recomputed. Goal regression (Kambhampati et al., 1995) may be used
to detect those situations and may speed-up the convergence of the feature weights.
However, in the experiments discussed before, goal regression was not necessary be-
cause of the uniform distribution of the problems, the domain characteristics, and the
adaptation strategy being used.

6 Conclusion

In this paper, we presented the weighting foot-printed similarity metric and an algo-
rithm to analyze and explain the performance of the cases during case-based problem
solving episodes. We integrated them in the feature weighting model and performed
experiments in two representative domains. Based on these experiments, we conclude
that this integration improves the adaptability of the retrieved cases by converging to
best weights.

References

Aamodt, A. and Plaza, E. (1994). Case-based reasoning: Foundation issues, methodological
variations and system approaches. AI-Communications, 7(1):pp 39-59.

Fox, S. and Leake, D. (1995). Using introspective reasoning to refine indexing. In (Veloso
and Aamodt, 1995).

Ihrig, L. and Kambhampati, S. (1994). Derivational replay for partial-order planning. In
Proceedings of AAAI-9/, pages 116-125.

Ihrig, L. and Kambhampati, S. (1995). Automatic storage and indexing of plan derivations
based on replay failures. In Proceedings of IJCAI-95.

12

Kambhampati, S., Katukam, S., and Qu, Y. (1995). Failure driven dynamic search con-
trol for partial order planners: An explanation-based approach. Artificial Intelligence.
(submitted, ASU-CSE-TR-95-010).

Leake, D. B., Kinley, A., and Wilson, D. (1995). Learning to improve case adaptation by
introspective reasoning and cbr. In (Veloso and Aamodt, 1995).

Marir, F. and Watson, I. (1995). Representing and indexing building refurbishment cases for
multiple retrieval of adaptable pieces of cases. In (Veloso and Aamodt, 1995).

McAllester, D. and Rosenblitt, D. (1991). Systematic nonlinear planning. In Proceedings of
AAAI-91, pages 634-639.

Minton, S. (1988). Learning Search Control Knowledge: An Explanation-Based Approach.
Kluwer Academic Publishers, Boston.

Munoz-Avila, H. and Hiillen, J. (1995). Retrieving relevant cases by using goal dependencies.
In (Veloso and Aamodt, 1995).

Munoz-Avila, H., Paulokat, J., and Wess, S. (1995). Controlling non-linear hierarchical
planning by case replay. In Keane, M., Halton, J., and Manago, M., editors, Advances
in Case-Based Reasoning. Selected Papers of the 2nd European Workshop (EWCBR-94),
number 984 in Lecture Notes in Artificial Intelligence. Springer.

Munoz-Avila, H. and Weberskirch, F. (1996). Planning for manufacturing workpieces by
storing, indexing and replaying planning decisions. In Third International Conference
on AI Planning Systems (AIPS-96). AAAI-Press.

Paulokat, J. and Wess, S. (1994). Planning for machining workpieces with a partial-order
nonlinear planner. In Gil, Y. and Veloso, M., editors, AAAI-Working Notes ’Planning
and Learning: On To Real Applications’, New Orleans.

Richter, M., Wess, S., Althoff, K., and Maurer, F., editors (1994). First European Work-
shop on Case-base Reasoning (EWCBR-93). Number 837 in Lecture Notes in Artificial
Intelligence. Springer Verlag.

Salzberg, S. L. (1991). A nearest hyperrectangle learning method. Machine Learning, 1.
Smyth, B. and Keane, M. (1994). Retrieving adaptable cases. In (Richter et al., 1994).

Smyth, B. and Keane, M. (1995). Experiments on adaptation-guided retrieval in case-based
design. In (Veloso and Aamodt, 1995).

Veloso, M. (1992). Learning by Analogical Reasoning in General Problem Solving. PhD thesis,
Carnegie Mellon University.

Veloso, M. (1994a). Planning and learning by analogical reasoning. Number 886 in Lecture
Notes in Artificial Intelligence. Springer Verlag.

Veloso, M. (1994b). Prodigy/analogy: Analogical reasoning in general problem solving. In
(Richter et al., 1994).

Veloso, M. and Aamodt, A., editors (1995). Case-Based Reasoning Research and Develop-
ment, Proceedings of the 1st International Conference (ICCBR-95). Number 1010 in
Lecture Notes in Artificial Intelligence. Springer Verlag.

13

Weberskirch, F. (1995). Combining SNLP-like planning and dependency-maintenance. Tech-
nical Report LSA-95-10E, Centre for Learning Systems and Applications, University of
Kaiserslautern, Germany.

Wettschereck, D. and Aha, D. W. (1995). Weighting features. In (Veloso and Aamodt, 1995).

14

