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Abstract

In this paper, we investigate the efficient simulation of
deformable linear objects. Based on the state of the art, we
extend the principle of minimizing the potential energy by
considering plastic deformation and describe a novel ap-
proach for treating workpiece dynamics. The major influ-
ence factors on precision and computation time are identi-
fied and investigated experimentally. Finally, we discuss
the usage of parallel processing in order to reduce the com-
putation time.

Keywords: Deformable linear object, modeling, simula-
tion, optimization, parallel computing

1 INTRODUCTION

When regarding industrial goods, it is obvious that al-
most any of them contain deformable workpieces, like
seals, insulations, springs and hoses. An important subset
are deformable linear objects (DLOs), as hoses, leaf
springs, cables or ropes. Accordingly, the challenging
problem of handling those objects with robot manipula-
tors has been investigated for several years.

Besides the development of special-purpose grippers and
the handling based on sensor information, the computation
of the workpiece shape has been addressed. Zheng et al.
perform an off-line computation of the gripper trajectory
for inserting a flexible beam into a hole and succeed in
performing the task without the additional usage of sen-
sors [8]. Though we suppose that the successful and ro-
bust execution of handling operations requires additional
sensor information in most cases (see Remde et al. [4]),
computing the workpiece behavior is useful for diverse
reasons. First, having knowledge about the workpiece
behavior is necessary for developing and comparing han-
dling strategies. Second, simulation can be used for the
off-line generation of coarse gripper trajectories, even if
additional sensors may be required for reliable and robust
execution.

For these purposes, Hirai et al. give an algorithm for
the 2D computation of elastically deformable thin parts
based on the principle of minimal potential energy [1].
For DLOs, Wakamatsu et al. extend this approach to 3D-

computation [5] and to the consideration of dynamics
based on HAMILTON'S principle [6].

These works show the principle possibility of simulat-
ing the behavior of DLOs. However, in practical applica-
tions it is generally desired to do the simulation effi-
ciently, i.e., to compute the workpiece shape with high
precision in a short time. Therefore, we consider the fol-
lowing questions: How should the basic physical approach
be formulated with respect to an efficient computation
(Section 2)? How are precision and computational effort
influenced by parameters and computation algorithms
(Section 3)? When is it helpful to employ parallel proc-
essing to accelerate the simulation? None of the works
mentioned above supply information about these points.
However, because the fundamental approach is similar, we
suppose that most of the results presented here hold true
for these works, too.

2 APPROACH

Our consideration is based on the following main as-
sumptions which hold true for many industrial problems.

The workpiece is linear, i.e., the cross section can be
neglected. The bending rigidity is independent of the ap-
plied force direction, i.e., the cross section of the work-
piece is circular. Additionally, the length of the workpiece
is constant, i.e., linear extension is not considered. !

The behavior of the workpiece is elastic-perfectly plas-
tic, i.e., the stress-strain relation can be expressed by the
function shown in Figure 1. Plastic deformation is as-
sumed to occur for the entire cross-section simultaneously,
i.e., internal stress is neglected. 2 Hardness increase is
notregarded.

As stated by Wakamatsu [6], the workpiece behavior is
often different for slow (quasi-static) and quick (dynamic)
manipulation. Therefore, it should be possible to consider
the dynamic workpiece behavior. For the dynamic compu-
tation, we assume a small computation time interval, i.e.,

I However, considering linear extension is no principal problem, see
Wakamatsu [4]

2 In reality, the beginning of plastic deformation depends on the
distance from the neutral axis.
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for one time interval the acceleration of each mass element
is constant. As in many works, friction is neglected.

2.1 PHYSICAL PRINCIPLE

According to the fundamental physical principle of
minimal potential energy, the potential energy W, of the
workpiece reaches to a minimum in any stable state.
When neglecting linear extension, potential energy due to
bending and torsion must be considered. Thus, the equa-
tion

L !
Wpot = f(WgraV +Wihend +W' twist ) ds = min (1)
0

has to be solved. In Eqn. 1, L is the length of the work-
piece, s € [0, L] is the curve length measured along the
workpiece. W'y, Wi,q and W', is the potential energy
caused by gravity, bending and twisting (per length), re-
spectively. For the quasi-static case, this formulation is
straight-forward and the computation can be performed as
described by Wakamatsu [5].

If the dynamic behavior of the workpiece shall be re-
garded, the extension of this approach leads to a computa-
tion based on HAMILTON'S principle. However, we pro-
pose a different computation method which we suppose to
be simpler and more robust. We start with the well-known

relation 3
1

a= _MVWPO[ (2)
for a single mass element Am. Being At the time step of
the computation, x = x(7) its (unknown) position at time
t, and x, and v, its (known) position and velocity at time
t — At, the relation

2 Am

VWpot + A2
can be obtained by simple considerations. This condition
is fulfilled if the function U
(X = (xp +vpA1)\ 2
\ At )
reaches to a minimum.* By comparing Eqn. 3b with
Eqn. 1, it is found that the dynamic position x can be
computed from x, by just adding the term

!

(x — (%o + vOAt)) -0 (3a)

U = Wooq + A (3b)

3 Generally, we refer to positions as x, velocities as v, and
accelerations as a.
4 Please note that Eqn. 3a is the gradient of Eqn. 3b with respect to x.

[ X = (xp +vpA1)\ 2

\ At )

to the integrand in Eqn. 1, with p and A being the den-
sity and the cross-section of the workpiece. Thus, the

equation
L !

U= (W gay +Wpend +W' twist +W'ayn )ds=min  (4)
0

W dyn = pA

has to be solved instead of Eqn. 1.3

For At — 0, the solution given above and an numeri-
cal integration of the acceleration both converge against
the correct solution. However, for any realistic Ar >0,
dynamic workpiece oscillations increase in time when
integrating the acceleration, while they decrease with the
approach given here. Therefore, the numerical value of Ar
is less critical in this approach. See Karl [2] for details.

2.2 COMPUTATION

The computation of the workpiece shape by evaluating
Eqn. 4 (or Eqn. 1) is performed in the following way.
First, a vector q(s) of functions ¢;(s) is required which
uniquely determines the workpiece shape and can be used
for computing the potential energy W,,. Second, each
function g;(s) is expanded into a series with N, terms.
Third, a discrete optimization algorithm is used for si-
multaneously determining a set of coefficients c; for each
series which fulfills Eqn. 4. By these steps, the problem
given in Eqn. 4 is transformed into the problem

!

U=f(c0,cl,...c3Nc_1)=min (5)
with f being the sum of the energy terms according to
Eqn. 4, and 3N, being the total number of coefficients. ©

First, it is necessary to choose an appropriate object
representation. Wakamatsu [5,6] uses Eulerian angles for
describing the local coordinate system at each workpiece
point with respect to a global coordinate system

q(s) =[9(9),0(). 9 ()]
and expresses curvature k and torsion t by the Eulerian
angles and their derivatives with respect to s. This is a
good representation if elastic deformation is considered.
However, it is not favorable for describing plastic deforma-
tion since the elastic and plastic portion of curvature and
torsion are distributed over all of the Eulerian angles.
Please note that the occurrence of plastic deformation
means a change of the stressfree object shape. Thus, the
plastic deformation computed in each step must be stored
and considered in all subsequent steps while the elastic
deformation is computed newly in each step. Storing just
the plastic portion of the deformation is not possible if
Eulerian angles are used to represent the object shape.

5 Please note that W represents the dynamic behavior in the
minimization problem but is not the kinetic energy of a mass element!

6 The total number of coefficients is 3N, because 3 functions are
required for representing the workpiece shape in space. See also
below!



Therefore, we propose to use curvature K and torsion t
directly for the representation.

For representing the DLO shape in space unequivocally,
a third function is required. For completing the representa-
tion, we choose the local direction of curvature 8(s). Thus,
the workpiece representation is given by

q(s) = [x(5),7(),8(s)]"

Using this representation, the separation of curvature
and torsion into their elastic and plastic portions can be
performed by simple geometric considerations. Being x,
and T, the elastic portions of curvature and torsion, respec-
tively, W'y, and W', can be computed easily by

2
w bend = E Rbend Ke

1 2
w twist = E Rtwist Te

with R, and R, as bending and twisting rigidity. The
transformation to a global Cartesian coordinate system can
be performed by simple trigonometric considerations.
More information about the consideration of plastic de-
formation is given in Karl [2].

Second, a series expansion is used for approximating
q(s). The type of series and the number N, of series terms
are of major influence on both computation time and pre-
cision. Generally, the series should be a good approxima-
tion of the g;(s) with N, being as small as possible. Be-
cause the workpiece may principally take any shape, it is
not possible to find a series which guarantees a good ap-
proximation under all circumstances. A typical problem of
almost any series is the representation of sharp bendings.
Hirai, Wakamatsu et al. succeed in using Fourier series.
An interesting alternative are Chebyshev polynomials
which are often a good choice for the approximation of
unknown functions (See Press et al. [3]). The series ex-
pansion Q of function g with N, Chebyshev polynomials
can be expressed by

N-1
- cos! i 25 _p)
0(s) ]20 cjcos \] arccos( . 1)} .

We generally presume
O(s) = q(s),
for N, — o, i.e., the accuracy is increased with N.. How-
ever, the effort for solving the minimization problem is
increased with N_, too.

Third, a discrete optimization algorithm is required for
determining a set of coefficients c¢; which fulfills Eqn. 5.
Generally, any algorithm for non-linear optimization in
multidimensions could be employed. We investigate the
Downhill Simplex (DS) algorithm and the DAVIDON-
FLETCHER-POWELL (DFP) algorithm as Quasi-NEWTON
Method. The major advantages and disadvantages of the
DFP algorithm hold true for all kinds of gradient methods
(see Press et al. [3]). On the one hand, the Downhill Sim-
plex algorithm is easy to implement. On the other hand,
gradient methods are generally more powerful.

3 SIMULATION EXPERIMENTS

3.1 PRECISION

For investigating the influence of the series expansion,
the two benchmark problems (a) shown in Figure 2 are
used:

First, a copper wire of length L =1 m and diameter
d =1 mm is fixed in a Cartesian world coordinate system
at x=0m, z=1m with horizontal orientation at one
end and bends due to gravity (Benchmark A). Second, an
additional load of 1 kg is mounted at the free end to in-
crease the bending (Benchmark B). 7
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Figure 2: Two Benchmarks A and B for
investigating the computation precision

Figure 3 shows the maximum error Ax,,, of the com-
puted shape as a function of the number of series terms for
Chebyshev polynomials and Fourier series, respectively.
As reference, a computation with N, .= 32 series terms
is used. The number of elements for the discretization of
the wire length is N, = 64.

As expected, the computed shape converges against the
reference shape for N, — N, .. The deviation increases
with the bending of the wire. However, the number of
series terms required for obtaining good accuracy is consid-
erably lower for Chebyshev terms. In this case, the maxi-
mum accuracy (given by the computational accuracy,
dashed horizontal line in the figures) is obtained for
N, =10 even for sharp bendings. If Fourier series are
used, the number of required coefficients is considerably
higher. Thus, we suppose that Chebychev polynomials
converge faster for typical cases.

Besides the number of series terms, the precision de-
pends on the discretisation As (given by object length L
and number of curve elements N, ) of the object for com-
puting the energy integral given in Eqn. 4. For bench-
mark A described above, the maximal error is shown as a

7 In reality, the deformation is mainly elastic for benchmark A while it
is plastic for benchmark B. However, we consider the deformation to
be purely elastic in both cases in order to have equal conditions. The
plastic deformation is not relevant for the question considered here.
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Figure 3: Maximal deviation Ax,, between
computed and reference workpiece shape as
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Figure 4: Maximal deviation Ax,, between
computed workpiece shape and reference
as a function of the number N, of curve ele-

ments for benchmark A.

function of N, in Figure 4 (for benchmark B, a similar
result is obtained). The reference shape is computed with
N ;=960. In this example, Chebychev series with

N, =16 terms are used for approximating the ¢;. For
N, =15, the maximal accuracy is obtained. A further
increase of N, does not improve the accuracy. 8

Please note that we assign one node to every discrete
workpiece element. The maximum deviation Ax,,,, con-
sidered here is the maximum deviation between the com-
puted node positions and the node positions of the refer-
ence computation. Between the nodes, we approximate the
object shape by circular arcs. Here, the difference to the
correct shape may be higher.

3.2 COMPUTATION TIME

The effort required for computing the workpiece shape
is mainly determined by the combination of following
factors: Number of curve elements N, number of series
terms N, and optimization algorithm for computing the
energy minimum according to Eqn. 5.

For investigating the computational effort, the bench-
mark C shown in Figure 5 is used: The copper wire de-
scribed above is gripped at one end point with gripper
position x=0m, z=1m. Starting with a horizontal
orientation, the gripper is rotated by 180° around the y-
axis with a stepsize of 10° and back into the initial posi-
tion. In each experiment, the total time for simulating the
36 object positions is measured. The computation is per-
formed on a 133 MHz Pentium PC with 64 Mbytes RAM

x/m
Figure 5: Benchmark C for investigating the
computation time

using LINUX as operating system.

For both optimization algorithms, Figure 6 shows the
computation time as a function of the number of curve
elements N, with the number of series terms being
N, = 8. In both cases, the computation time increases
approximately linearly with N;. Compared to the Down-
hill Simplex algorithm, the DFP algorithm requires more
evaluations of the energy integral in each iteration. There-
fore, even a small difference in the number of iterations
has a significant influence on the total computation time.
Thus, the computation time as a function of N, is less
smooth for the DFP algorithm than for the Downhill
Simplex algorithm. °

8 The software stores all numbers as 64 Bit floating points (standard
doubles for PCs).

9 Please note that the computation time is not generally smaller for the
downhill simplex algorithm. This also depends on the number N, of
series terms.
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Figure 6: Computation time as a function
of the number of curve elements N, for
Downhill Simplex (DS) and DAVIDON-
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Figure 7: Computation time as a function

of the number of series terms N, for Down-

hill Simplex (DS) and DAVIDON-FLETCHER-

PoweLL (DFP) algorithm

Figure 7 shows the measured computation time as a
function of the number of series terms N, with object
discretization N; = 32. Obviously, gradient methods as
the DFP algorithm are especially powerful if the number
of coefficients to be determined is high. However, in
Section 3.1 it is shown that approximately 10 series
terms are generally sufficient if g(s) is approximated by
Chebychev polynomials. Therefore, the Downhill Sim-
plex algorithm is not only easier to implement but also
faster in typical cases.

4 PARALLEL COMPUTATION

Section 3 shows that a short computation time can be
obtained by an appropriate selection of computation pa-
rameters and optimization algorithm. If a further reduction
of the computation time is required, e.g., for real-time
computation in combination with sensor evaluation, paral-
lel computation can be considered.

In this context, it is two different situations must be
distinguished, which are discussed in the following.

1. Different workpiece shapes are independent from each
other (independentcomputation).

2. The shape computed in each step dependson the shape
computed in the previous step (dependent compu-
tation).

We implemented a parallel version of the simulation

software on a workstation cluster which consists of 9

PCs, each with 133 MHz Intel Pentium processors and

128 Mbytes memory. The parallel communication is

established by an Ethernet based bus network (see Wurll

[7] for details).

4.1 INDEPENDENT COMPUTATION

For independent computation, at least the following
two conditions must be fulfilled: The simulation is per-
formed (quasi-)static and there is no plastic deformation.
Under these circumstances, the workpiece shape can be
computed in parallel for different positions of the gripper
trajectory (starting the optimization algorithm always with
the same initial guess for ¢(s)). However, it is more favor-
able to use the result of a previous step as initial guess
since the difference to the correct shape is typically smaller
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Figure 8: Measured speedup for independ-
ent computations using Downhill Simplex
(DS) and DAVIDON-FLETCHER-POWELL (DFP)
algorithm with N, being the number of
processors (each experiment performed
three times)

in this case. The resulting speedup is linear, as shown in
Figure 8 for the benchmark C given in Figure 5.
However, if any interaction between workpiece and ob-
stacles has to be considered, the computed object shapes
may not be valid, even if the conditions given above are
fulfilled. This problem is demonstrated in Figure 9 with
the following benchmark D. The object is moved down-
wards (into direction MD, direction of gravity) and collides
with an obstacle. All steps of the simulation are computed
independently from each other, the minimization algo-
rithm is always started with an undeformed workpiece as



initial guess. While the object shape is simulated correctly
for the first four steps, the object 'jumps' to the lower side
of the obstacle in step five which is obviously incorrect.
This is caused by the fact that the optimization algorithm
seeks for the minimum energy which is next to the initial
guess. Starting with an undeformed object, the algorithm
always finds the global minimum in this example.
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Figure 9: Benchmark D: Obstacle interaction of a
deformable linear object while being moved into
direction MD for independent computation of all
steps. The result is false for step 5 to 9.

The correct result is obtained if the object shape com-
puted in step i—1 is taken as initial guess in step i. In this
case, the algorithm finds the local minimum which is next
to the shape computed in the previous step. The parallel
computation of several points of the trajectory is obvi-
ously not possible in this case.

It is generally not necessary to use the result of step i —

1 as initial guess in step i in those cases. It is also pos-
sible to use a shape computed a few steps in the past.
Thus, correct results can be achieved without completely
loosing the advantage of parallel computation. However,
the number of computations to be computed in parallel
must be chosen carefully if interaction with obstacles may
occur.

4.2 DEPENDENT COMPUTATION

If the object is deformed plastically while being handled
by the robot or the simulation shall be performed dynami-
cally, the simulation of step i requires the results obtained
in step i — 1 (for example the velocity of each mass ele-
ment). This holds true not only for initializing the opti-
mization algorithm, but also as input data for the compu-
tation. Therefore, the approach discussed above is not
feasible.

Generally, it should be assumed that the final computa-
tion of the object shape ¢' in simulation step i can be per-
formed fast if the difference between the actual minimum
and the initial guess is small. Based on this idea, we can
compute a good initial guess for the steps ¢'*', ¢'*?, ...
while computing the correct result g'.

Let us assume the case of performing a dynamic simu-
lation and having two independent computation tasks 7

and T,. Having a known initial shape ¢° of the object, we
use the following algorithm: Based on ¢°, T, and T, com-
pute the shapes for the next two steps, ¢' and ¢* simulta-
neously. While the obtained result is valid for ¢', it is an
approximation for ¢* (since the final computation of ¢
requires ¢' as input). In the next step, ¢' can be used for
finally computing the final position ¢* and an approxima-
tion for ¢°, and so on. This method can be easily em-
ployed for any number of independent computation tasks.

However, the assumption that a good initial guess re-
sults in a fast computation of the energy minimum is not
always true, but depends on the optimization algorithm.
On the one hand, the Downhill Simplex algorithm re-
quires 3N, + 1 independent guesses for each of the 3N,
parameters. Having just one good (maybe almost optimal)
guess from the previous steps does not significantly sim-
plify the problem. Accordingly, the possible speedup is
rather low.

Gradient-based algorithms as DFP, on the other hand,
come close to the minimum rather fast even if the initial
guess is bad, but require many iterations to finally deter-
mine the minimum with the required accuracy. Therefore,
the influence of a good initial guess is rather small, result-
ing in a low speedup. However, if the guess computed in
step i—1 is the actual workpiece shape, DFP algorithm
terminates immediately. This is the case if there is no
plastic deformation in a step or the acceleration of all mass
elements is constant in time, respectively. Here, the
speedup is lower than for independent computation (Sec-
tion 4.1), but also linear.

Figure 10 shows the measured speedup for a dynamic
computation of the benchmark C described in Section 3.2
for both minimization algorithms. Due to the characteris-
tics of the Downhill Simplex algorithm described above,
the speedup is almost neglectable. For the DFP algorithm,
a maximum speedup of about two is obtained for three
computation tasks. If the task number is further increased,
the speedup is reduced due to the following reasons: First,
the more computation tasks we use the more guesses we
compute for future simulation steps. However, if a guess
for step i+k is computed in step i, the significance of the
guess decreases with increasing k. Therefore, the additional
use of the tasks becomes smaller from task to task. Sec-
ond, the effort required for communication increases with
the number of computation tasks.

Compared with the resulting speedup, it is found that
the effort for the parallel computation is generally too
high in the case of dependent computations. Some addi-
tional possibilities for parallelizing sub-tasks, e.g., the
computation of the energy integral, have been considered
but have not been implemented because the expected
speedup is too low.

S CONCLUSIONS

In this work, the efficient simulation of deformable lin-
ear objects is proposed and investigated. We extend the
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Figure 10: Measured speedup for
dynamic (dependent) computation using
Downhill Simplex (DS) and DAVIDON-
FLETCHER-POWELL (DFP) algorithm with
N, being the number of processors
(each experiment performed three times)

principle of minimal potential energy for a treating of
plastic deformation and give an novel approach for con-
sidering dynamics. The discretization of the workpiece
length, the series expansion used for approximating the
workpiece shape, and the algorithm for computing the
minimal energy are identified to be of major influence on
precision and computation time. For these parameters, an
experimental investigation is performed. Additionally, we
discuss the usage of parallel processing.

For approximating the set of functions describing the
workpiece, Chebyshev series turn out to be well-suited.
The accuracy of the computed object nodes is found to be
rather high even if the discretization of the object is rather
coarse.'Y For solving the minimization problem, the
Downhill Simplex algorithm is found to be sufficient.
Based on these results, it is possible to assess the parame-
ters for the efficient simulation of a given task. Parallel-
izing the computation is efficient if the single steps of the
trajectory can be computed independently from each other,
otherwise the speedup is rather poor.

In this paper, we discuss the computation of the work-
piece shape if the trajectory of the gripper is known a pri-
ori. However, if the goal is to perform a distinct
(assembly) operation, the problem is generally inverse:
given the task which shall be performed, a suited gripper
trajectory must be computed. The investigation of this
Inverse modeling problem will be our next step.
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10 please note that this holds true only for the nodes themselves.
Between the nodes, the difference to the correct workpiece shape is

generally higher.

REFERENCES

[1] Hirai, S., Wakamatsu, H., and Iwata, K.: "Modeling
of deformable thin parts for their manipulation". In:
Proc. 1994 Int. Conf. on Robotics and Automation
(ICRA'94), vol. 4, pp. 2955-2960, San Diego,
USA, May 1994.

[2] Karl, S.: "Physikalische Modellierung des mechani-
schen Verhaltens von deformierbaren, linearen Objek-
ten" (Physical modeling of the mechanical behavior
of deformable linear objects). Master Thesis, Univer-
sitat Karlsruhe (TH), Germany, 1999.

[3] Press, W. H., et al.: "Numerical recipes in C". Sec-
ond edition, Cambridge University Press, 1992.

[4] Remde A., Henrich D., and Worn H.: "Manipulating
deformable linear objects: Contact state transitions
and transition conditions". In: 1999 IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS'99),
Kyongju, Korea, October 1999.

[5] Wakamatsu, H., Hirai, S., and Iwata, K.: "Modeling
of linear objects considering bend, twist and exten-
sional deformations". In: Proc. 1995 Int. Conf. on
Robotics and Automation (ICRA'95), vol. 1, pp.
433438, Nagoya, Japan, May 1995.

[6] Wakamatsu, H., et al.: "Dynamic analysis of rodlike
object deformation towards their dynamic manipula-
tion". In: Proc. 1997 IEEE/RSJ Int. Conf. on Intel-
ligent Robots and Systems" (IROS'97), pp. 196ff,
Grenoble, France, Sept. 1997.

[71 Wurll, C., Henrich, D.: "Ein Workstation-Cluster fur
paralleles Rechnen in Robotik-Anwendungen" (A
workstation cluster for parallel processing in robotic
applications). In: Proceedings der 4. ITG/GI-Fach-
tagung Arbeitsplatz-Rechensysteme (APS'97), Uni-
versitat Koblenz-Landau, Germany, 21.-22. May,
1997, pp. 187 - 196.

[8]1 Zheng, Y. F., Pei, R., and Chen, C.: "Strategies for
automatic assembly of deformable objects". In: Proc.
1991 Int. Conf. on Robotics and Automation
(ICRA’91), vol. 3, pp. 2598-2630, Sacramento,
USA, April 1991.



