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Abstract
One of the many features needed to support the activities

of autonomous systems is the ability of motion planning. It
enables robots to move in their environment securely and to
accomplish given tasks. Unfortunately, the control loop
comprising sensing, planning, and acting has not yet been
closed for robots in dynamic environments. One reason in-
volves the long execution times of the motion planning
component. A solution for this problem is offered by the
use of highly computational parallelism. Thus, an impor-
tant task is the parallelization of existing motion planning
algorithms for robots so that they are suitable for highly
computational parallelism. In several cases, completely new
algorithms have to be designed, so that a parallelization is
feasible. In this survey, we review recent approaches to mo-
tion planning using parallel computation.

1 . Introduction

One of the many features needed to support the activities
of autonomous systems is the ability to plan motion.
Motion planning enables a robot to move in its environ-
ment securely and to accomplish a given task. In dynamic
environments, the necessary adaptation of the robot motion
is provided by closed control loops comprising sensing,
planning, and acting, which have very short cycle times.
One approach for realizing intelligent and reactive robotic
systems is to integrate the planning algorithms into the
control loop. Unfortunately, sound planning algorithms are
complex and need long execution times. To still pursue this
approach, a reduction in planning time is required. New
parallel computing architectures with high computing power
look promising.

One could object that the motion planning problem in
general can become very complex for increasing degrees of
freedom (DOF) of the robot and is still intractable, even for
a parallel computer. On the other hand, the aim of parallel
processing is not to reduce the intractability of complex
problems, but to reduce the solution time for given prob-
lems, or to increase their solution quality. Also, it is im-
portant to approximate the general problem by a simplified,
but still realistic problem. This is independent or whether
sequential of parallel processing is used.

Thus, an important task is the parallelization of existing
problem solutions in robotics so that they are suitable for
highly computational parallelism. In several cases, funda-
mentally new algorithms have to be designed, so that a
parallelization is feasible. The paper [28] reviews the re-
search performed thus far in designing and implementing
parallel algorithms for robotics. One of the key findings is

that, in the subareas of manipulation and task planning, not
much work has been published concerning parallel algo-
rithms. Several parallel motion planing algorithms have
been suggested however, which are reviewed in the rest of
this paper.

2 . Motion Planning Approaches

Sequential motion planning approaches have been
classified in: skeletons, cell decompositions, potential
fields, and mathematical programming [16]. In the skeleton
approach, the free configuration space (free C-space), i.e.,
the set of feasible motions, is retracted, reduced to, or
mapped onto a network of one-dimensional (1D) lines. In
the cell decomposition approach, the free C-space is de-
composed into a set of simple cells, and the adjacency rela-
tionships among the cells are computed.

To structure the parallel approaches, these keywords are
modified by exchanging "skeletons" and "cell decomposi-
tions" with graph-based and grid-based approaches. The
parallel ancillary algorithms, which are necessary to fulfill
the planning task, are omitted due to space limitations.

2.1 Graph-based Approaches
The graph-based approaches include irregular skeletons

and object-dependent cell decompositions. These approaches
consist of two basic phases. The first phase is associated
with the construction of a graph representing relations be-
tween free space. After computing the graph, in the second
phase, the optimal path referring to a certain criterion
(shortest distance, minimum time, etc.) has to be found.

Firstly, regarding the calculation of skeletons in the first
phase, results obtained in parallel computational geometry
can be outlined. The Voronoi diagram for a set of n points
can be computed in O(log2 n) time using n processors on a
parallel random access machine (CREW-PRAM) [1]. On the
same type of machine, an O(log n) time algorithm using
O(n/log n) processors for computing the visible portion
from a point in the plane of a simple (i.e., non-intersecting)
polygonal chain with n vertices in the plane is given in [4].
Let Sort(n) denote the time to sort n elements. Then, the
above visibility problem can be computed in O(Sort(n))
time on an n-processor hypercube [23].

Secondly, the calculation of the object-dependent cell de-
composition is regarded. In [36], the geometric structure of
the configuration space obstacles is used to generate a small
number of free cells, allowing the search process to work
most efficiently. The algorithm has been implemented on a
16-node Transputer network, obtaining a speed-up of 11.6.

The remaining research work summarized here concen-



trates on the second phase of graph-based approaches. One
way to do this involves the well-known graph search tech-
niques. In [26], parallel versions of Dijkstra's method are
given for shared memory CRCW and EREW machines.
With n vertices in the graph, the complexity of the algo-
rithm is O(n log n) using n processors. In the case of
visibility graphs (V-graphs), the A* search has been applied
on multiple cooperating mobile robots with particular
priorities in [37]. The search algorithm is executed on a
shared memory MIMD computer and all the robots' paths
are planned simultaneously. For twelve mobile robots,
collision-free paths in a 2D-workspace are computed with
six processors within 18 s and a speedup of 3.74. In [43],
shortest-path algorithms for cell decompositions are inves-
tigated analytically on a CREW shared memory machine.
For a robot with d DOFs and a workspace with n cells, the
sequential algorithm needs O(d2 nd log n) steps. Using
o(d ), o(d 2), and o(n d) processors, O(d  n d  log n ) ,
O(nd log n), and O(d2 k log n) steps, respectively, are
necessary to find the shortest path of length k.

Genetic algorithms can also be used to find a (sub-) op-
timal path in graphs. A V-graph-based approach to plan the
shortest collision-free path in 3D for mobile robots is taken
in [12a]1. As the plain V-graph algorithm does not find the
shortest path between 3D polyhedrons, the optimal edges are
selected by a genetic algorithm. The optimal vertices along
the optimal edges are computed by a "recursive com-
pensation algorithm". A graph similar to the Voronoi dia-
gram is used in [38]. Multiple mobile robots plan their
paths independently and communicate locally to avoid com-
petition for common free space. In the genetic algorithm,
the node numbers of the skeleton are used to encode a path
as a genetic string. The cross-over operation works only on
paths with a common node, where the partial paths can be
exchanged. The fitness function depends on the path length
and the cost for commonly used free space.

Besides the graph search itself, the different processing
phases occurring with graph-based approaches can be pro-
cessed in parallel. For skeletons, this was examined in [35]
to generate minimum-time trajectories between two points
in the presence of polyhedral 3D obstacles for Cartesian
robots.

2.2 Grid-based Approaches
The grid-based approaches include skeletons with a regu-

lar network of 1D lines and object-independent cell decom-
positions.

Similar to graph-based methods, in grid-based approaches,
graph search algorithms can be used to find an optimal path.
In [6]2, a hierarchical representation of the work- and C-
space by bitmaps serves as the basis. In this cell
decomposition, a potential field with few local minima is
pre-computed using a combination of an attracting force to-
wards the goal configuration and a Voronoi diagram.
Collision free paths are planned in the hierarchical represen-
tation by a best-first search or Monte-Carlo search guided by

1 This paper includes [11].
2 An earlier version of this paper is [5].

the potential field. A parallel version of the second search
method is described in [10b]3. The hierarchical bitmap repre-
sentation is broadcast to all processors, which perform a
quasi-best-first search. Experiments for a seven DOF redun-
dant robot in a 128×128×128 cell workspace were done on a
Connection Machine CM-5 and needs a few seconds in aver-
age. Contrasting to the this approach, another randomized
approach in [32b] avoids pre-computed heuristics and,
therefore, is suited for dynamic environments. The parallel
search is conducted in the discretized configuration space
which needs not to be represented explicitly. The planner
uses a number of rule-based sequential search processes
working to find a path connecting the initial configuration
to the goal via a number of randomly generated subgoal con-
figurations to avoid deep local minima. On a cluster of 45
SUN4 and SGI machines under PVM, the average planning
time for a six DOF manipulator in a cluttered environment
occupied with 20 randomly sized and located rectangular ob-
stacles is ca. 35 s. For a more realistic environment, it
takes less than 10 s in average. For both above approaches,
the interprocessor communication required is minimal be-
cause only problem and solution data have to be transferred
once.

Besides graph search algorithms, the grid-based represen-
tations can be explored by (incomplete) genetic algorithms.
In [7]4, the motion planner is based on two parallel genetic
algorithms: an exploration algorithm and a search algo-
rithm. The purpose of the exploration algorithm is to col-
lect information about the environment with an increasingly
fine resolution by placing landmarks in the searched space,
thus, the C-space is not built up completely. The goal of
the search algorithm is to opportunistically check if the
target can be reached from any given placed landmark. Both
algorithms use "Manhattan paths", which allow moves in
only one DOF at a time, as genetic strings of fixed length.
The fitness function minimizes the distance between the
first collision and the goal configuration. Using 128
Transputers, the planning time of a six DOF robot in a
environment with another not-moving robot is ca. 2 s. For
an industrial application with several hundreds of geometri-
cal entities, the evaluation of Manhattan paths is question-
able. In [41], a quite uncommon grid for 2D Cspace repre-
sentations is used. The genetic algorithm works over a
search area enclosed by a circle, whose circumference is di-
vided according to a predefined resolution. The angles formed
by each division of the circumference represent the popula-
tion. Unfortunately, the objective function which only make
uses of local information may lead to bad solutions. In [21],
mobile robot path planning in 2

1
2D grid with dynamic

obstacles is investigated. In contrast to former approaches,
genetic strings of variable length are used, which encode
moves in one of eight possible directions. Cross-over for a
path pair is based on randomly connecting points within a
certain proximity. For mutation, the path remainder at a
randomly selected point is replaced by a randomly generated
segment. The fitness function minimizes path length,

3 Earlier work is reported in [9, 10a]
4 Previous papers are [2, 3, 46, 25, 47].



traversing energy and traversing time. Finally, in [27], a tri-
angulated terrain model including slopes and obstacles is
used as a grid. A "linking method" based on the steepest de-
scent finds partial paths between two random nodes of the
skeleton. By this method, the cross-over or mutation opera-
tions join two paths at randomly selected nodes or modify
existing paths, respectively. The energy consumption, in-
cluding speed, slope, and friction, is used as the fitness func-
tion. With the exception of [7], the genetic algorithms have
not been implemented on a parallel computer, although they
imply scalable parallelism.

Another incomplete parallel motion planning approach
uses neural networks. In [22], a Hopfield network for mo-
bile robot path planning in 4- or 8-connected grids is intro-
duced, where grid nodes and edges correspond to neurons and
links, respectively. The network is initiated with an arbi-
trarily selected path that connects the starting location to the
destination. The neurons adjust the local path in a (local)
mesh to reduce the path cost. Groups of neurons, e.g., ar-
ranged like a chessboard, accomplish the global planning.
Simulated annealing is used to avoid trapping at a local
minimum. Although the optimal path is not guaranteed, a
slow annealing rate provides a good chance of generating a
nearly optimum one.

The last basic parallel method for grid-based motion
planning is cellular automata. In [49], a method for solving
visibility-based terrain path planning problems using mas-
sively parallel hypercube machines is proposed. A typical
example is to find a path that is hidden from moving adver-
saries. This kind of problem can be generalized as a time-
variant, constrained path planning problem and is proven to
be computationally hard. An approximation based on both
temporal and spatial sampling is proposed. Since a 2D grid
cell representation of terrain can be embedded into a hyper-
cube with extra links for fast communication, the method
can be very efficient when implemented on hypercube ma-
chines. The time complexity is in general O(t.e.log(n)) us-
ing O(n) processors, where t is the number of temporal
samples, e is the number of adversary agents, and n is the
number of grid cells on the terrain. A 512×512 terrain has
been implemented on the Connection Machine CM-2 with
8K processors.

2.3 Potential Field Approaches
The potential field approach uses a scalar function called

the potential. It has a minimum, when the robot is at the
goal configuration, and has a high value on obstacles.
Everywhere else, the function slopes down toward the goal
configuration, so that the robot can reach it by following
the negative gradient of the potential. The high value of the
potential prevents the robot from running into obstacles.
Since local minima (other than the goal) are a major cause
of inefficiency for potential field methods, most of the par-
allel versions use a global potential map as a navigation
function. Additionally, such a map has the advantage of
combining model-based and sensor-based workspace repre-
sentations.

A very convenient method for computing a global poten-
tial map is the use of cellular automata. Using this parallel

processing principle, two different approaches can be identi-
fied: wavefront expansion and relaxation. In wavefront ex-
pansion, the shortest distance to the goal in the map is com-
puted by setting off a wave from the goal location. The
wave propagates in all directions with the map cells on the
wave front updating their distance to the goal and pushing
the wave forward. Since the shortest path is sought, the path
will always touch the border of obstacles, which have to be
circumvented. In relaxation, each cell samples the potential
values of its neighbors and adjusts its own potential such
that it satisfies a given relaxation equation. The potential of
cells representing obstacles are held constant. Therefore, the
path will stay away from obstacles, although it will not be
the shortest one.

Regarding the wavefront expansion by cellular automata,
in [50], a sensor-based and analytical world model is as-
sumed. In a 2D C-space, two global potential fields (one
starting from the goal and one from the start position) are
computed and summed up. The used SIMD computer was
the ICL Distributed Array Processor (DAP), where the
workspace cells are mapped onto the processors arranged in a
mesh network. To compute a 64×64 potential field, 0.15 s
are necessary.5 Using only one wavefront and propagating
motion directions instead of distances, in [39] the algorithm
is made adaptive by utilizing a multi-resolution rep-
resentation of the map. To find a path in a 32×32 map with
three resolution levels, ca. 0.01 s are necessary on the AMT
DAP 510. In [45], an analogy of the Huygens' principle
(known in physics) is applied recursively. The meeting
points of multiple wavefronts serve as the wave source (start
and goal location initially) in the next recursion. In [13],
visibility aspects are included in the wavefront approach in a
multirobot environment. Therefore, each wavefront message
includes a d-dimensional pyramid indicating the visible re-
gion from the last source. This reduces the total number of
messages needed. Finally, in [44], the costs of the straight
path from goal to start is used for heuristic pruning, so
more expensive paths are not explored further. On the CM-
2, a 1024×1024 map is processed in 5.9 s. The processing
time increase as O(l) with the path length l as long as there
is a processor available for each map cell. Otherwise, it
increases as O(l2.4) when there are not enough processors
available. Unfortunately, none of the above mentioned
papers report comparisons with other parallel approaches.

Besides the wavefront algorithm itself, the problem of
mapping the grid space to the processor space has been dis-
cussed.6 The works cited so far use a simple mapping strat-
egy that divides the grid space into partitions (of size 1×1 in
all but the last reference) and map each partition to a pro-
cessor. To increase the processor utilization, the grid space
can be partitioned into covering rectangles, which are
mapped to the processor space by using the simple mapping
function [51]. When the size of the covering rectangle
decreases, the processor utilization increases while the

5 To make the timings results comparable, the cases of one-to-one
mapping of cells onto processors are cited.

6 This discussion refers to the maze-routing problem but the results
can be applied to motion planing by global potential fields too.



number of boundary cells also increases. A generalized ver-
sion keeps the size of the covering rectangle as a parameter.
The optimal size of the covering rectangle has been deter-
mined by experiments. In [52], this algorithm is modified
by using mirror images to allow higher processor utilization
while reducing the number of boundary cells. Simulations
show the improvement in an obstacle-free grid space.
Additionally, a dynamic mapping algorithm is proposed
which optimally maps an obstacle-free grid space.

In the following, we regard relaxation by cellular au-
tomata to calculate the global potential field map. In [30],
each cell continuously samples the potential values of its
neighbors and adjusts its own potential to the mean of the
maximum and minimum potential found in its neighbor-
hood. The start and goal cells have a constant high and low
potential, respectively. It is stated that to reach the stable
potential distribution, O(N) relaxation steps are required,
where N is the number of cells in the map. The time re-
quired for the characteristic gradients to emerge is O(l), with
l being the path length, though it is not clear how this
length is determined. Sequential simulations on a
Symbolics 3640 need 4 s for a single relaxation step in a
70×40 map. An extension to time-varying environments in
[32a]7 use short- and long-term maps and avoid dynamic ob-
stacles by computing their "bow wave". Unfortunately, this
extension is not complete and the cells need global informa-
tion. Another type of relaxation mechanism is used in [18]8,
where the dynamic behavior of fluids in the robot workspace
is simulated. The fluid flow is caused by a pump at the
robots actual position and an outlet installed at its destina-
tion. The fluid flow simulation takes 

1
2εN iterations per grid

cell to converge within a precision of 10-ε and was imple-
mented on a DAP machine. Both relaxation approaches are
suitable for incompletely known and changing environ-
ments, and solve navigation through weighted regions.

Another parallel processing approach for potential field
computations are neural networks. Applying this approach
to robot motion planning, it is very similar to cellular au-
tomata simulating a wavefront expansion. A grid of neu-
rons, which are interconnected only with their direct neigh-
bors, represents the 2D workspace. On a conceptional level,
the interconnection weights w ∈ [0,1) can be used to in-
clude terrain properties [15] or different neuron (cell) dis-
tances [40]. The neuron of the goal location is set to the
maximum activity and the other neurons are activated by
propagating weighted output signals (wavefront). After
reaching the neuron of the robot's current configuration, the
neighboring neuron with maximum activation determines
the next configuration. A hardware-oriented approach in [17]
realizes the weights as time delays when propagating the
output signal. The next robot configuration is determined by
the interconnection link where the first signal comes in.

Special-purpose hardware implementations can be applied
for computing global potential fields, too. Three different
methods are identified: In [48, 24], a scalar electric potential
field in a 2D resistive grid is used to exploit the advantages

7 Earlier versions of these papers are [29] and [31], respectively.
8 Other versions of this paper are in [12b, 19].

of parallel analog computation. The start configuration is
modelled as a current source and the goal as an equal and
opposite current sink. Obstacles are modelled as non-con-
ducting solids in a conducting medium. This representation
seems to be powerful when navigating in long, narrow cor-
ridors. Software simulations in a 2D Euclidean plane show
that feasible paths for navigation are current streamlines.
Nevertheless, when scaling the test chip to a full-sized grid,
the discrimination between the best and the next-best path is
critical. In [34], a parallel analog optical computation uses a
2D spatial light modulator on which an image of the po-
tential field map is generated iteratively. Optically calculated
fields contain no local minima, tend to produce paths centred
in gaps between obstacles, and produce paths which give
preference to wide gaps. The global potential field rep-
resented by N  workspace cells can be computed in
O(N log N) hybrid steps instead of O(N3/2) sequential ones.
Calculation of 128×128 pixel fields is possible within a few
100 ms. Finally, in [33], a wavefront propagation technique
is implemented on a linear systolic array architecture
consisting of simple processing units. The algorithm
computes a nearly optimal path by internal pipelining. For
a 128×128 workspace about 23 ms are necessary. There are
several options for computing the path from measurement
of the voltages at the source node and all of its nearest
neighbors (hardware gradient decent). There is some trade-off
between speed of computation and the complexity of the on-
chip circuitry, depending on which of these options is
adopted. In summary, all three methods are mainly suitable
for mobile robots because only a 2D configuration space is
assumed. This excludes the application of these methods to
manipulators with a greater number of DOFs.

Finally, processor farms and static task scheduling have
been used as parallelization concepts to calculate global po-
tential fields. In [42], 2D laminar fluid flow is simulated
within obstacles represented by cycles. The two major com-
putational tasks, the evaluation of a stream function at each
map cell and an interpolation for specific stream values, are
scheduled dynamically on a processor farm interconnected in
a triple linear array. Static task scheduling is used in [14] to
plan hierarchically motions for three DOF manipulators
working in an unforeseen changing environment. Two
wavefront processes beginning from the start and goal
configuration are scheduled statically onto two processors
and coordinated from a third one.

2.4 Mathematical Programming
The mathematical programming approach represents the

requirement of obstacle avoidance with a set of inequalities
on the configuration parameters. Motion planning is formu-
lated, then, as a mathematical optimization problem that
finds a curve between the start and goal configurations,
which minimizes a certain scalar quantity. Since such an
opimization is non-linear and has many inequality con-
straints, a numerical method is used to find the optimal so-
lution. One approach to mathematical programming is neu-
ral nets, which can be found in [20]. Another approach for
parallelizing standard optimization methods is to schedule
statically selected tasks [8].



3 . Summary and Future Work

Most of the work has been done using genetic algorithms
and cellular automata for grid-based and potential field
approaches, respectively. Very little has been done in
parallelizing mathematical programming approaches with
application in robotics motion planning.

The research work in the field of parallel motion planning
shows that by introducing parallel computation, the
planning time can be reduced down to several seconds. With
this and possible future improvements, the aim of a closed
control loop with short cycle times seems to be attainable.
Unfortunately, one of the following restrictions has been
included in most of the parallel approaches:
• Only simple geometric object representations were used.
• The number of DOFs was reduced.
• No dynamic obstacles were regarded.

Additionally, further work should aim at a comparison of
the different parallel approaches, especially the different
wavefront expansion methods by cellular automata.
Furthermore, implementations of grid-based genetic algo-
rithms have not been done on parallel computers. The adap-
tation is not trivial, because it is not clear how genetic evo-
lution changes when different interprocessor communication
patterns are used. Finally, future approaches may focus on
explicitly including motion time and speed in the optimiza-
tion.
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