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Abstract. We present a parallel control architecture for industrial robot cells. It is
based on closed functional components arranged in a flat communication hierarchy.
The components may be executed by different processing elements, and each com-
ponent itself may run on multiple processing elements. The system is driven by the
instructions of a central cell control component. We set up necessary requirements
for industrial robot cells and possible parallelization levels. These are met by the
suggested robot control architecture. As an example we present a robot work cell and
a component for motion planning, which fits well in this concept.
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1 Introduction

In spite of significant improvements in processing speed, sequential processors are
far from rendering sufficient computing capacity for an advanced robot system. On
the other hand, modern VLSI technology offers a unique opportunity to close this
gap by parallel computing. It can be expected that the progress in the design of new
VLSI circuits and the reduction of component costs will make parallel machines
containing several processing elements (PEs) very economical.

In order to use a parallel system, it is important to show the feasibility of parallel-
izing existing problem solutions in robotics. In several cases, fundamentally new
concepts have to be developed, so that a parallelization is possible. Specially de-
signed computer architectures for robot control are surveyed in (Graham, 1989). The
historical development of control structures of automated manufacturing can be
followed in (Dilts et al., 1991).

A classification scheme for robot control architectures has been proposed in
(Hörmann, 1989). It covers the extreme viewpoints of the historical development,
hierarchical and distributed control. Additionally, function-oriented and behavior-
oriented approaches are distinguished. Altogether, this results in four different
classes. For parallel processing, each function or each behavior can be performed by
an extra PE.

The paper is organized as follows: first, we will introduce a system concept of a
parallel control architecture for industrial robot cells in Section 2. Then, a common
communication mechanism for the involved components is presented in Section 3.



An example for a parallel control architecture and for parallel components are out-
lined in Sections 4 and 5, respectively. The related work is presented and analyzed in
Section 6. Finally, the paper closes with a conclusion and the future work in Section
7.

2 System Concept

Before discussing parallel control architectures, it is important to explain what a
control architecture is. According to (Dilts et al., 1991), a control architecture makes
a control system from control components. The architecture determines the interrela-
tionships between the components and the mechanisms for coordination.

Requirements on robot control architectures can be described from a general point
of view (Fayek et al., 1993), for manufacturing systems (Dilts et al., 1991), and for
software architectures of robot control (Fleury et al., 1994). Important requirements
from the parallel processing point of view are reported in (Henrich and Höniger,
1997).

The goal of our system concept is to provide a scalable and flexible high level ro-
bot control architecture for a complex manipulation task that fulfills the requirements
described in (Henrich and Höniger, 1997) and which covers many levels of paralleli-
zation. A definition of these levels can be found in the same reference. In order to
provide high efficiency, our system is divided into subsystems with different func-
tionality which may run on different PEs and communicate by an efficient message
passing protocol.

By providing well defined and standardized interfaces for the subsystems, we
make extensive use of commercially available software modules and processing
hardware. For example, the real time kinematics control system of our robot is a
commercial product purchased together with the robot. Thus, we can concentrate on
developing the high level control architecture which is important for overall system
efficiency.

In the following, a subsystem is also called a component. According to the defini-
tion of (Mehlhaus, 1994) a component implements a set of related functions and can
either be a physical or a logical component. Logical components run as different
processes in order to have the possibility to run them on different PEs for higher
efficiency. Additionally, a component process can be parallelized at the algorithm
level like the automatic motion planner described in Section 5.

The system of components from this abstract point of view is shown in Figure 1.
Each component is linked to the interconnection unit. This interconnection unit may
solely transfer messages from one component to another (communication) or may
have some intelligence and decision capabilities (coordination). The set up of the
system and the distribution of the component processes is done by the cell configu-
ration component which is invoked only at the beginning of the cell process and is
idle after the system has been investigated.



Additionally, a graphical user interface and a high level cell control component are
introduced. The latter provides a common clock, resource management, task sched-
uling, action planning, action coordination and process monitoring according to
(Mehlhaus, 1994). All instructions to other components are given or planned by it
and all results return to it without passing several layers of components. Thus, our
system establishes a flat hierarchy: the main process control at the top level and the
other components at the second level with little functional dependencies in order to
support short response times.
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Figure 1: Concept for the parallel robot control architecture consisting of multiple
components and an interconnection unit

In order to keep our system extensible and its components exchangeable, all soft-
ware components need to have an identical structure. The components consist of
three parts: a local data base, a set of functions to fulfill the task of the component,
and an interface for coordination and communication (see Figure 2a). In the follow-
ing, these three parts are discussed.

Each component provides a set of functions, which can be used by other compo-
nents. Together with the interconnection unit, this enables a component to fulfill a
given task by cooperating with the other components. This is the main part of each
component and will certainly be modified during development. For example, with a
motion planning component, such a function may generate a collision-free path from
a given start to a goal configuration in a given environment (see Section 5).
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Figure 2: Different views of the component structure: a) basic parts of a component,
b) component with subcomponents for parallel processing, c) component with coor-
dination part split up in communication functions and data types.

Furthermore, the local data base may be accessed by the component itself as well
as by other components. For that reason, other components must access the coordi-
nation/communication part of the local component. Global coordination and commu-



nication libraries containing common communication functions and data types allow
easy exchange of components.

The function part of a component may further be divided into subcomponents
(see Figure 2b). These subcomponents have the same structure as described above.
The subcomponents fulfill the component task by cooperation and may be easily be
processed in parallel. This introduces parallel processing on the algorithm level of a
robot control architecture, confer (Henrich and Höniger, 1997). Still, the coordina-
tion part of the component is necessary to keep control of the subcomponents. Addi-
tionally, the coordination part hides the subcomponents from the other components
of the system.

The proposed control architecture covers several levels of parallelism introduced
in (Henrich and Höniger, 1997). It can be clearly seen that parallelism at the robotics
level is supported by the component concept when running components on different
PEs. Presuming that components consist of related functions and build closed units,
the component concept also provides parallelism on the functional and on the ab-
straction level. We also make use of parallelism at this level when using different
PEs for at least low level robot control and high level cell control. Parallelism at the
kinematics and control level are beyond the scope of this paper. For this, we can
make use of an industrial robot provided with an adequate real-time control system.
Additionally, there are many investigations on parallel low level robot control.

3 Communication Concept

In this section, the communication part of the components and the message passing
protocol are discussed. Since the components communicate by message passing, we
are designing a system of communicating sequential processes, CSP (Whitcomb and
Koditschek, 1990). Emphasis is laid on solutions to cope with the high time con-
straints of a complex manipulation task.

Regarding a parallel computer with a few PEs and wanting to make use of the full
inherent parallelism of the system, we implement an asynchronous communication
protocol: Neither the communication nor the computing processes have a common
clock, and the cell control can invoke new tasks even if old tasks are not finished.
Thus, we get a more efficient system with little waste of computing time (Gruhler,
1993) and a system which is not restricted to a synchronous remote procedure call
concept, like the system reported in (Coulouris et al., 1994). For this reason and for
its flexibility, we use the Parallel Virtual Machine System (Geist et al., 1994) for
communication between the components. Another feature of our protocol is the use
of messages including several instructions for different components, each used in a
sequence of component calls which we call instruction chains.

Using a state transition model for components, every component has a defined
state at any point in time (Mehlhaus, 1994). With the knowledge about the states of a
communication partner, the coordination between the components becomes easier.
Messages are sent to message handler modules, thus simplifying structural pro-
gramming and detecting errors in component coordination.



In order to cooperate with other components, the components have a well defined,
reusable and simple interface. It provides at least send and receive instructions with a
syntax common to all components (Drachenfels, 1997). Thus, the coordination part
of the components can again be subdivided into the communication functions and a
set of data types (see Section 2). The data types are available to all other components
enabling them to handle the transferred data (see Figure 2c).

In order to have reusable interfaces, the communication functions can be divided
into standard functions, which are useful for each component, and into functions
which are parameters for standard send and receive functions. Standard functions
have to be written only once while instruction parameters require individual evalua-
tion. Some examples for these two ways of implementing communication functions
are listed in Table 1. These functions can also be of different types. Functions for
coordination, for data transfer and for instructions are distinguished.

Table 1: Several communication functions of the parallel robot control system

Now, the different types of message routing for instruction chains will be pre-
sented. According to the client/server mechanism, one component exchanges data
with another  component by calling functions from it. The other component executes
this function with the transferred parameters and returns the result to the first com-
ponent. This may either be the result of a complex computation or a simple acknowl-
edgment message (Figure 3a). For saving communication overhead and for intro-
ducing parallel processing, we give special attention to the case where further com-
ponents are called by the second component within such a function call (Figure 3b).
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Figure 3: Three types of communication methods between single components: a)
standard  client/server calls, b) cascade client/server calls, c) instruction chains

Additionally, we may save time by using instruction chains, which include several
instructions for several components using fewer messages (Figure 3c). Thus, in-

Commu-
nication

Standard functions Send/receive functions

for coordina-
tion

terminate_component()
acknowledge_message()

wait_for_signal()

send(wait_for_robot_move)
send(wait_for_planned_motion)
send(send_tasks_to_component)

for data trans-
fer

get_variable()
get_result()

send_result()

send(get_robot_pose)
send(get_robot_configuration)

send(get_task_list)

for instructions function_call()
component_begin_work()

send(trigger_sensor)
send(plan _motion)
send(shoot_ image)



structions are routed to other components and multiple instructions are packed into as
few messages as possible. Here, a message must contain the complete information of
all instructions in a chain and information about all parameters, even of those which
will be used later. There are three ways to invoke such instruction chains: (1) one
message with a list of instructions and corresponding parameter sets; (2) one single
message with a meta-instruction (invoking the instruction chain) and the list of nec-
essary parameter sets; (3) multiple messages with one instruction and corresponding
parameter set each (the instructions in total make up the desired instruction chain)1.
We will choose the last method because it only needs to implement a few orthogonal
functions per component. This allows components and their configuration to be eas-
ily exchanged.

Force/Torque Sensor

Forces, Moments

Automatic Motion Planner

Trajectory
Points

Robot

Robot Controller Component

Acutator Data

DeviceNet
    Card

Visual SensorGripper

Gripping force and aperture (command)

DeviceNet
    Card

High Level
Robot and
Gripper
Commands

Robot
State
Data

Sensor
Handler

High Level Control for Sensor-Based
Cable Handling (Computing Trajec-
tories and Gripper operations)

Host (IPR ParaStation)

Starting
and Ending
Points

Simulation of
Cell and Cables

Model Data

Kinematics

Cable
parameters

Model
Data

Visual Data

Configuration

    Vision
Component

Camera
Parameters

Camera
Parameters

Visual Data

Data Request

Graphical
Visualizer

Graphical User Interface

Error
Messages

Assembly
Plan

Viewpoint Graphics

Visual Data

Gripping force and aperture (state)

Actuator
Commands

Figure 4: Location and interaction of the components of the example
robot system

                                                          
1 This method is similar to multiple client/server calls, but without the need to transfer huge result

data via the initiating master component.



4 Example Robot Control System

For validating the above described system concept with its communication mecha-
nism, we have built up an industrial work cell. It consists of an industrial robot, a
KUKA KR15, with 6 DOF and the PC-based low-level control system KUKA KRC.
For manipulation tasks, the robot manipulator is equipped with a pneumatic two
finger gripper, supported by a force-torque-sensor and a vision system.

The platform for the high level control architecture is a PC-based workstation
cluster, the IPR-ParaStation. Each of the nine workstations has a 133 MHz Intel
Pentium processor and 64 Mbytes memory. The communication is established either
by an Ethernet bus or a parallel mesh-based network described in (Wurll and Hen-
rich, 1997).

For the robot system example, the location and interaction of the components are
shown in Figure 4. Each physical component is reflected by a corresponding logical
component which runs at least at one node of our (parallel) host computer. The
communication between the workstation cluster and the robot control unit is estab-
lished by an additional DeviceNet board at one node of the cluster. The DeviceNet
protocol based on a CAN bus is supported by the KRC and enables us to control the
robot externally. All other peripheral components use the Ethernet for message and
data exchange.

5 Example Component

One essential component of a sophisticated robot control system is the motion plan-
ning component. The subject of robot motion planning has been studied for a couple
of decades and many important contributions to the problem have been made
(Hwong and Ahuja, 1992). Motion planning algorithms are of great theoretical inter-
est, but are rarely used in practice because of their computational complexity (Kamal
et al., 1996). Generally speaking, speeding up the computation will enable the mo-
tion planner to cope better with problems occurring in practice.

We have introduced a new approach to parallel motion planning for industrial ro-
bot arms with 6 DOF (Wurll et al., 1998). The algorithm works in an implicit and
discretisized C-space and collisions are detected by distance computation in the
Cartesian workspace. This avoids the time and memory consuming obstacle trans-
formation and free C-space calculation and, thus, enables the motion planner to work
reasonably fast.

In order to make the motion planning component faster, it has been subdivided into
parallel subcomponents (see Figure 2b). To provide these subcomponents with work,
the search domain (C-space) is decomposed into blocks, which are cyclically
mapped onto the subcomponents. For searching in a (implicit) local C-space block,
we apply the well known A*-search algorithm. The main task of the A*-algorithm
consists of the expansion and the processing of configurations, which are saved in a
priority list. Collisions are detected by a fast, hierarchical distance computation in



the 3D workspace, based on the given CAD model of the environment and the robot
(Henrich and Cheng, 1992)

6 Related Work

Much work has been done in designing and implementing robot systems but most of
the presented systems have special control architectures for solving special problems.
Distributed architectures using explicit parallelism at the high level control are espe-
cially rare. We will therefore review some of the approaches which deal with tasks
and problems similar to ours or which use design principles we consider to be im-
portant.

Distributed high level robot control systems make use of functional parallelism by
dividing the system into functionally different modules which run on different PEs.
The system described in (Bar-On et al., 1993), for example, achieves high efficiency
by concentrating on large and efficient software modules with little communication.
Those systems typically provide extensible inter-processor communication band-
width. In the following, some classes will be distinguished:

Shared memory systems communicate through a common memory. An efficient
system which solves the dynamics of a robot and which is hierarchically organized is
described in (Graham, 1989). Besides analyzing the different buffering strategies,
this work investigates pipelining the data flow for achieving maximum parallelism.

Another possibility for running distributed robot task controllers which are inde-
pendent from the network structure are the commonly used distributed operating
systems. They have the advantage that basic communication and coordination func-
tions are provided at the system level. Systems like DCE (Schill, 1993), therefore,
provide a mechanism for remote procedure calls. With this simple form, only syn-
chronous communication is supported and deadlocks are possible.

Even more convenient to program are distributed object-oriented systems. They
offer all the possibilities of common distributed systems and support remote object
access. Though often remote object access can be used asynchronously, the system
performance still is dependent on the low level communication structure and proto-
col (Gaedke and Wicke, 1997). A fully object-oriented system, which is similar to
our system, is reported in (Kim et al., 1997). A flexible software architecture was
designed, which allows software to be easily adapted to system changes. In contrast
to our approach, the system is hierarchically organized and the tasks are evaluated
synchronously. Concepts in common are the following:

• Having a component called ”Workcell Manager” which orchestrates most of
the cooperation activities with the other components

• Fixed cycle patterns and fixed programs for the interaction of the components
solving a common task

• Interfaces of the components defined with a few simple and common opera-
tions, and components designed with as few assumptions about the cell as
possible.



Another system architecture similar to our approach is the distributed simulation
system presented in (Mehlhaus, 1994). Here, a distributed and flexible system di-
vided into functional subsystems is suggested, which can be run in parallel. One
main problem investigated is the temporal and functional consistency of the world
model. The dataflow must correspond directly to the flow of the material. Temporal
consistency is monitored and managed by a timer component. Unfortunately, the
results show no remarkable speedup and require reengineering.

More loosely coupled system architectures are defined by the multi-agent systems
(Längle, 1997) and especially the blackboard systems (Occello and Thomas, 1992).
The subsystems called agents are of similar size to the components of our concept
and also use asynchronous communication. But due to the fact that every agent ne-
gotiates for each task with the other agents, the system includes an unacceptable
overhead. Such a system may work well for advanced manipulation tasks, like coop-
erating robot manipulators, but it is not efficient for industrial systems where the
cycle times of the task are previously given.

7 Summary and Future Work

One promising method for mastering system complexity, such as a robot work cell,
consists of breaking down the system into independent components. These compo-
nents then can easily be mapped onto parallel PEs. The key issues of our system
concept are a flat process communication hierarchy and a simple communication
protocol, since the performance of parallel systems depends on both the number of
PEs and the expense of communication. We therefore use rather closed and easily
exchangeable components, which are driven by a high level cell control component.
Communication between them is asynchronous and supports instruction chains. The
high demands result from the aim to develop a robot cell for complex manipulation
tasks, which force the robot control to be fast and to monitor the tasks carefully.

The main work so far has been in designing a parallel robot architecture. Future
work will regard the way of implementing the proposed concept. This includes im-
plementing both further components and the communication protocol. Then, a vali-
dation of the concept for a workcell for handling flexible material is regarded. Future
implementations may also include an error detection and recovery component
(Coulouris et al., 1994) which at least provides transitions into save error states and
an on-line scheduling component in order to provide better system performance by
redistributing the resources dynamically.
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