
6 DOF path planning in dynamic environments
 – A parallel on-line approach

Dominik HENRICH, Christian WURLL and Heinz WÖRN

Institute for Process Control and Robotics (IPR)
Computer Science Department, University of Karlsruhe

Kaiserstrasse 12, D-76128 Karlsruhe, Germany
e-mail: dHenrich@ira.uka.de, http: //wwwipr.ira.uka.de/~paro/

Abstract
This paper presents a new approach to parallel path

planning for industrial robot arms with six degrees of
freedom in an on-line given 3D environment. The method
is based a best-first search algorithm and needs no essen-
tial off-line computations. The algorithm works in an
implicitly discrete configuration space. Collisions are
detected in the Cartesian workspace by hierarchical dis-
tance computation based on polyhedral models of the
robot and the obstacles. By decomposing the 6D configu-
ration space into hypercubes and cyclically mapping them
onto multiple processing units, a good load distribution
can be achieved. We have implemented the parallel path
planner on a workstation cluster with 9 PCs and tested the
planner for several benchmark environments. With opti-
mal discretisation, the new approach usually shows very
good speedups. In on-line provided environments with
static obstacles, the parallel planning times are only a few
seconds.

1 Introduction

The issue of robot path planning has been studied for a
couple of decades and many important contributions to the
problem have been made [9]. Path planning algorithms are
of great theoretical interest, but are rarely used in practice
because of their computational complexity [10]. Here, we
make a step in the direction of practical path planning.

Many of the future robotic tasks (e.g. recycling, robot
guidance, tele-operation, assembly and disassembly, medi-
cal surgery) can often only be completed in dynamic envi-
ronments. Therefore, powerful on-line path planners for
industrial robots with six degrees of freedom (DOF) are
needed. The on-line capability1 means that the planner
does not require any time-consuming off-line computa-
tions in order to directly react to dynamic changes in the
environment.

 For dynamic environments, several different cases can
be distinguished. In the first case, the environment con-

1 Here, "on-line" does not include to meet given time constrains as

required for "real-time".

tains dynamic obstacles (e.g. objects on a conveyor belt,
or additional robots) with known or partially known
movements. In an other case, the robot grips different
objects. There, the kinematic chain of the robot, including
the gripped object, will change. The next case occurs in
the area of virtual engineering. After every assembly op-
eration, the product or the environment will change its
geometry. All these cases of dynamic environments im-
plicate a modification of the configuration space (C-
space), which has to be considered during planning paths.

An introduction to motion planning in dynamic envi-
ronments is given in [3]. In several examples, different
approaches especially for mobile robots are presented. In
[2], a motion planner for industrial robots based on veloc-
ity adaptation is discussed. It plans only for a 2 DOF
workspace for two robots and their off-line known move-
ments. In [14], a potential-field approach based on the
explicit calculation of the workspace and the C-space is
proposed. When a new object is detected, the new path is
sought within a few seconds, but the planner works only
with 5 DOF in a very small search space, which is unfa-
vorable for industrial applications.

Generally speaking, speeding up the computation will
enable the path planner to cope better with dynamic envi-
ronments in practice. One approach is based on the intro-
duction of parallel processing. Unfortunately, these ap-
proaches to parallel path planning are restricted either to
simple geometric object representations (coarse grids or
line segments), to a reduced number of DOF, or to only
static environments were a C-space representation can be
used in a simplified way [7].

In summary, to date, no planners for 6 DOF robots ex-
ist, which can deal with dynamic environments and have
low on-line computation times. Our aim is to develop a
path planner satisfying these requirements for robots with
up to 6 DOF [17]. We focus on industrial robots, which
constitute a considerable fraction of all robots used cur-
rently and in future.

The remainder of the paper is organized as follows: Sec-
tion 2 introduces the basic approach of our path planner.
Section 3 describes the necessary enhancements for paral-

lelizing the sequential approach. Section 4 shows the
experimental results for load balancing, message combin-
ing, and speedups. Section 5 gives an conclusion and an
outlook to the future investigations.

2 Sequential approach

Most of the off-line path planners are based on an ex-
plicit representation of the free C-space. The free C-space
computation consists of the obstacle transformation into
the C-space and the construction of a free-space representa-
tion. Both tasks are very time- and memory consuming,
and their calculation effort increases with the robot’s
DOF. In order to avoid these time consuming obstacle
transformations, one can search in an implicitly repre-
sented C-space and detect collisions in the Cartesian work-
space.2 This strategy enables the planner to cope with on-
line provided environments and moving obstacles. See
Figure 1 and Figure 2.

For searching in the implicit C-space, any best-first
search mechanism can be applied. We choose a variation
of the well known A*-search algorithm [4]. Robot con-
figurations (nodes) still to be processed are stored in
OPEN, while already processed nodes are stored in
CLOSED. Contrasting to the original A*, here, no re-
opening of nodes in CLOSED is performed. As evaluation
function f(n) = (1–w) g(n) + wh(n) is used, where g(n) is
the number of nodes of the path from the start node to
node n, and h(n) is the Airplane distance in C-space be-
tween node n to the goal node. Increasing the weight

2 Verwer is one of the first, who has used this strategy [16]. The

reported planning times are acceptable for 2 DOF examples but not

for 5 DOF in order to cope with dynamic environments.

w ∈ [0, 1] beyond 0.5 generally decreases the number of
investigated nodes while increasing the cost of the solu-
tions generated. To improve the on-line capabilities of the
path planner, our search is strongly directed to the goal by
setting w = 0.99 [15].

Collisions are detected by a fast, hierarchical distance
computation in the 3D workspace, based on the polyhedral
model of the environment and the robot provided by
common CAD systems [5, 6]. With the help of the
"MaxMove Tables", introduced in [11], the Cartesian
distances are then transformed into joint angles in order to
determine whether the current configuration collides or
not. For obtaining similar joint intervals, thus implicat-
ing an efficient distance exploitation, the optimal joint
discretisation is automatically computed based on the
method of [13].

3 Parallel approach

For parallelizing the A*-algorithm, the configurations
in OPEN and CLOSED must be accessible to all proces-
sors in order to distribute them. These lists can either be
managed by one dedicated processor or each processor can
have its own local lists. In a message passing system,
each access to a global list would amount to an enormous
communication effort. Thus, the local method was
preferred.

The work distribution is the key aspect of paralleliza-
tion. Therefore, the C-space is decomposed into d-
dimensional hypercubes of size b in each dimension. For
parallel processing, the hypercubes are cyclically mapped

d

qS

qG

q1

q2

Figure 1: A 2D illustration of the path search in the implicit
C-space from the start qS to the goal qG using the Carte-
sian obstacle distance d for collision detection

d

Figure 2: Collision detection in the explicit workspace by
computing the minimum distance d between robot and
obstacles

onto the p available processors by the following func-
tion3:

M q
q

q b
pi

ii

d

() = +
∗
















=
∑: mod1

1 ∆
According to the automatically computed discretisation

∆qi, every configuration q = (q1, …, qd) is mapped
uniquely to one hypercube or to one processor. Thus, the
OPEN list of each processor contains configurations of
the multiply mapped hypercubes.

Figure 3 demonstrates the decomposition of a 2D C-
space for p = 4 processors and the cube size b = 4. The
2D cubes are mapped cyclically onto the four processors
according to M(q). Figure 4 shows an enlargement of four
neighboring hypercubes. Each processor runs a local A*-
search beginning with the hypercube containing qS. After
the search has reached the hypercube boundaries, the ex-
panded successors are sent to their corresponding proces-
sors. The received configurations will then be inserted in a
local OPEN list. Similar to the sequential version, in each
iteration, every processor expands the best configuration
of OPEN until the list is empty or a goal node is chosen
for expansion. In the former case, if the OPEN lists of all
processors are empty, the algorithm reports that there is
no solution. In the latter case, the solution path is retraced
across the hypercubes involved.

4 Experimental results

We have implemented the parallel path planner on a
workstation cluster. The cluster consists of 9 PCs, each
with 133 Mhz Intel Pentium processors and 64 Mbyte

3 The operator x denotes the next lower integer number of x.

memory. The parallel communication is established by an
Ethernet based bus network. For more details see [18].

For testing the path planner, we have developed five
benchmark problems for a 6 DOF robot, a Puma260. As
an example, the benchmark problems STAR and DE-
TOUR developed in [11] are shown in Figure 6 and Figure
7, respectively. 4

4. 1 Load balancing

The performance of the parallel algorithm essentially
depends on the load balancing mechanism. In our ap-
proach, we have implemented a static distribution mecha-
nism, which can be influenced by modifying the cube size
b. Considering the C-space decomposition, small sizes
result in more cubes (in different areas of the C-space)
being mapped onto a single processor. Thus implicating a
good load distribution. In contrast, larger sizes make the
load balancing worse. This is mainly due to the coarse
decomposition. Thus, the processors are idle for a longer
time before they receive work. Additionally, larger cube
sizes lead to less cubes being mapped onto one processor.

For validating the performance of this load balancing
mechanism, we have solved benchmark STAR with differ-
ent cube sizes b. On each of the p = 8 processors, we
measured the number of collision detections, since colli-
sion detection is the most expensive function. Figure 5
shows the experimental results. For larger values, the
coarse C-space decomposition leads to an irregular load
distribution. In some cases, only a few cubes cover the
complete solution space. Thus, some processors become

4 The data of these benchmark problems can be downloaded from the

Web page at http://wwwipr.ira.uka.de/~paro/skalp/

P1
b P2 P3 P4

P2

P2

P2

P3

P3

P3

P4

P4

P4

P1

P1

P1

Figure 3: 2D illustration of the C-space decomposition in
hypercubes of size b and the cyclically mapping of the
hypercubes onto four processing units P1, …, P4.

P2b

P4P3

P3qS

Figure 4: 2D illustration of the parallel search in four
neighboring hypercubes taken from the C-space decom-
position in Figure 3 starting at qS.

idle. Additionally, due to the sparse mapping, the search-
ing processors expand unnecessary configurations, since
they receive no better ones. For smaller cube sizes, the
load is nearly equally distributed. The corresponding run-
time results for benchmarks STAR and DETOUR are
depict in Figure 8.

Altogether, these results indicate that the cyclically
mapping used for the parallel version (Section 3) is an
efficient work distribution mechanism for this application.
For the rest of the experiments we heuristically choose
b = 16 as a good cube size in average.

4. 2 Message combining

Smaller cube sizes result in a good load distribution,
but increase the number of messages. Too many mes-
sages, however, usually lead to a bottleneck in the com-
munication network and slow down the calculation times.
Combining several messages to form one message seems
to be a way out of this problem by reducing the number

of message set-ups. But this holds not true as it can be
seen in the experimental results.

Evaluation runs for the benchmark problems STAR and
DETOUR are given in Figure 9. Here, p = 8 processors
and a cube size of b = 2 are used (resulting in a rather
high number of messages). The results show that the
combining the configurations into one message over
several iterations leads to longer planning times. For
example, without combining, the benchmark problem
STAR was solved in 8 sec, but with the combining of
messages over 20 iterations the planner needed 20 sec
[15].

This is mainly due to the fact that the remote configu-
rations are sent too late. Thus, every processor does not
receive better a configuration and so expands the worse
ones. At this stage, no message combining was included
in the further runtime tests.

4. 3 Run-time and speedups

To compare the run-times, we have run every bench-
mark problem 12 times, deleting the lowest and highest
planning times and computing the average of the remain-
ing 10 values. The Cartesian resolution was chosen to be
20 mm, which leads (for a Puma260) to the discretisation
∆q = (1.91˚, 1.96˚, 2.79˚, 5.66˚, 5.66˚, 20.66˚). Accord-
ing to the upper and lower joint limits of the Puma260,

the C-space consists of 2.99*10
11

 states, which is at least
3 magnitudes greater than in the reference examples
known by the authors.

To calculate the speedups, we ran 8 parallel processes
on 1, 2, 4, and 8 processors, thus, guaranteeing the same
C-space decomposition. This method of measuring was
necessary in order to obtain a fair comparison, because the

Figure 5: Number of distance computations as a measure
for the processor load depending on the cube size b for
the processors P1, …, P8

Figure 6: The benchmark problem STAR for the 6 DOF
robot Puma260

Figure 7: The benchmark problem DETOUR for the 6 DOF
robot Puma260

search performance essentially depends on the C-space
decomposition (see Section 3).

The parallel planning times and the achieved speedups
for the benchmark problems are presented in Figure 10 and
Figure 11, respectively. It can be seen that the paralleliz-
ing results in a reduction in planning times, and that the
speedups are linear, and sometimes even superlinear.
Superlinear speedup is possible because the sequential and
the parallel version use one global and multiple local
clocks, respectively. This causes unavoidable differences
between the sequential and asynchronous parallel algo-
rithm. Three out of four planning times were below 5
seconds. Only the benchmark problem DETOUR needs
about 20 seconds [19].

5 Conclusion and future work

In this paper, we have introduced a new approach to
parallel path planning for industrial robot arms with 6
DOF. The algorithm works in an implicit and discretisized
C-space and collision are detected in the Cartesian work-
space using distance computation. This avoids the time
and memory consuming obstacle transformation and C-
space calculation. The method is based on the A*-search
algorithm and needs no essential off-line computation.
This approach enables the path planner to work reasonably
fast for on-line provided environments.

The parallelization with static load balancing results in
a balanced load distribution and shows very good speed-
ups. Further acceleration of the path planner is possible
by distributing communication, which can be done using
a mesh-based communication network [18]. The planning
strategy can also be enhanced by a multi-directional search
[8].

Based on these results, we focus next on extending this
path planner to be able to cope with moving obstacles,
such as other robots. With some modification, our ap-
proach is also suitable for tasks in the area of virtual
engineering. Instead of planning the path for robots, we
are able to search a path for the sub-components which
have to be mapped onto another object.

To reduce the enormous size of the search space, we are
currently working on hierarchical on-line discretization of
the C-space [12]. Additionally, we are developing a path
smoothing method for executing the computed trajectories
on real robots [1].

Acknowledgment

This work is part of the project "Scalable algorithms
for parallel motion planning in dynamic environments"
funded by the German Basic Research Framework (DFG-
Schwerpunktprogramm) "Efficient algorithms for discrete
problems and their applications".

References

[1] Bordon U.: "Parallele Glättung von Robotertrajekto-
rien", Bachelour’s Thesis, Insitute for Real-Time
Computer Control Systems and Robotics, Univer-
sity of Karlsruhe, 1998.

 [2] Fiorini P., Shiller Z.: "Time optimal trajectory
planning in dynamic environments", IEEE Int. Conf.
on Robotics and Automation, vol. 2, pp. 1553-
1558, 1996.

[3] Fujimura K.: "Motion planning in dynamic envi-
ronments", Berlin, Heidelberg, Springer, 1991.

T [sec.]

0

10

20

30

40

50

60

70

0 6 12 16 22 28 34 40 52 60

 b

STAR
DETOUR

Figure 8: Run-time T of the parallel path planning system
for increasing cube sizes b

0

5

0

5

0

5

0

5

0

5

0

1 2 4 6 8 10 15 20

T [sec.]

E / M

DETOUR
STAR

Figure 9: Run-time T of the parallel path planning system
for different number of expansions E per message M

[4] Hart P.E., Nilsson N.J., Raphael B.: "A formal
basis for the heuristic determination of minmum cost
paths", IEEE Trans. Syst. Sci. Cybern, pp. 100-107,
1968.

[5] Henrich D., Cheng X., "Fast distance computation
for on-line collision detection with multi-arm ro-
bots", IEEE Int. Conf. on Robotics and Automation,
Nice, France, May 10-15, pp. 2514-2519, 1992.

[6] Henrich D., Gontermann S., Wörn H.: "Kollisions-
erkennung durch parallele Abstandsberechnung". In:
13. Fachgespräch Autonome Mobile Systeme
(AMS'97), Stuttgart, October 6-7, 1997, Springer-
Verlag, Reihe "Informatik Aktuell".

[7] Henrich D.: "Fast motion planning by parallel proc-
essing – A review", In: Jour. of Intelligent and
Robotic Systems, vol 20, no 1, pp 45-69, Septem-
ber 1997.

 [8] Henrich D., Wurll Ch., Wörn H.: " Multi-directional
search with goal switching for robot path planning ".
In: The 11th Int. Conf. on Industrial & Engineering
Applications of Artificial Intelligence & Expert Sys-
tems, Castellan, Spain, July 1-4, 1998.

[9] Hwang Y. K., Ahuja N., "Gross motion planning –
A survey", ACM Computing Surveys, vol 24, no 3,
September 1992.

[10] Kamal L., Gupta K., del Pobil, A.P.: "Practical
motion planning in robotics: Current approaches and
future directions", IEEE Robotics & Automation
Magazine, December 1996.

[11] Katz G.: "Konzeption einer Entwicklungsumgebung
unter ROBCAD für die parallele Bewegungs-
planung", Master’s Thesis, Computer Science De-
partment, University of Karlsruhe, 1996.

[12] Osterroht T.: „Hierarchische parallele Bewegungs-
planung für dynamische Umgebungen“, Master’s
Thesis, Computer Science Department, University of
Karlsruhe, 1998.

[13] Qin C., Henrich D.: "Path planning for industrial
robot arms - A parallel randomized approach", In
Proc. of the Int. Symp. on Intelligent Robotic Sys-
tems (SIRS´96), Lissabon, Portugal, pp. 65-72,
July 22-26, 1996.

[14] Ralli E., Hirzinger G.: "A global and resolution
complete path planner for up to 6 DOF robot ma-
nipulators", IEEE Int. Conf. on Robotics and Auto-
mation, Minnesota (ICRA'96), 1996.

[15] Sandmann St.: "Entwicklung eines parallelen Bewe-
gungsplaners", Master’s Thesis, Computer Science
Department, University of Karlsruhe, 1997.

[16] Verwer B. J. H.: "A muliresolution work space,
multiresolution configuration space approach to
solve the path planning problem", IEEE Int. Conf.
on Robotics and Automation (ICRA'90), 1990.

[17] Wörn H., Wurll Ch., Henrich D.: "Automatic off-
line programming and motion planning for industrial
robots". In: The 29th Int. Symp. on Robotics, Bir-
mingham, United Kingdom, April 27-30, 1998.

[18] Wurll C., Henrich D.: "Ein Workstation-Cluster für
paralleles Rechnen in Robotik-Anwendungen". In:
Proceedings der 4. ITG/GI-Fachtagung Arbeitsplatz-
Rechensysteme (APS'97), Universität Koblenz-
Landau, May 21-22, 1997, pp 187-196.

[19] Wurll Ch., Henrich D., Wörn H.: "Parallele
Bewegungsplanung in dynamischen Umgebungen",
Technical Report 20/97, Computer Science Depart-
ment, University of Karlsruhe, 1997.

9876543210
0

20

40

60

80

100

120
6DOF-SIMPLE
6DOF-STAR

6DOF-DETOUR
6DOF-BOTTLENECK

P

T [sec.]

Figure 10: Planning time T for P processors solving dif-
ferent benchmark problems

9876543210
0

2

4

6

8

10

12

14

16

18

20

6DOF-SIMPLE
6DOF-STAR
6DOF-BOTTLENECK
6DOF-DETOUR
linear Speedup

P

S

Figure 11: Speedup S for P processors solving different
benchmark problems

