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Abstract. The paper presents a novel approach to parallel motion planning for robot manipulators in 3D workspaces.

The approach is based on a randomized parallel search algorithm and focuses on solving the path planning problem for

industrial robot arms working in a reasonably cluttered workspace. The path planning system works in the discretized

con�guration space which needs not to be represented explicitly. The parallel search is conducted by a number of

rule-based sequential search processes, which work to �nd a path connecting the initial con�guration to the goal

via a number of randomly generated subgoal con�gurations. Since the planning performs only on-line collision tests

with proper proximity information without using pre-computed information, the approach is suitable for planning

problems with multirobot or dynamic environments.

The implementation has been carried out on the parallel virtual machine (PVM) of a cluster of SUN4 workstations and

SGI machines. The experimental results have shown that the approach works well for a 6-dof robot arm in a reasonably

cluttered environment, and that parallel computation increases the e�ciency of motion planning signi�cantly.

1 Introduction

The issue of robot motion planning has been studied for more than a few decades and many important

contributions to the problem have been made ([10]). One of the most important results is the application

of the concept of con�guration space. However, it has been shown that the complexity of the generalized

movers problem is exponential with respect to the con�guration space dimension ([17]) and is PSPACE

hard ([16]). Although the con�guration space (C-space) approach provides a good framework for theoretical

research, motion planning purely based on the approach normally results in a non-practical planner for real-

life situations, due to high computation complexity in constructing C-space. In order to avoid the complexity

of explicit computation of con�guration space (i.e. C-free-space and C-obstacles) or its approximation as was

done in [13], our method works implicitly in the discretized con�guration space with a number of explicit

and implicit constraints. The explicit constraints result from the mechanical consideration of the robot, such

as, the limitations of joint motions. The implicit ones are derived from collision avoidance between the robot

and obstacles. In this way, whether a con�guration of the robot is in C-free or C-obstacle space is determined

in workspace through collision detections between the robot and the obstacles. In this paper, we will restrict

ourselves to considering incomplete (but useful) algorithms working in the discretized con�guration space.

To decrease the computation time, some researchers have worked on parallel computations of motion

planning ([12]). With parallel processing, not only can some existing sequential algorithms be parallelized

but some new parallel algorithms can be designed based on the characteristics of parallelism. We propose a

parallel algorithm that would not make much sense for a sequential machine but is fairly e�ective with parallel

processing. The algorithm is implemented using a parallel virtual machine which is a software package that

allows a heterogeneous network of parallel and serial computers to work as a single concurrent computational

resource. Along with the package, a number of routines are provided in support of user interface. The main

advantages of PVM are that it provides a set of user interface primitives that may be incorporated into

existing procedural languages and that it is available on most of the network and/or parallel architectures.

For further details about PVM, refer to [4].
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2 Related Work

Towards autonomous robot systems, motion planning is an important aspect in robotics. It has been at-

tracting a great deal of interest over last 20 years. In the following, we will discuss some relevant work of

motion planning.

Glavina [6] proposed an algorithm to solve the \�ndpath" problem by combining a goal-directed straight-

and-slide search and a randomized generation of subgoals. The idea is to conduct the search by following the

straight line till the searching point reaches a C-obstacle in the discretized con�guration space. Then, the

searching con�guration point slides along the obstacle boundary only if it reduces the con�guration distance

which is a function of suitably weighted combination of the con�guration variables. The sliding process

continues until the point gets stuck at a local minimum with respect to the con�guration distance function.

Then, a new subgoal is generated randomly. The reachability of the subgoal is tested by the same straight-

and-slide searching method from all introduced points (start and goal, and previous subgoals). Eventually,

a site graph can be constructed as an abstract representation of the C-free-space. During the process, step-

by-step collision tests are carried out in order to detect whether the point is running into a C-obstacle. The

algorithm was implemented using a moving polygonal object and the environmental polygonal obstacles in

the 2D case.

Our work di�ers from the previous research in various ways. Rather than working on the moving polygonal

object in a 2D case, we consider motion planning for robot manipulators in 3D workspaces. We employ a

complete domain-dependent rule base to guide path searching. The number and depth of local minima are

reduced through a number of subgoals randomly or purposedly generated in parallel processing. In addition,

we utilize some heuristics to reduce the number of collision detections instead of conducting step-by-step

collision tests during planning.

Qin [15] presents a solid modelling scheme which is useful for e�cient 3D path planners. The scheme

makes use of the enhanced version of Gilbert, Johnson and Keerthi's minimum distance algorithm ([5]). This

provides an e�cient prototype to be tailored to collision detection and to distance computation respectively.

We have adopted this scheme in this work. In addition, other heuristics for speeding up collision detection

are also investigated by Henrich and Cheng [8], who introduced hierarchical representations of both obstacles

and the robot working favourably for complex environments.

Kavraki and Latombe [9] proposed an approach concerning the randomized preprocessing of the con�gu-

ration space to build up a global network of connected con�gurations. The idea is to use the generate-and-test

method to construct a network of randomly but well selected collision free con�gurations. However, the al-

gorithm requires that each generated con�guration be checked to see if it is in C-free space, which could be

computationally very expensive.

Challou et al. [3] presented a parallel motion planner using the parallel formulation of a randomized

heuristic search. The algorithm is based on the parallelization of the randomized robot planning method

proposed by [1].

Henrich [7] presented an extensive overview of the parallel approaches to robot motion planning. The

parallel approaches can be divided into four classes: grid-based, graph-based, potential �eld, and mathematics

programming. The method presented in this paper can be generally classi�ed as grid-based.

3 Outline of the Approach

Our work focuses on developing an e�ective approach to solving the path planning problem for industrial

robot arms operating in a reasonably cluttered environment. This means that the workspace of the robot

arm is not maze-like. So it is basically assumed that the path planning problem has a number of acceptable

solutions, though the assumption is not compulsory.

The approach is applied in the discretized C-space of the arm. The C-space needs not be represented

explicitly with the support of a fast collision test and geometric reasoning. This avoids problems of compu-

tational complexity and memory requirement for the transformation between the robot worldspace and the

C-space. Given the start and goal con�gurations, a conventional search (such as depth-�rst search, best-�rst

search, etc.) within the free C-space will readily involve a great deal of backtracking and will therefore require

a large amount of computation. The main reason is that the search space is normally very large and has some

local minima with respect to some heuristic function of con�guration parameters. One of the human-inspired

path�nding strategies is to divide the whole complicated search task into several simpler sub-tasks by setting



up proper subgoals between the start and the goal con�gurations. However, the problem of how to set up

subgoals properly is usually not trivial, and it may help by using the generalized Voronoi diagrams (GVD)

of the robot's free workspace or other global information.
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Fig. 1.: An illustrative diagram for path search. (1) Searching for a path is costly no matter whether from the

start to the goal or reversely. (2) With a via point v, the combination of searching from v to the start and to the

goal respectively is much easier.

Figure 1 shows an example of a path search with dead end C-obstacles. It illustrates that while the direct

search from the start to the goal or reversely is not cheap, an indirect search with some via points may

be very helpful. This phenomenon, along with the availability of parallel processing, encourages us to come

up with a straight randomized parallel search algorithm. The general idea of this algorithm is to randomly

generate a number of subgoals in the discretized free C-space. Then, parallel searching with each subgoal

attempts to �nd a path connecting the initial con�guration with the goal via the subgoal con�guration.

The purpose of the approach is for the motion planning system to cope with some deep local minima (see

Figure 1). In this sense, it is a two-phase search which tries to �nd a subpath connecting the initial with

the randomly generated subgoal and a subpath connecting the subgoal with the �nal goal. The reasons for

not using a three- or multi- phase search are (1) that a path from the initial to the goal via more than two

randomly generated subgoals will usually be longer in length and (2) the planner may correspondingly take

a longer time than that in a two phase search. But we claim that three or more phase search will be very

e�ective to help robot avoid some very deep local minima if all subgoals are generated under the guidance

of some global information.

3.1 Sequential search

For each path search task from one con�guration to the other, we have employed an expert system method

to perform path searching with the guidance of a set of rules. We use CLIPS 2 as the expert system shell,

which is embeded as a module into C++ programs. For generality, the following discussion is for a general

n-dof robot arm.

Let Cn be the n-dimension con�guration space. In order to reason and search, we discretize the con�g-

uration space Cn into a rectangloid grid GCn (with appropriate modular arithmetic for the angular joint

parameters). For each con�guration q = (q1; q2; :::; qn) (in C
n) at which the robot is within its workspace, we

have

q
min

i
� qi � q

max

i
; i = 1; 2; :::; n: (1)

which speci�es the limitations of joint motions.

For convenience of reference, we de�ne S = fq : GCnjq = (q1; q2; :::; qn) satis�es (1)g as the set of con�g-
urations at which the robot is within its workspace.

In GCn, each grid node can be indexed by a point in Zn, where Z is the set of integers used in mapping:

F : GCn ! Zn
; i :e: F(q) = (i1; i2; :::in) : (2)

where q 2 S and i` 2 Z (1 � ` � n) . In this sense, Zn is regarded as a symbolic abstraction of GCn. The
reasoning system runs directly on Zn with other symbolic facts. At the lower level, reasoning is conducted

directly on geometric data. The two levels are connected through a number of geometric primitives.

2 C Language Integrated Production System, developed in NASA.



In our reasoning system, path planning considers only the 1-neighbors of the current con�guration as

candidates to move to in each step. Then a number of rules are designed to select an optimal candidate

according to the following cost function P :

P(q) =

8
<
:
+1 if q does not satisfy constraints (1)

+1 if q is not in C-free space

f(q) otherwise

with

f(q) =

nX
i=1

!i((F(qgoal))i � (F(q))i)
2 (3)

where ! = (!1; !2; :::!n) is a weight vector with !i > 0, which is determined heuristically using the model

of the robot manipulators.

With the support of some procedural geometrical primitives, a number of rules working in Zn have been

created to guide the search for a path in GCn. In addition to rules for initialization, detection of goal reaching

and generation of candidates for next movement, there are several other rules devoted to decision-making

for the next step. At each step, all the candidates which are previously visited will be removed �rst; then the

candidate with the lowest cost with respect to P(q) is checked to see if it is out of the robot workspace or in

C-obstacles. If it is in C-free space and within the robot workspace, the candidate will be accepted and all

others removed; otherwise, it will be removed and the next best candidate will be checked. If the selection

procedure results in an empty set of candidates, a rule will force the search to backtrack. For more details

on the rule-based search, refer to [14].

3.2 Parallel Search

Given the start and goal con�gurations, the sequential search algorithm alone may take too much com-

putation time to �nd a path. To improve the e�ciency of the path search, we take advantage of parallel

processing to conduct the path search using the randomized parallel search algorithm. In the example shown

in Figure 2, a number of processes concurrently conduct a search for a path connecting the start and goal

con�gurations. Each process generates one subgoal randomly in the C-free space and then starts searching

for a subpath from the subgoal to the start con�guration and for another subpath from the subgoal to the

goal con�guration. The �nal path is the proper concatenation of the two subpaths. Whenever a process

returns such a �nal path, all search processes will be terminated. The termination criterion used here is very

simple and easy to implement under the PVM.
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Fig. 2.: An illustrative diagram: (1) Randomly generated subgoals in C-free space; (2) Each process conducts

search for a subpath from the subgoal to the start con�guration; (3) After step 2, each process starts searching

for another subpath from the subgoal to the goal con�guration; (4) The �rst path a process returns will be

accepted as the �nal path.

For each process, search always starts from the subgoal to the start and to the goal con�gurations

respectively, rather than from the start con�guration to the subgoal and then from the subgoal to the goal

con�guration or reversely. It is out of concern that if the start or the goal con�guration is in a deep local

minimum it can be hard to jump out of such a minimum by starting search from the start or the goal

con�guration even with help of subgoals. In this case, it may be made easier by searching from a subgoal to



the start and the goal con�gurations respectively. This e�ect is especially exploited by the parallel algorithm

where multiple subgoals are used.

As we know, the �nal path obtained in this method tends not to be optimal even if each subpath is

optimal. But we claim that it is probabilistically optimal provided that the number of random subgoals

tends to be in�nite.

In some situation without or with sparsely-cluttered obstacles, search for a path from the start to the

goal con�guration or reversely may be more e�cient. To make the method more robust, two extra processes

are designated to conduct search directly from the start to the goal con�guration and from the goal to the

start con�guration respectively, while other processes conduct search through subgoals. Therefore, it holds

that the time for planning with one process is not less than that with multi-processes.

In all, our approach to parallel processing has some advantages. It needs no heavy load of communica-

tions and no load balancing necessary. It is independent of parallel architecture and of low memory space

requirements.

4 Heuristics

4.1 Discretization resolution

In a discretised con�guration space of the robot arm, the resolution settlement of discretization is also an

important issue. There is a trade-o� in the granularity of discretisation or resolution: too �ne will increase

the search space exponentially and too coarse may result in failing to �nd a path even if there exists one.

We have adopted a heuristic to help set up the discretization resolution of the C-space. Instead of having

uniform resolution along each con�guration coordinate, we set up the resolution along each coordinate

di�erently estimating the maximum movements of the robot's ende�ect at each step the robot moves along

the coordinate. The resolution should be so �ne that the maximum movement of the robot ende�ect is not

more than a pre-set distance at each step the robot moves along the coordinate. In this way, generally, the

nearer a joint is to the base, the �ner the discretization resolution is for the corresponding joint angle.

Formally, for the i-th coordinate qi of the C-space, let Ni be the number of intervals along qi. Then,

Ni = d
q
max

i
�q

min

i

��i
e and ��i = 2arcsin(MaxMove

2li
) ; where qmax

i
and q

min

i
are the limits of joint motions (see

Formula (1) ), li is the length between the center of the joint to the farthest point the ende�ect can reach,

and MaxMove is a pre-set distance the robot moves along the coordinate at one step.

4.2 Prediction of Maximum Movement

Geometric reasoning plays an important role in motion planning. [11] used it to approximate the con�guration

space by calculating the maximum movement of links. Similarly, [2] used the idea to provide analytical

formulae for a speci�c robot model to reason about the occupancy of C-obstacles.

This heuristic is used to improve the rule-based sequential search algorithm by minimizing the number of

collision detections. As introduced in x3.1, the rule-based search performs a collision test at least once at each

movement step. So, even in the extreme case that there is no obstacle around, the search still must conduct

unnecessary collision tests at each step along the line connecting the start and the goal con�gurations. To

cope with the problem, we make use of a heuristic called prediction of maximum movement.

The idea of the heuristic is to utilize proximity information in path searching rather than simply con-

ducting collision tests at each step. As we know, the movement of the robot ende�ect is not more than

the pre-set MaxMove at each step that the robot moves along any one of the coordinate axis directions

of the C-space. This also implies that the movement of any other points on the robot arm is not more

than MaxMove at each step. Let d be the minimum distance between the robot and obstacles around.

Let FreeSteps be FreeSteps = b d

MaxMove
c : Then, we can conclude that the robot arm is ensured to

be collision-free for FreeSteps consecutive steps. This helps release the searching from collision tests for

FreeSteps steps. Figure 3 shows an example with FreeSteps = 3.

5 Experimental Results

The motion planning system is implemented in C++ with the embedded rule-based expert system. Exper-

iments have been carried out on the PVM of a cluster of SGIs and SUN4 workstations. The number of
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Fig. 3.: An illustration of using the heuristic of prediction of maximum movement with FreeSteps = 3. (1) The

arm's current con�guration. (2) The arm is ensured to be collision-free while moving along �1 for 3 consecutive

steps in either the positive or negative direction (with �2 �xed). (3) Similar as the above with �1 and �2 exchanged.

(4) The arm is collision-free while moving along the coordinate axis (either �1 or �2) directions of the C-space for

3 consecutive steps.

machines or processors available is limited (up to 45 workstations). In addition, the heterogeneneous ma-

chines range from SUN Sparc classic to Sparc20 and from SGI IRIX5.3 R3000 to IRIX5.3 R4000. In this

section, we will present some experimental results and show the performance of the planning system with

some examples.

Due to the randomness of our parallel algorithm, the time taken to solve one problem may vary more or

less from one run to another. All the data presented in this section are calculated by taking the mean value

of the corresponding experimental results.

We used a 6-dof robot manipulator of PUMA 200 type as the robot model. In our experiments on a SGI

machine of IRIX5.3 R4000, it takes 3.835 ms to modify the robot from one con�guration to another and to

conduct a single collision detection for the case shown in Figure 4. The discretization resolution has been

set through the heuristics (see Section 4), so that the joint i of the robot moves ��i at each movement step,

where (��0; ��1; ��2; ��3; ��4; ��5) = (2:23�; 2:23�; 3:47�; 6:88�; 6:88�; 9:56�). The weight vector ! for the

cost function f(q) in Formula (3) is set to gives higher priority to the �rst few joints.

Experiments have also shown that employing the heuristic of prediction of maximum movement improves

the performance of the planning system. In the example shown in Figure 4, averagely, the planning takes

about 22.69 seconds and conducts 622 collision tests without using the heuristic. Nevertheless, it only takes

about 9.64 seconds and conducts 371 collision tests by use of the heuristic on the PVM of a cluster of 10

SUN4 and 4 SGIs.

(a) (b) (c) (d)

Fig. 4.: Snapshots: (a) The robot is in the initial con�guration; (b) and (c) the robot is searching its way towards

the goal; (d) the arm reaches the goal.

Another example shown in Figure 5 is to �nd a path for the robot arm in the workspace occupied with 15

randomly sized and located rectangular obstacles. It takes 32.96 seconds on the PVM of a cluster of available

41 SUN4 and 4 SGI machines. Further experiments show that the e�ciency increases with increasing number

of processors (see Figure 6 (a)). Figure 6 (b) shows that the more subgoals employed, the better a path length

found in the example which is shown in Figure 5.

As we know, speedup is de�ned as the ratio of the time taken to solve a problem on a single processor

with the best sequential algorithm to the time needed to solve the same problem on a parallel machine

with identical processors. The performance of our algorithm on the example shown in Figure 5 implies the
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Fig. 5.: The robot arm is in motion. The planning takes 32.96 seconds averagely on PVM of a cluster of 41 SUN4

and 4 SGI machines.

(a) (b)

Fig. 6.: (a) The illustrative graph of the performance of the randomized parallel planning algorithm. (b) The more

subgoals employed, the better a path length can be found (each process deals with one subgoal).

speedup of 14.75 with 15 processors, though the experiments are not conducted on identical processors and

the time taken to �nd a path on a single processor may not be optimal.

In a further example which is to �nd a path for the robot arm in the workspace occupied with 20 randomly

sized and located rectangular obstacles, planning takes 34.81 seconds on the PVM of a cluster of available

41 SUN4 and 4 SGI machines.

6 Conclusions

This paper presents a novel approach to parallel motion planning for robot manipulators in 3D workspaces.

The approach is based on the randomized parallel search algorithm and focuses upon solving the path planning



problem for industrial robot arms working in a reasonably cluttered workspace. The implementation is carried

out on a cluster of SUN4 workstations and SGI machines under the PVM. The experimental results have

shown that the approach works well for a 6-dof robot arm in a reasonably cluttered environment, and

that computation with multi-processors increases the e�ciency of motion planning signi�cantly. However,

the method is not recommendable for general redundant robot manipulators, as too large search space

may result in high computation time. In addition, the method of the current implementation makes use of

randomly generated subgoals for a two-phase parallel search. This may not work well in a very complex

workspace, such as a maze-like one. The major problem lies on that no global information is used for subgoal

selection. An extension of the work can be to investigate the way of the subgoal selection under the support

of global topological information of the environment, for example, using the generalized Voronoi diagrams

or information derived from arti�cial potential �elds in the workspace, to improve robustness and e�ciency

of the method.

Since the planning performs only on-line collision tests with proper proximity information without us-

ing pre-computed information, the approach is suitable for planning problems with multirobot or dynamic

environments.
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