In: Beitrage zum 10. Workshop Planen und Konfigurieren (PuK-96)

Complete Eager Replay

Héctor Munoz-Avila and Frank Weberskirch

University of Kaiserslautern, Dept. of Computer Science
P.O. Box 3049, D-67653 Kaiserslautern, Germany
E-mail: {munioz|weberski}@informatik.uni-kl.de

Abstract

We present an algorithm for completely replaying previous problem solv-
ing experiences for plan-space planners. In our approach not only the solution
trace is replayed, but also the explanations of failed attempts made by the
first-principle planner. In this way, the capability of refitting previous solu-
tions into new problems is improved.

1 Introduction

Case-based planning has shown to speedup the general problem solving process [16,
7,8, 2,6, 4]. For solving a new problem selected cases are reused in order to minimize
the search effort of the first-principle problem solver. Different approaches have been
developed for reusing previous problem-solving experiences. These approaches are
motivated by different factors, which can be schematized as follows:

Base level planner: Classical planners have been divided into plan-space and state-
space planners based on the space where search is performed. The former show
a better performance in domains for which the plans are nonserializable [1].
State-space planners perform better in domains with an intrinsic linearity [17].
Algorithms to reuse cases have been introduced for both types of planners,
plan-space [7, 8, 6, 4] and state-space planners [16, 2].!

Interleaving case-based and first-principle planning: There are systems that
interleave case-based planning with first-principle planning [16, 4], whereas
others first perform case-based and then first-principle planning [7]. In general,
it is difficult to decide when to interleave, although some general heuristics have
been proposed [3].

Degree of repair of previous solutions: Some algorithms perform a complex
repair strategy [8, 6], while others leave the refitting effort to the first-principle
planner [7].

In [9] a case-based planner has been introduced whose base-level planner is a deductive rea-
soner. Thus, 1t does not fit into the division between plan-space and state-space.

Fager replay [7] has been shown to be an effective technique for reusing previous
problem-solving experiences for plan-space planners. In eager replay, solution traces
from cases are replayed when solving a new problem and a partial solution (i.e., a
plan with open goals or unsolved threats) is obtained. This partial solution is then
completed by first-principle planning. Thus, no interleaving of case-based and first-
principle planning is done. An untreated limitation of eager replay is the degree of
repair, as the repair effort is totally left to the first-principle planner. Thus, a large
amount of planning effort may be needed to complete the partial solution.

We present an algorithm that extends the eager replay scheme in order to over-
come its low degree of repair. In our approach, the solution trace of a previously
selected case also is replayed. However, our algorithm additionally replays expla-
nations of failed attempts to obtain the solution, made by the base level planner
when the case was solved. In this way, the complete problem solving experience is
replayed and can be used by the base level planner to avoid failing decisions.

2 Motivation

Different techniques have been investigated for ensuring the relevance of the retrieved
cases, ranging from using domain-independent techniques [16, 8] to domain-specific
techniques [15], passing by mixed approaches [11]. However, it is not realistic to
suppose that relevant cases will always be found. There are two reasons for this:
(1) There is no case in the case base that entirely “fits” into the new situtation, (2)
retrieval cannot take much time in order to balance the trade-off condition between
search effort and reuse effort [16, 5].

In this situation complete eager replay shows its strengths. Figure 1 compares
complete eager replay to eager replay. A case has been selected for replay and
we suppose that the decision labeled B cannot be replayed in the new situation.
Further, we suppose that the decision labeled A needs to be rejected to complete

Solution (a)
Case Eager
Replay
’ " —
/
< A D’ A
DA J N)
7/ 7/
e) Cy
/ /
< B Complete /
P Eager a
,1 Replay v
71 /’
) Y Solution (b)
Conventions: b , 4 A _»
| Decision : Failed I\D"
Decision p
" Replayed /
~ Replay >
\ s Explanation 'gl J | :A

Figure 1: Completion after (a) eager replay and (b) complete eager replay of a case

the solution of the new problem. Solution (a) sketches the search path that must
be followed when completing the plan obtained in eager replay. Notice that during
completion some of the failed attemps made in the case are repeated, for example
the decisions C'and D. In complete eager replay, explanations of failed attempts are
replayed too. As a result, unnecessary backtracking because of known failures is
avoided during the completion process (see solution (b)).

We will now explain in more detail, how our algorithm automatically reconstructs
justifications stored in the cases during replay.

3 The Base Level Planner CAPLAN

CAPLAN [18] is the SNLP-like [10, 1] base level planner of CAPLAN/CBC for gen-
erative planning. It uses a partially ordered plan representation (.S, 0, B) consisting
of plan steps 5, ordering constraints O among the steps and variable binding con-
straints B. At the beginning of the planning process, the set of open preconditions is
constituted by the goals of the problem. The planning process proceeds by making
decisions about the establishment of open preconditions and the resolution of threats.
The former is achieved by adding a causal link between a new or an existing step and
the step that consumes the condition, the latter is achieved by adding ordering or
binding constraints that remove the threat. The planning process terminates if no
open preconditions are left and all threats to existing causal links are resolved. Both,
precondition establishment and threat resolution, are choice points of the planning
algorithm.? Making wrong decisions causes backtracking and decreases the perfor-
mance of the planning system. Supporting CAPLAN in this decision-making process
is the purpose of the case-based control component CBC.

For representing knowledge about plans and contingencies that occur during
planning, CAPLAN is built on the generic REDUX architecture [13, 14]. Key con-
cepts of REDUX are goals, constraints, and contingencies. Planning proceeds by
applying operators to goals, what may result in subgoals and in assignments (fig-
ure 2.a). Applying an operator is called a decision and represents a backtracking
point as different operators might be applicable to a goal. Assignments originally

|God-1| |God-2 |
decision-1

decision-2

Goal

(a) Decision (b) Protection goal (c) Subgoal graph

| subgoal-1 | - | Subgoal-n | Protectio

Figure 2: The subgoal graph

Whether to establish preconditions or to resolve threats can be seen as another choice point
with the difference that it is no backtracking point and, thus, unimportant for replay.

are thought to assign values to variables, more generally, they stand for modifica-
tions made in the plan (addition of steps/orderings/constraints). So, the mapping of
SNLP concepts to REDUX concepts is straightforward. There are (1) goals to estab-
lish open conditions (precondition goals) and (2) goals to resolve threats (protection
goals). Each refinement method of SNLP is represented as a class of operators that
can be chosen to be applied to such a goal.

Goals and subgoals build the subgoal graph (figure 2.c). It represents basic de-
pendencies between goals and subgoal as well as between subgoals and decisions.
Originally, REDUX makes the assumption that each goal can have only one par-
ent goal. This is not adequate for SNLP as protection goals represent threats and
must depend on two goals, first, the goal with an operator that added the threat-
ened causal link, second, the goal with an operator that added the threatening step
(figure 2.b). REDUX has been extended for CAPLAN here. This extension of the
dependency structure is important for automatically identifying threats and threat
resolutions that become invalid after the rejection of a decision [18]. We omit further
details, as they are beyond the purpose of this paper.

4 Complete Decision Replay in CAPLAN/CBC

A case in CAPLAN/CBC consists of a structure that encapsulates the successful
decisions made at the choice points during a problem solving episode. Additionally,
a case contains information concerning the rejection justifications of failed decisions.
More concrete, CAPLAN/CBC stores the following elements in a case: (i) the sub-
goal graph, (ii) for each goal the chosen decision (applied operator) and the failed
decisions, (iii) for each decision all rejection justifications. These justifications are
reasons for rejecting a decision at a certain choice point [18].

The rationale behind storing justifications in cases is that decisions taken dur-
ing the replay process may have to be rejected in order to complete the plan (e.g.,
decision A in figure 1 had to be rejected to obtain a solution). The case-based con-
trol component CBC guides the generative planner CAPLAN using this information
about successful and failed decisions. As a result, reconstructing rejection justifica-
tions from the case will avoid persuing alternatives which are known to be invalid
from the case.

Replaying a case consists of two phases: (1) reconstruction of the subgoal graph
(i.e. subgoals and selected operators recursively as complete as possible) with re-
spect to the current problem, (2) reconstruction of justifications for the rejection of
operators. After a case (' has been chosen to be used in a new problem situation,
the goals of the problem are mapped to corresponding top level goals of the case C.
Let @ be the set of matching goals of the problem. Figure 3 sketches the algorithm
for replaying the decisions of the case (' for the goals G with repect to a current
plan P. N is an initially empty list of goals that could not be matched immediately
and so are delayed (see below).

Phase 1 (ReplaySubgoalGraph), the main part of the algorithm, reconstructs
for each goal that matches a goal of the case, the corresponding part of the subgoal

ReplaySubgoalGraph(P, G, N, C) ReconstructJustifications(P, C)

For each goal g € G: - get set D¢ of reconstructed decisions
- compute cs = con flictSet(g) - for each justification j. of a d. € D¢:
- get goal g, of case C' that matches g IF Jdependent Decisions(j.) THEN

- match cs and con flictSet(g.) - create justification j matching j.
- get chosen decision d. of g. from case - add j to decision d

- IF Jop € s with matches(op, d.) THEN

ReplayDelayed Goals(P, N, C)
For each goal g € N:
- compute cs = conflictSet(g)

- apply operator op to goal ¢

- get subgoals of goal g

- match subgoals of g and subgoals of g.
.let SG be the set of matching subgoals| |- 8¢t goal g of case C' that matches g

- ReplaySubgoalGraph (P, SG, N, C) - match cs and con flictSet(g.)
- ReplayDelayedGoals(P, N, C) - get chosen decision d. of g, from case

- ELSE - IF Jop € cs with matches(op,d.) THEN
add goal ¢ to the set N apply operator op to goal g (modifies P)

Figure 3: The replay algorithm of CAPLAN/CBC

graph. The computed conflict set of a goal is always a set of operators that can be
applied to the goal. If the matching operator for a decision of the case is not yet
in the conflict set of the goal, the replay of this decision is delayed and this goal is
added to the list N of goals that could not be linked to a goal of the case. This
can for example happen with a phantom operator® that uses a step which has not
yet been replayed in the current plan. It will be delayed until the needed step is
added by the replay procedure, or it is skipped if the step is not created during
the replay. Otherwise, the same decision as in the case is replayed, i.e. the same
operator is applied to the goal, and the algorithm is called recursively for subgoals
that matched subgoals in the case. After the recursive call ReplayDelayed Goals
makes a new try to replay the goals that were delayed before.

Phase 2 of the replay (ReconstructJustifications) starts after the reconstruc-
tion of the subgoal graph. First, all decisions of the case that were reconstructed
are collected. This are all successful or failed decisions of the case for which a corre-
sponding operator was found in the conflict set of some goal in the current problem.
For each rejection justification of such a decision the algorithm checks whether a
reconstruction of the justification is possible. This is the case if all decisions that
are referred to in the justification exist in the actual situation. If this test is positive
an equivalent justification for the decision in the current plan is added. Otherwise,
the justification can be skipped as it depends on the existence of a part of the case
that has not be reconstructed.

The first phase is comparable to what eager replay does: it follows the derivation
path stored in the case in form of the subgoal graph and selects the same alternative
at every decision point for which it finds information in the case. The second phase
is new: it replays experiences about failed decisions of the case and so avoids that
the planner has to find out the already known reasons for failure again.

3 Phantom operators represent simple establishment (they don’t add a new step) [18].

5 Results and Conclusions

To measure the effectiveness of the replay procedure presented here, we performed
the following experiment in the domain of process planning [12]: A series of problems
were solved by the base level planner CAPLAN and the plans were in the case base.
While solving the problems we misdirected CAPLAN at key choice points to ensure
that justifications for wrong decisions which result in backtracking at those key
choice points were constructed. The created case base was then used to solve new
planning problems (variations of the cases). For each problem a case was selected and
replayed with and without reconstructing justifications of failed decisions. Table 1
summarizes the results. The second and third column show the averages of the

‘ Replay ‘ Complete ‘ Normal ‘
Total Time (s) 25 65
#Inferences 37 129
#Decisions 33 72
#Valid Decisions 21 21

Table 1: Effectiveness of complete decision replay.

measurements made during the completion process for all given problems when
complete replay or normal replay (i.e. without reconstruction of justifications) was
used. We measured the total completion time, the number of inference steps to find
the solution, the total number of decisions made during completion and the number
of valid decisions. The ratio between the number of interence steps and the number
of valid decision shows the degree of backtracking needed to find the solution. Our
results show that complete eager replay leads to less backtracking. The overhead
caused by reconstructing the justifications was approximately 25% of the replay
time, which was smaller than the completion time (not shown in table 1). However,
table 1 shows the advantage of reconstructing justifications over replaying only valid
decisions as in [7]: completion time decreased more than 50% and significantly less
inference steps were needed to find a solution. Nevertheless, The overhead of using
this algorithm is approximately two times over usual replay (i.e., without calling
the procedure ReconstructJustifications(P, C)). Deciding, when to reconstruct the
justifications is still subject of research.

References

[1] A. Barrett and D.S. Weld. Partial-order planning: Evaluating possible efficiency
gains. Artificial Intelligence, 67(1):71-112, 1994.

[2] S. Bhansali and M.T. Harandi. When (not) to use derivational analogy: Lessons
learned using apu. In D.W. Aha, editor, Proceeding of AAAI-94 Workshop: Case-
based Reasoning, 1994.

[3] B. Blumenthal and B. Polster. Analysis and empirical studies of derivational analogy.
Artificial Intelligence, 1994.

[4]

[12]

[13]

[14]

[15]

A. G. Jr. Francis and A. Rahm. A domain-independent algorithm for multi-plan
adaptation and merging in least-commitment planning. In D. Aha and A. Rahm,
editors, AAAI Fall Symposium: Adaptation of Knowledge Reuse, Menlo Park, CA,
1995. AAAI Press.

A.G. Jr. Francis and A. Rahm. A comparative utility analysis of case-based reasoning
and control-rule learning systems. In Proceedings FCML-95, number 912 in Lecture
Notes in Artificial Intelligence, 1995.

S. Hanks and D. Weld. A domain-independent algorithm for plan adaptation. Journal
of Artificial Intelligece Research, 2, 1995.

L. Thrig and S. Kambhampati. Derivational replay for partial-order planning. In
Proceedings of AAAI-9/, pages 116—125, 1994.

S. Kambhampati. Expoiting causal structure to control retrieval and refitting during
plan reuse. Computational Intelligence, 10(2):213-244, 1994.

J. Koehler. Flexible plan reuse in a formal framework. In Current Trends in Al
Planning, pages 171-184. 10S Press, Amsterdam, Washington, Tokio, 1994.

D. McAllester and D. Rosenblitt. Systematic nonlinear planning. In Proceedings of
AAAI-91, pages 634-639, 1991.

H. Munoz-Avila and J. Hiillen. Retrieving relevant cases by using goal dependencies.
In M. Veloso and A. Aamodt, editors, Proceedings of the 1st International Conference
on Case-Based Reasoning (ICCBR-95), number 1010 in Lecture Notes in Artificial
Intelligence. Springer, 1995.

J. Paulokat and S. Wess. Planning for machining workpieces with a partial-order
nonlinear planner. In Y. Gil and M. Veloso, editors, AAAI-Working Notes ’Planning
and Learning: On To Real Applications’, New Orleans, 1994.

Ch. Petrie. Planning and Replanning with Reason Maintenance. PhD thesis, Univer-
sity of Texas at Austin, CS Dept., 1991.

Ch. Petrie. Constrained decision revision. In Proceedings of AAAI-92, pages 393-400,
1992.

B. Smyth and M.T. Keane. Retrieving adaptable cases. In M.M. Richter, S. Wess,
K.-D. Althoff, and F. Maurer, editors, Proceedings of the 1st European Workshop on
Case-Based Reasoning (EWCBR-93), number 837 in LNAI. Springer, 1994.

M. Veloso. Planning and learning by analogical reasoning. Number 886 in Lecture
Notes in Artificial Intelligence. Springer Verlag, 1994.

M. Veloso and J. Blythe. Linkability: Examining causal link commitments in partial-
order planning. In Proceedings of the 2nd International Conference on Al Planning
Systems (AIPS-94), pages 13-19, 1994.

F. Weberskirch. Combining SNLP-like planning and dependency-maintenance. Tech-
nical Report LSA-95-10E, Centre for Learning Systems and Applications, University
of Kaiserslautern, Germany, 1995.

