
1 C. Wurll, D. Henrich, H. Wörn

Parallel on-line motion planning
for industrial robots

C. Wurll, D. Henrich and H. Wörn1

This paper presents a new approach to parallel motion planning for industrial
robot arms with six degrees of freedom in an on-line given 3D environment. The
method is based on the A*-search algorithm and needs no essential off-line
computations. The algorithm works in an implicitly descrete configuration
space. Collisions are detected in the cartesian workspace by hierarchical
distance computation based on the given CAD model. By decomposing the 6D
configuration space into hypercubes and cyclically mapping them onto multiple
processing units, a good load distribution can be achieved. We have
implemented the parallel motion planner on a workstation cluster with 9 PCs
and tested the planner for several benchmark environments. With optimal
discretisation, the new approach usually shows linear, and sometimes even
superlinear speedups. In on-line provided environments with static obstacles,
the parallel planning times are only a few seconds.

Keywords: motion planning, parallel processing, search alogorithms

1 . Introduction
The issue of robot motion planning has been studied for a couple of decades and

many important contributions to the problem have been made [Hwang92]. Motion
planning algorithms are of great theoretical interest, but are rarely used in practice
because of their computational complexity [Kamal96].

Future robotic tasks (i.e. recycling, robot guidance, teleoperation, assembly and
disassembly, medical surgery) can often only be solved in dynamic environments.
Therefore, powerful on-line motion planners for industrial robots with six degrees of
freedom (DOF) are needed. The on-line capability means that the planner does not
require any time consuming off-line computations in order to react directly to dynamic
changes in the environment.

For dynamic environments, three different cases can be distinguished. In the first
case, the environment contains dynamic obstacles (i.e. objects on a conveyor belt, or
additional robots) with known or partially known movements. In the second case, the
robot grips different objects. There, the kinematic chain of the robot, including the
gripped object, will change. The third case occurs in the area of virtual engineering.

1 Institute for Process Control and Robotics, Prof. Dr.-Ing. H. Wörn, University of Karlsruhe, Faculty

for Informatics, P.O. Box 69 80, D-76128 Karlsruhe, Germany, E-Mail: [wurll, dHenrich,
woern@ira.uka.de]

Accepted at: The Third ASCE Specialty Conference on Robotics for Challenging
Environments, Robotics´98, Albuquerque, New Mexico, April 26-30, 1998.

2 C. Wurll, D. Henrich, H. Wörn

After every assembly operation, the product, or the environment will change its
geometry. All three cases of dynamic environments implicate a modification of the
configuration space (C-space), which has to be considered during planning motions.

An extensive introduction to this problem is presented by Fujimura. In several
examples he explains the different approaches used for the motion planning problem of
autonomous, mobile robots [Fujimura91]. Fiorini discusses a motion planner for
industrial robots based on velocity adaption, but he plans only with a 2 DOF workspace
with two robots and known movements, but without any other obstacles [Fiorini96]. Ralli
proposes a potential-field approach based on the explicit calculation of the workspace
and C-space. If a new object appears, the new path is searched in a few seconds, but the
planner works for 5 DOF in a very small search space2, which is unfavourable for
industrial robots [Ralli96].

Generally speaking, speeding up the computation will enable the motion planner to
cope better with dynamic environments in practice. One approach is based on the
introduction of parallel processing. Mazer reports good planning times based on parallel
genetic algorithms for 6 DOF robots in simple problems, but the planner will fail in
industrial environments [Mazer93]. Challou presents a parallel formulation of the
informed randomized search and achieves good results. But the neccessary pre-
computed heuristics are unfavourable for dynamic environments [Challou95]. An
extensive overview and a classification of the different parallel methods can be found in
[Henrich97a]. The facit of the overview is that parallel processing is an efficient method
for speeding up motion planning.

Summarizing, up to now, no planners for 6 DOF robots exist, which have the ability
of dealing with dynamic obstacles and having low on-line computation times. Our
motivation has been the development of a planner for industrial robots satisfying these
requirements. We focus on industrial robots, which constitutes a considerable part of
robots being used.

The remainder of the paper is organized as follows: In Section 2 the basic approach
of our motion planner is introduced. Section 3 describes the necessary enhancements for
parallelizing the sequential approach. Section 4 shows the experimental results, and the
paper ends with the conclusion and an outlook of the future investigation in Section 5.

2 . Sequential Approach
Most of the off-line motion planners are based on an explicit representation of the

free C-space. The free C-space computation consists of the obstacle transformation into
the C-space and the construction of a free-space representation. Both tasks are very time-
and memory consuming, and their calculation effort increases with the robot´s DOF. In
order to avoid these time consuming obstacle transformations, one can search in an
implicitly represented C-space and detect collisions in the workspace.3 This strategy
enables the planner to cope with on-line provided environments and moving obstacles.

For searching in the implicit C-space, we apply the well known A*-search algorithm
[Hart86]. The main task of the A*-algorithm consists of the expansion and the
processing of configurations, which are saved in the priority list OPEN. In every iteration,
the best configuration of OPEN is expanded.

According to a heuristic evaluation function, these successors will be considerd in
the following iterations. After the expansion, the parent configuration is saved in the
hashing table CLOSED. The search continues until the goal is found, or the OPEN list is
empty. In the latter case the algorithm stops with no solution.

2 Taking the reported space of 1.252*106 states, the workspace for a Puma260 with 6 DOF would have a

discretisation of about 10 cm.
3 Verwer is one of the first, who has used this strategy [Verwer90]. The reported planning times are

acceptable for 2 DOF examples but not for 5 DOF in order to cope with dynamic environments.

3 C. Wurll, D. Henrich, H. Wörn

(a)

1

2

3

4→
ΘG

→
ΘS

(b)

Figure 1: (a) A*-search in the implicit C-space from the start configuration

r
Θ S to the goal configuration

r
ΘG , (b) collision detection by distance

computation in the workspace

In Figure 1a, an example for a 2D search is given. The dots indicate investigated
configurations and the arrows give reference to the corresponding successors.

Collisions are detected by a fast, hierarchical distance computation in the 3D
workspace, based on the given CAD model of the environment and the robot4
[Henrich92, Henrich97b] (see Figure 1b). With the help of the "maxmove-tables",
introduced in [Katz96], the cartesian distances are then transformed into joint intervals in
order to define the state ("free" or "prohibited") of the regarded configuration. For
obtaining similar joint intervals, thus implicating an efficient distance exploitation, the
optimal joint discretisation is automatically computed based on the method of [Qin96].

3 . Parallel approach
For parallelizing the A*-algorithm, the configurations in OPEN and CLOSED must

be accessible to all processors, in order to distribute the whole work. These lists can either
be managed by one dedicated processor or each processor can have its own local lists. In
a message passing system, each access to a global list would lead to an enormous
communication effort, thus, the local method was preferred.

3.1 Mapping
The work distribution is the key aspect of parallelization. Therefore, the C-space is

decomposed into d-dimensional hypercubes of size b in each dimension. For parallel
processing, the hypercubes are cylcically mapped on the p available processors by the
following function5:

f
b

pi

ii

d

Θ
∆

() = +
∗
















=
∑: mod1

1

θ
θ

According to the automatically computed discretisation ∆Θ i , every configuration

 Θ = []θ θ1, ,L d is mapped uniquely to one hypercube or to one processor. Thus, the
OPEN list of each processor contains configurations of the multiple mapped hypercubes.

4 At present we are evaluating our approach in a traditional manufactoring environment. Additionally

our system is also able to plan motions in environments unkown to the user (e.g. space,
construction, underwater work, etc.), as the required environment models can either be established by
CAD-systems or by sensor systems.

5 The operator •  denotes the next lower integer number.

4 C. Wurll, D. Henrich, H. Wörn

(a)

1 2 43

2 3

3

4

4

4

1

1

1

2

2 3

b

(b)

43

2 3

Figure 2: C-space decomposition with the cube size b (a) and the enlarged
clipping of four neighboured hypercubes (b)

Figure 2a demonstrates the decomposition of a 2D C-space for p = 4 processors and
the cube size b = 4. The 2D cubes are mapped cyclically onto the four processors
according to f(Θ). Figure 2b shows an enlarged clipping of four neighbouring
hypercubes. After the search has reached the hypercube boundaries, the expanded
successors are sent to their corresponding processors. The received configurations will
then be inserted in a local OPEN list. For the parallel version, in each iteration, every
processor expands the best configuration of OPEN until the list is empty or the goal
configuration is found. If the OPEN lists of all processors are empty, the algorithm stops
with no solution.

3.2. Load Balancing
The performance of the parallel algorithm essentially depends on the load balancing

mechanism. In our approach, we have implemented a static distribution mechanism,
which can be influenced by modifying the cube size b. Considering the C-space
decomposition, small sizes lead to more cubes (in different areas of the C-space) being
mapped on to a single processor. Thus, implicating a good load distribution. In contrast,
larger sizes will worsen the load balancing. This is mainly due to the coarse
decomposition, thus, the processors are longer idle, until they receive work. Additionally,
larger cube sizes lead to less cubes beeing mapped on to one processor.

For validating the performance of this load balancing mechanism, we have solved a
benchmark problem6 with different cube sizes b. On each of the p = 8 processors, we
measured the number of collision detections, which is the most expensive function.
Figure 3 shows the experimental results. For larger values, the coarse C-space
decomposition leads to an irregular load distribution. In some cases, only a few cubes are
covering the complete solution space, thus, some processors becomes idle. Additionaly,
due to the sparse mapping, the searching processors expand unneccessary configurations,
because they receive no better ones. For smaller cube sizes, the load is nearly equally
distributed.

3.3. Message Combining
Lower cube sizes result in a good load distribution, but increase the number of

messages. Too many messages, however, usually leads to a bottleneck in the
communication network and slows down the calculation times. Combining several
messages to form one message seems to be a way out of this problem.

6 We used the benchmark problem STAR from Section 4.

5 C. Wurll, D. Henrich, H. Wörn

Figure 3: Number of distance computations as a measure for the load
distribution depending on the cube size b for the processors P1 - P8

(a) (b)

Figure 4: The benchmark problems STAR (a) and DETOUR (b) for the 6
DOF robot Puma260

Evaluation runs for two benchmark problems7 with a cube size b = 2 and p = 8
processors have shown that the combining of configurations to one message over several
iterations leads to longer planning times. For example, without combining, the
benchmark problem STAR was solved in 8 sec, but with the combining of messages over
20 iterations the planner has needed 20 sec. [Sandmann97].

This is mainly due to the fact, that the remote configurations are sent too late. Thus,
every processor does not receive better configurations and expands the worse ones. At
this stage, no message combining was included in the further runtime tests.

4 . Experimental Results
We have implemented the parallel motion planner on a workstation cluster. The

cluster consists of 9 PC’s, each with 133 Mhz Intel Pentium processors and 64 Mbyte
memory. The parallel communication is established by an Ethernet based bus network.
For more details see [Wurll97a].

For testing the motion planner, we have developed five benchmark problems for a 6
DOF robot, a Puma260. As an example, the benchmark problems STAR and DETOUR
are shown in Figure 4, developed in [Katz96]8.

7 We used the benchmark problem STAR and DETOUR from Section 4.
8 The data of these benchmark problems can be downloaded from the Web page at

http://wwwipr.ira.uka.de/~paro/skalp/

6 C. Wurll, D. Henrich, H. Wörn

(a) 9876543210
0

20

40

60

80

100

120
6DOF-SIMPLE
6DOF-STAR

6DOF-DETOUR
6DOF-BOTTLENECK

P

T [sec.]

(b) 9876543210
0

2

4

6

8

10

12

14

16

18

20

6DOF-SIMPLE
6DOF-STAR
6DOF-BOTTLENECK
6DOF-DETOUR
linear Speedup

P

S

Figure 5: Planning time T (a) and the Speedup S (b) for P processors for
the different benchmark problems

We ran every benchmark problem 12 times, deleted the lowest and highest planning
times and computed the average of the remaining 10 values. The cartesian resolution was
chosen to be 20 mm, which leads (for a Puma260) to the discretisation
∆Θ = ° ° ° ° ° °[]1 91 1 96 2 79 5 66 5 66 20 66. ; . ; . ; . ; . ; . .

According to the upper and lower joint limits of the Puma260, the C-space consists
of 2.99*1011 states, which is at least 3 magnitudes greater, than in the examples of the
references.

To calculate the speedups, we have run 8 parallel processes of the parallel algorithm
on 1, 2, 4 and 8 processors, thus, guaranteeing the same C-space decomposition. This
method of measuring was necessary in order to obtain a fair comparison, because the
search performance essentially depends on the C-space decomposition (see Section 3.2).

Figure 5 presents the parallel planning times and the achieved speedups for the
benchmark problems. It can be seen that the parallelizing results in a reduction in
planning times, and that the speedups are linear, and sometimes even superlinear. Three
of four planning times range below 5 seconds. Only the benchmark problem DETOUR
needs about 20 seconds planning time [Wurll97b].

5 . Conclusion and Future Work
In this paper, we have introduced a new approach to parallel motion planning for

industrial robot arms with 6 DOF. The algorithm works in an implicit and discretisized C-
space and the collision detection is done in the cartesian workspace by distance
computation. This avoids the time- and memory consuming obstacle transformation and
C-space calculation. The method is based on the A*-search algorithm and needs no
essential off-line computation. This approach enables the motion planner to work
reasonably fast in dynamic environments.

The parallelization with static load balancing results in an equal load distribution and
shows linear and sometimes even superlinear speedups. Further acceleration of the
motion planner is possible by distributing communication, which can be done using a
mesh-based communication network [Wurll97a].

Based on these results, we now focus on developing a motion planner which is able
to cope with moving obstacles, such as other robots. With some modification, our
approach is also suitable for tasks in the area of virtual engineering. Instead of planning
the path for robots, we are able to search a trajectory for the subcomponents, which have
to be mapped onto another object .

To further increase the speed of the algorithm, we are currently working on a
hierarchical on-line discretisation of the C-space, thus reducing the enormous size of the
search space [Wurll97b]. The planning strategy will also be enhanced by a

7 C. Wurll, D. Henrich, H. Wörn

multidirectional search [Beeh97]. Additionally, for running the computed trajectories on
a real robot, we are working on a path smoothing algorithm [Bordon97].

Acknowledgement
The project "Scalable algorithms for parallel motion planning in dynamic

environments" is funded by the German Basic Research Framework (DFG-
Schwerpunktpro–gramm) "Efficient algorithms for discrete problems and their
applications". Further information about the project can be found on the Web page of
the PaRo group (Parallel robotics) of the IPR at http://wwwipr.ira.uka.de/˜paro/.

References
[Beeh97] Beeh F.: „Erweiterung des parallelen Bewegungsplaners“, Diplomarbeit in Bearbeitung,

Institut für Prozeßrechentechnik und Robotik, Universität Karlsruhe, 1997.
[Bordon97] Bordon U.: „Parallele Glättung von Robotertrajektorien“, Studienarbeit in Bearbeitung,

Institut für Prozeßrechentechnik und Robotik, Universität Karlsruhe, 1997.
[Challou95] Challou D.J.; Boley D.; Gini M.; Kumar V. : „A parallel formulation of informed randomized

search for robot motion planning problems“, IEEE Int. Conf. on Robotics and Automation,
Nagoya, Japan, May 21-27, 1995.

[Fiorini96] Fiorini P., Shiller Z.: „Time optimal trajectory planning in dynamic environments“, IEEE
Int. Conf. on Robotics and Automation, vol. 2, pp. 1553-1558, 1996.

[Fujimura91] Fujimura K.: „Motion planning in dynamic environments“, Berlin, Heidelberg, Springer,
1991.

[Henrich92] Henrich D., Cheng X., "Fast Distance Computation for On-line Collision Detection with
Multi-Arm Robots", IEEE International Conference on Robotics and Automation, Nice,
France, May 10.-15., pp. 2514-2519, 1992.

[Henrich97a] Henrich D., „Fast motion planning by parallel processing - A review“, Accepted for: Journal
of Intelligent and Robotic Systems, 1997.

[Henrich97b] Henrich D., Gontermann St., Wörn H.: „Schnelle Kollisionserkennung durch parallele
Abstandsberechnung“ In: 13. Fachgespräch Autonome mobile Systeme (AMS´97), Stuttgart,
6. + 7. Oktober, Springer-Verlag, Reihe „Informatik Aktuell“, 1997.

[Hwang92] Hwang Y. K., Ahuja N., "Gross motion planning – A survey", ACM Computing Surveys, vol
24, no 3, Sept. 1992.

[Kamal96] Kamal L., Gupta K., del Pobil, A.P.: „Practical motion planning in robotics: Current ap-
proaches and future directions“, IEEE Robotics & Automation Magazine, Dec. 1996.

[Katz96] Katz G.: „Konzeption einer Entwicklungsumgebung unter ROBCAD für die parallele
Bewegungsplanung“, Diplomarbeit, Institut für Prozeßrechentechnik und Robotik,
Universität Karlsruhe, 1997.

[Mazer93] Mazer E., Ahuactzin J.M., Bessiere P., Chatroux T.: „Parallel motion planning with the
Ariadne´s clew algorithm“, ISER-93, 1993.

[Qin96] Qin C., Henrich D.: „Path planning for industrial robot arms - A parallel randomized
approach“, In Proc. of the International Symposium on Intelligent Robotic Systems
(SIRS´96), Lissabon, Portugal, pp. 65-72, July 22-26, 1996.

[Ralli96] Ralli E., Hirzinger G.: „A global and resolution complete path planner for up to 6 DOF robot
manipulators“, IEEE International Conf. on Robotics and Automation, Minnesota, 1996.

[Sandmann97] Sandmann St.: „Entwicklung eines parallelen Bewegungsplaners“, Diplomarbeit, Institut für
Prozeßrechentechnik und Robotik, Universität Karlsruhe, 1997.

[Verwer90] Verwer B.J.H.: „A muliresolution work space, multiresolution configuration space approach
to solve the path planning problem“, IEEE Conf. on Robotics and Automation, 1990.

[Wurll97a] Wurll C., Henrich D.: „Ein Workstation-Cluster für paralleles Rechnen in Robotik-An-
wendungen“, In: APS´97, 4. ITG / GI - Fachtagung Arbeitsplatz-Rechensysteme, Koblenz-
Landau, 1997.

[Wurll97b] Wurll C., Henrich D., Wörn H.: „Parallele Bewegungsplanung in dynamischer Umgebung“,
Interner Bericht der Fakultät für Informatik, Nr. 20/97, Universität Karlsruhe, 1997.

