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Abstract: We present a parallel path planning method that is able to automatically handle 
multiple goal configurations as input. There are two basic approaches, goal switching and bi-
directional search, which are combined in the end. Goal switching dynamically selects a fa-
vourite goal depending on some distance function. The bi-directional search supports the 
backward search direction from the goal to the start configuration, which is probably faster. 
The multi-directional search with goal switching combines the advantages of goal switching 
and bi-directional search. Altogether, the planning system is enabled to select one of the pref-
erable goal configuration by itself. All concepts are experimentally validated for a set of 
benchmark problems consisting of an industrial robot arm with six degrees of freedom in a 3D 
environment. 
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1 Introduction 

The issue of robot path planning has been studied for a couple of decades and many 
important contributions to the problem have been made [Hwang92]. Path planning algo-
rithms are of great theoretical interest, but are rarely used in practice because of their 
computational complexity [Kamal96]. Here, we take a step in the direction of practical 
path planning. 

The problem of path planning that we focus on is the following: Input is the geometry 
of an industrial robot manipulator with six (rotational) degrees of freedom in an environ-
ment with static obstacles given by their current location. Optionally, there may be a cou-
ple of dynamic obstacles. All geometric objects are represented by a number of 3-
dimensional convex1 polyhedrons. Additionally, the start configuration of the robot and 
the goal position of the tool centre point (TCP) are given. The output of the problem is a 
sequence of pair-wise neighbouring and collision-free robot configurations from the start 
to one of the goals. 

Up to now, the path planning systems search for a path between a given start and one 
given goal configuration. In many applications, there are multiple goal configurations 
available for path planning. These emerge because of the ambiguous solution of the in-
verse kinematics of most industrial robots, which may result in several goal configurations 
for the desired Cartesian TCP (see Figure 1). In this case, nowadays, the user has to select 
one of the goals for planning by hand. In this paper, we present a method that enables the 
path planning system to automatically exploit the available multiple goal configurations. 

                                                 
1 This is no severe restriction, because every non-convex polyhedron can be modelled by (multiple) con-

vex polyhedrons. 



  

The paper is organized as follows: In Section 2, we shortly review our basic approach 
to practical path planning. Then, we present two approaches which make use of multiple 
goal configurations. These are goal switching in Section 3 and bi-directional search in 
Section 4. Finally, we investigate the combination of both approaches called multi-
directional search in Section 5. For each approach, we provide experimental results using 
a set of benchmark problems. 

2 Basic approach 

In order to avoid time consuming obstacle transformations into the robot configura-
tion space (C-space), one can search in an implicitly represented C-space and detect colli-
sions in the Cartesian workspace. This strategy enables the planning system to cope with 
on-line provided environments or moving obstacles, and to work reasonably fast in inter-
active robot programming environments (see Figure 2). 

For searching in the implicit C-space, we apply the well-known A*-search algorithm2 
[Hart68, Korf92]. Therefore, the C-space is discretized and all robot configurations are 
represented by nodes building up the search space. The A*-algorithm maintains a 
CLOSED list of those nodes that have been expanded, and an OPEN list of those nodes 
that have been generated but not yet expanded. The algorithm begins with the start node 
on the OPEN list.3 At each iteration, a node on the OPEN list with minimum heuristic 
evaluation is expanded, generating all of its children, and is placed on the CLOSED list. 
                                                 
2  The results of this paper are not restricted to A*. They can be applied to other best-first search methods, 

too. 
3 OPEN and CLOSED can be implemented efficiently as priority list and hash table, respectively. 
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Figure 1: Multiple goal configurations G1, ..., G4 for one endeffect (TCP) position and an illustration of the 
resulting path planning problem with start configuration S. (Benchmark STAR from [Katz96]) 



  

The evaluation function is applied to the children, and they are placed on the OPEN list in 
order of their heuristic values. The search continues until a goal node is chosen for expan-
sion, or the OPEN list is empty. In the latter case, the algorithm stops with no solution. An 
illustration of the algorithm is shown in Figure 2a. 

The evaluation function f(n) = (1–w)g(n) + wh(n) is used, where g(n) is the number of 
nodes of the path from the start node to node n, and h(n) is the Airplane distance in C-
space between node n to the goal node Gi.4 In the basic approach, the user has to select the 
goal configuration Gi. Collisions are detected by a fast, hierarchical distance computation 
in the 3D workspace, based on the given CAD model of the environment and the robot 
[Henrich92, Henrich97e] (see Figure 2b).  

For parallelizing5 the A*-algorithm, the configurations in OPEN and CLOSED must 
be accessible to all processors in order to distribute the work. These lists can either be 
managed by one dedicated processor or each processor has its own local lists. In com-
monly available message passing systems, each accessing of a global list results in a high 
communication effort. Thus, the local method is preferred. The work distribution is the 
key aspect of parallelization. Here, the C-space is decomposed into d-dimensional hyper-
cubes of size b in each dimension. For parallel processing, the hypercubes are cyclically 
mapped blockwise on the p available processors. For details, see [Wurll98a]. 

We have implemented the parallel path planning method on a workstation cluster. The 
cluster consists of 9 PCs, each with 133 Mhz Intel Pentium processors and 64 Mbyte 
memory. The parallel communication is established by an Ethernet based bus network. 
For more details see [Wurll97a]. For testing the path planning method, we have developed 
five benchmark problems for the 6 DOF robot Puma260 [Katz96]6. Especially benchmark 
problems STAR (see Figure 1) and SIMPLE are interesting, since these have multiple goal 
configurations. All other benchmarks have only one goal configuration because the TCP is 
located in a rather restricted area. Thus, the run-times of the following extended ap-
proaches are similar to the one of the basic approach. 

                                                 
4 Increasing the weight w ∈ [0,1] beyond 0.5 generally decreases the number of investigated nodes while 

increasing the cost of the solutions generated.  
5  An overview and classification of different approaches to parallel motion planning can be found in [Hen-

rich97f]. 
6  The data of these benchmark problems can be downloaded from the Web page at 

http://wwwipr.ira.uka.de/~paro/gkatz/benchmark.html 

(a)

1

2

3

4

S

G

    (b)

d

 

Figure 2: (a) A* search in the implicit C-space from the start configuration S to the goal configuration G. 
(The dots indicate investigated configurations and the arrows give reference to the corresponding succes-
sors.) (b) Collision detection in the explicit workspace by computing the minimum distance d between robot 
and obstacles  



  

3 Goal switching 

Previous run-time measurements show that the planning times are quite different for 
the different goal configuration. They fluctuate between fractions of seconds up to the 
insolubility of the task. However, it is impossible for the user to recognize beforehand 
which goal is favourable and which not. Thus, a method is required to cope with this prob-
lem during planning time. In the following, three different possibilities are shortly dis-
cussed. For details, see [Beeh97]. 

 The simplest approach is to statically select the goal before searching. This is similar 
to the case where a goal configuration is selected by the user. For selecting a favourable 
goal, the planning system requires meaningful criteria. In our case, the geometry of the 
obstacles transformed into the configuration space is unknown, and solely the joint angles 
of the start and goal configuration are available. Thus, as selection criterion only the joint 
angle distance between the start configuration and the goal configurations is applicable. 
This is a rather inappropriate criterion because obstacles frequently bar the direct way and 
the search must find a long detour. The length of the detour stands in no relationship to the 
joint angle distance of start and goal. Therefore, this approach is dropped. 

Another approach is to introduce an extra search front for each goal. If there are n dif-
ferent goal configurations, then n paths are searched simultaneously from the start to all 
goal configurations. On the one hand, the unreachable goals are avoided in the sense that a 
favourable goal will be found quickly. On the other hand, the planning takes n times 
longer as the standard search for the most favourable goal. This may be acceptable for 
nearby and a low number of goal configurations, but as the single searches become more 
time consuming, the overall planning time will take too long. Additionally, the multiple 
search fronts cannot use a common OPEN-list, since they rate the single nodes differently. 
Thus, an increasing number of goal configurations and, with this, many OPEN-lists will 
finally lead to memory overflow. 

In the third approach, called goal switching, a single search is accomplished as in the 
original algorithm. If the planning system detects that another goal is more favourable 
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Figure 3: Concept (a) and benchmark SIMPLE (b) as an example for a search in C-space starting at configu-
ration S with dynamic switching between multiple goal configurations G1 and G2. The shading of the dots in 
(a) indicates the goal currently selected. 



  

while searching, it will switch its search direction to the new goal (see Figure 3a). Thus, 
the search always selects the currently best goal. This switching can be realized very sim-
ply by a small modification in the heuristic evaluation h(n) of current node n: Instead of 
using the C-space distance of n to one goal, the minimum distance of n to all goals is used 
if it is smaller than the former one. With this, the search space is divided in different areas 
with nodes that are nearer to one goal than to all other goals.  

In a configuration space with no obstacles, goal switching will have no effect. Due to 
the best-first paradigm, the search will choose one goal and runs directly towards it. The 
other goals are no longer considered. The goal switching occurs first, if an obstacle blocks 
the direct way to the goal. In this case, the best-first search tries to surround the obstacle. 
During this operation, it can happen that a node lying in the area of an other goal is ex-
panded. The prior goal is dropped and the search switches to the new goal. Figure 3b illus-
trates how the search towards the first goal G1 results in a surrounding operation until the 
search front approaches goal G2 so that it is now more favorable. 

For the experimental results, the efficiency of goal switching depends greatly on the 
computation of the heuristic, since only it determines which goal is the next most favour-
able. We have to choose some reasonable parameter setting because the best setting is not 
known beforehand. Thus, we choose the Airplane distance as h() and weight w = 0.99 be-
tween g() and h(). 

The experimental results for the goal switching approach are shown in Figure 4. For 
benchmark SIMPLE in Figure 4a, the planning method selects the fourth goal and finds a 
path in approximately the same time as the basic method. Thus, the additional calculations 
of the goal switching cause an only slightly additional expenditure. For benchmark STAR 
in Figure 4b, the planning method tries to find a path to a goal that is difficult to reach and 
fails thereby. Thus, the goal switching approach has to cope with the problem, that the 
selection of the most favourable goal is based on a rather vague heuristic. An inappropri-
ate selection will finally be corrected during the search. However, this may already be too 
late. It may happen that the searching towards an unfavourable goal wastes too much ef-
fort, and the planning system fails due to memory overflow. 
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Figure 4: Run-times T for search towards fixed goal G (light grey) and automatic switching between goals G 
(dark grey) for benchmark problems SIMPLE (a) and STAR (b). The problems, which could not be solved 
due to memory overflow, are indicated by an arrow. 



  

4 Bi-directional search 

Path planning is a special type of search problem, where the start and the goal con-
figuration are known in advance. Therefore, it is possible to search not only from the start 
to the goal (forward search), but also from the goal to the start (backward search). The bi-
directional search performs both search directions simultaneously. For example, see Fig-
ures 5 and 9. The search task is finished as soon as the two search fronts meet each other. 
Then, the path of the forward search is connected to the inverse path of the backward 
search.  

There are two main advantages offered by the bi-directional search as compared to the 
uni-directional version. First, depending on the given problem, the backward search can 
be much simpler than the forward search usually performed. This is the case, for example, 
in Figure 5. Second, there can be improvements in the run-time complexity. A uni-
directional breadth-first search in a graph with branching factor b and length l of the solu-
tion path has a complexity of O(bl). The bi-directional search has a complexity of O(bl/2) if 
both search fronts meet approximately in the middle of the path [Nelson92]. This corre-
sponds to an exponential run-time reduction. 

Unfortunately, this reduction does not fully hold for the best-first search, because it 
operates in a more goal-oriented way than the breadth-first search due to the heuristic. 
Thus, the search tree with depth l is not completely explored. This effect is reinforced by 
the necessary weight w of the heuristic h(n), which results in an even more goal-directed 
search (see Section 2). Therefore, the mentioned run-time improvement is less. Addition-
ally, it may happen that the forward and backward searches pass by each other and meet 
after the middle. This so-called search anomaly worsens the run-time of the algorithm up 
to twice the run-time for a uni-directional search.7 

For implementing the bi-directional search, there are basically two ways: using one or 
two OPEN-lists (similar to goal switching in Section 3). In the first way, the nodes of the 
forward as well as of the backward search are stored in a common OPEN-list. In each 
                                                 
7 A way out of search anomalies and the resulting problems are outlined in Section 6. 
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Figure 5: Example for uni-directional (a) and bi-directional (b) search in C-space between start configuration 
S and goal configuration G. (2D slice of benchmark DETOUR from [Katz96]) 



  

search iteration, the currently best node is selected from this list independently of search 
direction it belongs to. This has the advantage that there is only little additional effort. On 
the other hand, often only one search direction is pushed ahead. This is caused by the 
weight w of the h-cost. The successor of the currently best node usually has a better rating 
than the node itself, because it is located nearer to the goal. Thus, once a search direction 
is chosen, it will hardly be changed again. As a disadvantage, the planning system may 
choose the wrong direction due to the uninformed heuristic. Finally, the two search fronts 
will unlikely meet in the middle, thus, the run-time improvement of the bi-directional 
search gets lost. For the parallel version of the bi-directional search with domain decom-
position, all these effects occur if parts of the two search fronts are located in hypercubes, 
which are mapped on the same processor. For details, see [Beeh97]. 

In the second way, two separate OPEN-lists are used for the forward and the back-
ward search (confer [Nassimi95]). In each search iteration, the currently best node is se-
lected alternatively from the two lists, thereby processing the forward and backward 
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Figure 6: Run-times T using the forward search to goal G (light grey) and using the backward search from 
goal G (dark grey) for benchmark problems SIMPLE (a) and STAR (b) 
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Figure 7: Run-time T for bi-directional search with one (dark grey) and two (light grey) OPEN-lists for dif-
ferent goals G of benchmark problems SIMPLE (a) and STAR (b) 

 



  

search simultaneously. The overall run-time is at most twice the run-time of the faster ver-
sion of the forward and backward search processed separately. If the search fronts meet 
each other before finishing their task, this run-time is sped up. 

Experimental results with run-times of the separate forward and the backward search 
for two benchmark problems are given in Figure 6. The forward direction of benchmark 
SIMPLE can usually be solved faster than the backward direction. For benchmark STAR, 
it is mixed. For some search directions of both benchmark problems, no solution could be 
found by uni-directional search due to memory overflow (indicated by arrows in the fig-
ures). These results form the basis for the following comparisons concerning bi-directional 
search. 

Experimental results for the bi-directional search with one and two OPEN-lists are 
shown in Figure 7. For almost all goal configurations of both benchmark problems, the 
use of only one OPEN-list is faster than of two lists. The search was able to select the fa-
vourable search direction. As an exception, one OPEN-list for Goal 7 of benchmark 
STAR fails because the planning method pushes the unfavourable direction. Here, two 
OPEN-lists are successful by simultaneously processing both directions. Comparing to the 
uni-directional search in Figure 6, the bi-directional search could solve one additional 
problem. The expected run-time reductions caused by meeting both search fronts could 
not be validated, which is certainly vested in the high weight w of the heuristic h().  

5 Multi-directional search with goal switching 

The approaches presented in the preceding two sections can be combined quite easily. 
There is one simultaneous forward search from the start to all goals by goal switching. 
Additionally, there are multiple backward search fronts from all goals to the start, result-
ing in a multi-directional search. For illustration of this concept, see Figure 10. The mul-
tiple backward searches use only one common OPEN-list, which has two effects. First, the 
memory requirement is much less than separate OPEN-lists for each backward search. 
Second, the currently best appearing search is always pushed ahead at any one time. In the 
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Figure 9: Concept of bi-directional search: One 
front searches from start S to goal G; a second 
front searches from goal G to start S. The shading 
of the dots indicate the goal currently selected. 
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Figure 10: Concept of multi-directional search with 
goal switching: One front searches forward from 
start S to multiple goals (G1 and G2) with goal 
switching; Additional fronts searches backward 
from each goal to the start.  



  

parallel version, the backward search fronts may be processed simultaneously if the corre-
sponding goal configurations have been mapped on different processors. For details, see 
[Beeh97]. 

The experimental results for the multi-directional search with goal switching are 
shown in Figure 11. For benchmark SIMPLE, the goal configuration 6 is finally selected. 
It requires a somewhat longer planning time than for goal switching without multi-
directional search. This is due to the expansion of alternating nodes of the two OPEN-lists. 
Still, the run-time is very good, since the unsolvable Goals 1 and 2 are avoided automati-
cally. For benchmark STAR, Goal 1 is finally selected and the unsolvable Goals 6 and 8 
are avoided automatically. 

6 Conclusion and future work 

We have presented a parallel path planning system, which is able to automatically 
handle multiple goal configurations as input. There are two basic approaches, goal switch-
ing and bi-directional search, which were combined in the end. Goal switching is done by 
dynamically switching from one goal to another depending on some distance function. Bi-
directional search introduces the probably faster backward search from the goal to the start 
configuration. The multi-directional search combines these two basic approaches by ap-
plying one forward search with goal switching and multiple backward searches, one for 
each goal. 

On the one hand, both basic approaches, goal switching and bi-directional search, 
have their disadvantages. Goal switching has to cope with a weak heuristic, since some-
times an unfavourable goal is preferred. The bi-directional search has the problem of a 
double search effort, which is worth it if the backwards search is simpler. On the other 
hand, the bi-directional search can decrease the effects of the weak heuristic used for goal 
switching. Goal switching helps bi-directional search by choosing the most simple (near-
est) goal. Thus, the multi-directional search integrates the advantages of of the basic ap-
proaches. With this, it omits unsolvable goals and achieves short run-time results. 

Additionally, multi-directional search enables the planning system to automatically 
select a favourable goal and to select the shorter search direction by bi-directional search 
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Figure 11: Run-times T for uni-directional search (light grey) and multi-directional search with goal switch-
ing between goals G (dark grey) for benchmark problems SIMPLE (a) and STAR (b) 



  

fronts. Thus, it is no longer necessary that the user selects one of the goal configurations 
or a search direction. The selected goal is not necessarily the best one, but it certainly is a 
better choice than the one of the user, since it is based the on-line available information 
not available for the user. 

The presented path planning method can be extended in two ways. First, in the paral-
lel bi-directional search, a wave-shaping mechanism may be useful to avoid possible dou-
ble search effort. With wave-shaping, the search directions of the two search fronts always 
point to each other. This extension can be realized quite simply for sequential processing. 
For parallel processing with domain decomposition as a load distribution, it is expected 
that wave-shaping will cause a high communication effort. Second, in the parallel multi-
directional search, an improved load distribution may be useful to avoid idle times at the 
beginning of the search. This can be done by mapping the hypercubes onto processors 
such that the start and each goal configuration are mapped onto different processors. In 
this case, each processor provided with a goal configuration will have useful work from 
the very beginning. 
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