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Abstract

This paper shows an approach to profit from type information about planning ob-
jects in a partial-order planner. The approach turns out to combine representational
and computational advantages. On the one hand, type hierarchies allow better struc-
turing of domain specifications. On the other hand, operators contain type constraints
which reduce the search space of the planner as they partially achieve the functionality
of filter conditions.

1 Motivation

Planning with STRIPS-like [5] domain representation in most cases ignores the aspect of
type information that becomes more interesting if we deal with domains containing a richer
variety of elements than blocksworld or transportation domain. One remarkable feature of
such domains is the high number of different kinds of goals and operators. Naturally, the
question of how to find right operator to be applied to a goal becomes more crucial.

Although most planners are not able to represent it explicitly, objects involved in a planning
problem always have a certain type and there are relations between the different types.
However, for domains like blocksworld it seems at least unclear what advantages an explicit
representation of type information could bring — only a few types can be identified and there
are no or only few relations between the types in these domains.

In domains containing a richer variety of elements we have a different situation. An example
is the domain of process planning for rotary symmetrical workpieces to be machined on a
lathe [9]. Although this domain concentrates on a certain restricted spectrum of workpieces,
typical problem specifications deal with many objects (often more than 30) of different types
and a type-subtype (is-a) relation can be identified between the object types.

For a workpiece like the one in figure 1 the symbolic representation must describe all areas
that have to be removed (cutted) when starting with a block of raw material. There are
different types of so-called processing areas such as outlines, sides, undercuts, or features like
drilled holes or threads. Additionally, there are different kinds of cutting, drilling and other
machining tools that have to be represented, e.g., LeftRotaryTool, DrillTool, ..., and they
build a hierarchy of tools. The planners task is to choose the tools from the available ones
and to find a sequence of tool insertions, tool changing, clamping, and cutting operations
that manufacture the workpiece. While it is obvious that structuring types in hierarchies
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Figure 1: Example for a workpiece Figure 2: Type hierarchies

(figure 2) has representational advantages, the question is, whether we can profit from the
information about types and type hierachies in a partial-order planner based on SNLP.

The following pages describe how the partial-order planner CAPlan extends SNLP to rep-
resent and use type information (section 2). In section 3 we will show and discuss that type
constraints are an elegant way of solving (at least partially) the problem of having filter
conditions in SNLP (also addressed in [3]), i.e., we will show that the type constraints of
CAPlan can be understood as filter (applicability) conditions of operators. Section 4 sum-
marizes some empirical results and section 5 concludes with a discussion of the approach.

2 The Use of Types in CAPlan

CAPlan [13] is an SNLP-like [7, 1] domain-independent, partial-order planner. Plans are
represented as 4-tupes (5,0, B, L), where S is set of plan steps, O is a set of ordering
constraints that define a partial order over S, B contains binding constraints over variables
occurring in the plan steps, and L contains causal links that capture causal dependencies
between plan steps. Planning proceeds by establishing open preconditions of plan steps
and by solving conflicts (called threats).

CAPlan extends SNLP [7] in some ways. In the context of this paper we focus on the
extended domain specification mechanisms.! CAPlan allows an explicit representation of
object types and the type-subtype relation in form of type hierarchies. Figure 2 shows an
example for parts of type hierarchies from our specification of the process planning domain.
Types are referred to in two places:

e Problem specifications include a type declaration for all objects involved in a
planning problem, e.g., Hole(h) declares h to be of type Hole. This type information
is invariant during a problem solving episode.

e Operator specifications can also contain type information in form of type con-
straints. Besides preconditions and effects, the STRIPS-like operator representation
in CAPlan not only allows codesignation/noncodesignation constraints [2] but also
type constraints of the form Is0fType (<TYPE>,<var>) or IsNotOfType(<TYPE>,
<var>).? They force the binding of a variable <var> to be (or not to be) of a

!Other aspects, e.g., the extended problem specifications, are described in [13, 8].
23TRIPS [5] did not have constraints at all, but most planners with STRIPS-like operator representation
added variables and simple codesignation/noncodesignation constraints [2] to the operators.



drill-hole(h,dt)
Constraints: IsOfType(Hole,h) Problem:
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Purpose: +processed(h) DrillTool(dt)
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Figure 3: Operator definition Figure 4: Problem definition

certain type <TYPE> or a specialization of <TYPE>.

CAPlan works like SNLP: if it establishes an open goal using a domain operator op, i.e.,
adding a new plan step to the plan (5,0, B, L), the constraints of op are added to B. But
op is chosen only if its contraints are consistent with B. So, in CAPlan it can happen
that op is not applied because of inconsistent type constraints. The fact that CAPlan may
determine the non-applicability of an operator with type constraints is exactly the point
where CAPlan has an advantage over other SNLP-like planners.?

Example: Figure 3 and figure 4 show an operator from the domain of process planning
and a part of a problem specification. The goal of the problem is to process a hole and
there is a certain drilling tool available. The domain contains several operators that achieve
+processed(h) for a hole h, e.g., drill-hole, tap-hole, ... The operator drill-hole can
be applied as its type constraints are consistent, i.e., there exists a consistent possibility
to bind the variable dt of this operator. For all other operators this consistency check fails
because there is no possible binding consistent with the type constraints of the operator.
So, all other operators are considered to be inapplicable here.

3 Advantages of Types

After the last section explained how CAPlan extends SNLP to allow having type infor-
mation in domain and problem specifications, we now will explain the advantage of this
representation. If types are not available to represent domain knowledge, additional predi-
cates can be used to simulate type information. Let us compare these two representations
for a partial-order planner with STRIPS-like operator representation:

(A) Representation with type constraints: As explained in section 2, CAPlan extends
the kinds of constraints by allowing types constraints (e.g., figure 3). Type constraints
restrict the application of the operator by restricting the possible bindings of the variables
to objects of certain types.

(B) Representation with preconditions: Information about object types can also
be encoded in predicates that are added to operators as preconditions. These predicates
should be unachievable* as they represent static information about objects that cannot be
changed by operators, but they can only be true in the initial situation. For representing
the operator in figure 3 without type constraints we must replace the two type constraints
with two new preconditions IsHole(h) and IsDrillTool(dt). An appropriate problem

9 As type information of objects is invariant during a planning episode, inconsistent type constaints of
an operator can never become consistent later. So, type constraints do not affect the completeness.
* A predicate is unachievable if it does not appear as an effect of any operator.



description needs these two predicates in its initial situation.

Comparision and consequences. In both cases, what we actually have done is to add
some kind of filter condition to an operator. Filter conditions are known from HTN-
planners like NONLIN/O-Plan [12, 4] or SIPE [14] and are originally thought to help the
planner in finding applicable operators during the planning process (see also [6]). Operators
with filter conditions that are not satisfied are not considered to be applicable to a goal, so
the operator selection criterion is more restrictive than a simple one that only check for a
matching effect. Of course, it might be desirable to have filter conditions in a partial-order
planner like SNLP. However, [3] pointed out the problems of filter conditions in an SNLP
planner and concluded that it is impossible to add those filter conditions (as preconditions
of operators) without affecting the completeness of the algorithm.

The two representations described above basically have the effect, that the planner will
discard the operator if a filter condition is not satisfied (if represented as a constraint) or
cannot be established (if represented as a precondition). But there is an important differ-
ence: In representation (A) the failure is detected before the operator is actually applied
because the operators constraints are inconsistent, whereas in (B) the operator is applied
but later the planner backtracks as it cannot establish the precondition. Unfortunately,
the application of an operator (i.e., the addition of a new step) might cause new threats
and these threats might be selected first by the planner (with SNLP standard strategy, or
others, e.g., DSep [11]). So, in (B) the search space will be bigger because only in the best
case the planner will select the precondition representing the filter condition immediately
after the precondition was added and fail to establish it, thus backtrack over the application
of this wrong operator. In all other cases, the planner selects another goal or threat first
and adds superfluous backtracking points.

From this considerations we can expect that a planner using type constraints will have to
do less backtracking and expand a smaller part of the possible search space. On the other
hand, type constraints need to be checked and this will cause some overhead.

4 Empirical Results

We conducted two experiments to investigate the effects of a representation of filter condi-
tions as types constraints and compared them with the representation as preconditions.

Artificial domain: We defined two artificial domains that are oriented at the D'S? and
D™S? domains [1].> We modified these domains in the following way: we replaced the 0-ary
goals (G; by one unary goal G/(z). In a typed version of the domains we defined types T;
that appear in type constraints of operators (figure 5). A typical problem specifies objects
01, 0z, ... of the types T1, T3, ... and goals G/(01),G(02),.... A flat version of each domain
(without types) represents the filter conditions as preconditions (figure 6). In both versions
a goal (G(0;) must be achieved using the sequence of operators A} followed by A?. The
crutial point for the planner is the selection of the right A? for a goal G/(o;).

In the experiment we defined five types and 20 problems with one to five goals for objects of
different types. To complicate problem solving, we let the planner select goals and operators
randomly and we made 10 iterations with each problem. Table 1 shows the average results
for all iterations of all problems. It shows that the average problem solving time and the
number of inference and backtracking steps for the typed domains are significantly better

5The domains originally show advantages of plan-space planners over state-space planners.



Domain: Typed-D™ S?
Types: Ti..,; Predicates: I, P;, G(x) Domain: Flat-D™S?
Operators: Types: —; Predicates: I, P;, G(z), IsT;(z)
- A} constraints: — Operators:
precond: I, effects: +P; - A} (like in figure 5)
- A? constraints: IsO fType(T;, z), - A? constraints: —
precond: B;, effects: +G(x), —Pjjj<i precond: IsTi(z), P;, effects: +G(x), —Pj)<i
Figure 5: Artifical Domain Typed-D™S? Figure 6: Artifical Domain Flat-D™ S?

than for the flat domains. Also, for typed domains we have a much higher percentage of
correct inference steps (inference steps that are not revised later) and of correctly expanded
nodes in the search space. We also see that the planner needs more time per inference step
in the typed domains. This is due to the overhead caused by checking type constraints.

Domain of process planning: The domain of process planning specified for CAPlan
also makes use of filter conditions as type constraints. We tested the original version (PP-
Typed) against a version that represented some of the filter conditions as preconditions
(PP-Flat) similar as explained for the first experiment.® The right side of table 1 shows
the average results for a collection of 10 representative problems. Here we used the control
strategy DSep [11] as for random strategies or SNLP strategy no solution can be expected
within a reasonable amount of time. The results show again that the planner does better
with the typed version of the domain.

Averages of Flat-D'S?/D™S? | Typed-D'S?/D™S? || PP-Flat | PP-Typed
Problem Solving Time 2111/2556 ms 465/679 ms 12594 ms | 10538 ms
Inference steps 112/132 21/33 147 115
Backtracking steps 45/54 4/9 37 23
Time per Inf. step 19.1/19.3 ms 25.2/24.5 ms 79.1 ms 83.7 ms
Correct Inf. steps 23.1/20.3 % 75.8/55.7 % 54.8 % 63.6 %
Correct search space 42.0/38.7 % 92.5/86.0 % 62.7 % 73.6 %

Table 1: Evaluation results for artificial domains and domain of process planning

5 Conclusions

We presented an approach for achieving the functionality of filter conditions in a partial-
order planner using information about object types. In our approach, operators can have
type constraints that force variable bindings to be of certain types or their subtypes. We
explained that these type constraints can be understood as filter conditions of the operators
as they are checked before the operator is actually applied.

[3] already investigated the problem of having filter conditions in SNLP. They presented
an approach that is based on the concept of secondary preconditions [10] which results
in operators with context-dependent effects. The difference of secondary preconditions to
normal preconditions is that they do not determine the applicability of an operator but
whether an operator has a certain effect of not. To establish both types of preconditions
additional plan steps might be added. Filter conditions, however, are thought to judge

6The domain consists of 38 types. But we did not replace all of them by additional predicates. Never-
theless, the effect of this partial replacement is quite clear.



the applicability of an operator without ever adding plan steps for that purpose. In [3] a
set of operators for which applicability would be decided by filter conditions is replaced
by a single operator with conditional effects where these secondary preconditions are the
filter conditions of the single operators. In this way, [3] shift the problem of determining
the operator to be applied to the problem of determining the effects of this one opera-
tor in a certain situation. As they show this is an improvement, but still the secondary
preconditions must be achieved by the planner in some way.

Although our approach using types and type constraints can only represent filter condi-
tions that are equivalent to unachievable preconditions (but not arbitrary predicates), we
predetermine the applicability of an operator. This is closer to the original idea of filter
conditions. Additionally, it shows a way to combine representational advantages (type hi-
erachies in domain specifications) and computational advantages as type constraints lead
to an improvement of planning performance in CAPlan.

References

[1] A. Barrett and D.S. Weld. Partial-order planning: Evaluating possible efficiency gains. Artifi-
cial Intelligence, 67(1):71-112, 1994.

[2] D. Chapman. Planning for conjunctive goals. Artificial Intelligence, 32:333-377, 1987.

[3] G. Collins and L. Pryor. Achieving the functionality of filter conditions in a partial order
planner. In Proceedings of AAAI-92, pages 375-380, 1992.

[4] K. Currie and A. Tate. O-plan: The open planning architecture. Artificial Intelligence,
52(1):49-86, 1991.

[5] R.E. Fikes and N.J. Nilsson. Strips: A new approach to the application of theorem proving in
problem solving. Artificial Intelligence, 2:189-208, 1971.

[6] S. Kambhampati. A comparative analysis of partial order planning and task reduction planning.

SIGART Bulletin, 6(1), 1995.

[7] D. McAllester and D. Rosenblitt. Systematic nonlinear planning. In Proceedings of AAAI-91,
pages 634-639, 1991.

[8] H. Mufioz-Avila and F. Weberskirch. Planning for manufacturing workpieces by storing, in-
dexing and replaying planning decisions. In Proceedings of the 3rd International Conference

on Al Planning Systems (AIPS-96). AAAI-Press, 1996.

[9] H. Mufioz-Avila and F. Weberskirch. A specification of the domain of process planning: Prop-
erties, problems and solutions. Technical Report LSA-96-10E, Centre for Learning Systems
and Applications, University of Kaiserslautern, Germany, 1996.

[10] E. Pednault. Synthesizing plans that contain actions with context-dependent effects. Compu-
tational Intelligence, 4:356-372, 1988.

[11] M. Peot and D. Smith. Threat-removal strategies for partial-order planning. In Proceedings of
AAAI-93, pages 492-499, 1993.

[12] A. Tate. Generating project networks. In Proceedings of IJCAI-77, pages 888—-893, 1977.

[13] F. Weberskirch. Combining SNLP-like planning and dependency-maintenance. Technical Re-
port LSA-95-10E, Centre for Learning Systems and Applications, University of Kaiserslautern,
Germany, 1995.

[14] D.E. Wilkins. Practical Planning - Ezxtending the classical AI Planning Paradigm. Morgan
Kaufmann, 1988.



