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Abstract. A new and systematic basic approach to force- and vision-based robot 
manipulation of deformable (non-rigid) linear objects is introduced. This approach 
reduces the computational needs by using a simple state-oriented model of the 
objects. These states describe the relation between the deformable and rigid 
obstacles, and are derived from the object image and its features. We give an 
enumeration of possible contact states and discuss the main characteristics of each 
state. We investigate the performance of robust transitions between the contact 
states and derive criteria and conditions for each of the states and for two sensor 
systems, i.e. a vision sensor and a force/torque sensor. This results in a new and 
task-independent approach in regarding the handling of deformable objects and in a 
sensor-based implementation of manipulation primitives for industrial robots. Thus, 
the usage of sensor processing is an appropriate solution for our problem. Finally, 
we apply the concept of contact states and state transitions to the description of a 
typical assembly task. Experimental results show the feasibility of our approach: A 
robot performs several contact state transitions which can be combined for solving a 
more complex task. 

1. Introduction  

The manipulation of rigid objects by robots has been the subject of study for 
several decades. Less effort has been made in investigating the manipulation of non-
rigid or deformable objects, despite its significance in many industrial applications 
[1]. Here, we focus on the one-dimensional or linear deformable objects, such as 



cables, wires, ropes, strings, beams, etc. This task has various application fields, 
e.g., hot-wire maintenance [2], cable form assembly, and production of control 
cabinets. The main problem of manipulating these objects is that they may change 
their shape during manipulation. 

To cope with this problem, one approach is to estimate the shape of the 
deformable objects by calculating an internal model and simulating the object 
behavior. A static model of the objects and the obstacles can be calculated in two 
[3] or three [4] dimensions. An extension leads to a dynamic model of deformable 
linear objects [5]. On the one hand, the object shape can be calculated with these 
methods precisely (direct simulation problem). On the other hand, it is not clear 
how to use the object models to control the robot motion, that is, to solve the 
inverse simulation problem [6]. Additionally, the shape calculation can be very time 
consuming. 

Another approach is to employ sensor systems to detect the object’s shape. 
Vision systems can be used, for example, to guide the robot motion while the robot 
is making a knot with a rope [7], or to detect the shape of a flexible beam while 
inserting it into a hole [8, 9]. Similar to model-based approaches, the vision-based 
approaches are quantitative ways to measure or calculate the shape. Force/torque 
sensors measure forces acting on the deformable object and can be used to detect 
the buckling of the object when being inserted into a hole [9, 10].  

All known approaches to vision-guided handling of deformable linear objects so 
far only present a solution for one special problem. In [11, 9, 12], a flexible beam is 
inserted into a hole. Nakagaki et al. additionally integrate a force/torque sensor 
while Chen et al. only use off-line sensor processing. In [7], a highly plastically 
deformable rope is used which is always hanging down and not deformed by a 
contact with an obstacle. Byun and Nagata compute the 3D pose of deformable 
objects but they have to deal with the stereo correspondence problem since they use 
a stereo vision approach [1]. In the work of Smith, highly plastically deformable 
ropes are laid along a desired shape in a plane [13], but non-elastic materials like 
ropes are not regarded in this work so far. 

A qualitative sensor-based approach to manipulate deformable linear objects is 
skill-based manipulation. Manipulation skills are motion primitives for achieving a 
particular target state of the manipulated object. They are specified in the task 
domain independently of the robot hardware, and hide control procedures and 
sensor feedback from the programmer. Skills are robust and overcome residual 
errors and uncertainties in both, models and manipulator movements. For example, 
for rigid polyhedral objects, the manipulation skills serve as transitions between 
contact states, and they simplify programming for a model-based manipulation 
system [14]. The sequence of manipulation skills can then be extracted 
automatically from the motion performed by an operator in a simulator [15].  

The basic precondition of skill-based manipulation is the identification of object 
states. Then, the manipulation skills can serve as transitions between these states. 
The question is what kind of state models are appropriate for deformable objects. 
Topological states, such as provided by the knot theory, use the number and kind of 
crossings of the linear object (with itself) [16]. For rigid objects, contact states 



differ in the involved type and number of geometric primitives [17]. Shape states 
are determined by calculating the precise or approximate object geometry [4, 18] 
and can hardly be distinguished in a symbolic way. Position states use the location 
and orientation of geometric primitives relative to other geometric primitives [19]. 

In this chapter, we formulate a general approach for the sensor-based 
manipulation of deformable linear objects (DLO). We investigate contact states and 
point contacts of deformable linear objects and show how our approach is used to 
implement task-independent manipulation primitives for industrial robots. These 
primitives are also referred to as skills and can be combined for solving different 
tasks. 

For solving manipulation tasks with deformable objects, we need to answer the 
following questions: what are the possible contact states of deformable linear 
objects and how do deformable linear objects in contact behave qualitatively? How 
does a human recognize contact state transitions? How can the approach be used 
together with a sensor processing system for guiding a robotic handling system by 
observing the changes of the object shape? What are the results of using our 
approach? What are the conclusions and how should the work be continued and 
improved? 

2. Contact State Transitions 

We introduce contact states and contact state transitions of deformable linear 
objects with respect to an obstacle environment. Our approach of sensor-based 
operations bases on the recognition of them. 

2.1 Contact states 

In the following, the contact of a deformable linear object (called workpiece) in 
a static environment (called obstacle) is regarded. We develop the approach based 
on the following two assumptions: 

The first, the material of the workpiece is isotrop and homogeneous. The 
workpiece is assumed to be uniformly curved, that is, it is either uniformly convex 
or concave. The deformation caused by gravity and contact forces is elastic, that is, 
the deformation disappears when the stress is released.1 Example workpieces are a 
(short) hose or a piece of spring steal. The linear workpiece is gripped at one end 
and the robot gripper may perform arbitrary linear motions. 

The second, all obstacles consist of convex polyhedrons. The friction between 
workpiece and obstacle is negligibly low. We begin our consideration with a single 
contact between workpiece and obstacle. 

Based on the geometric primitives of DLO and obstacle, a set of contact states 
that enumerates all possible contact situations is derived [20]. For polyhedral 

                                                           
1 The workpieces belong to the object classes {E–, E+} introduced by [20]. 



objects, the geometric primitives include vertices (V), edges (E), and faces (F). The 
linear workpiece has two vertices and one edge between the two vertices. We name 
the contact states by the contact primitive of the workpiece followed by the contact 
primitive of the obstacle, for example V/F for vertex-face contact (Figure 1). An 
additional state is N which indicates that workpiece and obstacle are not in contact. 
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Figure 1: Enumeration of contact states between a deformable linear object and a convex 
polyhedron 

An important attribute of each contact state is its stability. A contact state which 
remains unchanged as the robot gripper makes a (small) motion in any direction is 
called stable. However, the contact point or contact line may move. If this condition 
is not fulfilled, we call the contact state unstable. Consequently, a stable contact 
state is especially kept up when the robot gripper is not moved. 

2.2 State transitions 

State transitions are a change from one contact state to another without passing 
intermediate states. For now, establishing a second contact without loosening the 
first one, i.e., establishing a double contact, is not considered. Combining the 
contact states with the transitions between them, the graph shown in Figure 2 is 
obtained. This graph gives all possible transitions between the contact states 
(including state N) and is found by means of basic manipulation experiments. The 
contact states represent nodes while the state transitions represent edges with 
initiated transitions (plain arrows) and spontaneous transitions (dashed arrows). 
Solid edges starting and ending at the same node indicate stable contact states, i.e., 
these states can be their own successors. This is also the case when a motion of the 
robot gripper is not large enough to cause a state transition. 



As stated in [21], any stable state may be directly established from state N. Sta-
ble states are connected with state N by solid edges. Transitions between stable 
states are reversible by just performing the same gripper motion in the reverse 
direction. For transitions beginning with unstable states, things are different. It is 
found that they are only partly reversible. The dashed edges in the transition graph 
starting from these contact states indicate that there are several possible stable 
successors for each of them. While transitions leading to a stable state different 
from N (e.g. V/F→V/E→V/F) are reversible, those transitions leading to N are 
irreversible [21]. 

NE / V V / E

E / EE / F V / F

 

Figure 2: Contact state transition graph [21] with initiated transitions (plain arrows) and 
spontaneous transitions (dashed arrows) 

2.3 Programming of manipulation tasks  

So far, we have presented contacts of a deformable linear workpiece with a rigid 
obstacle and contact state transitions from an analytical point of view. This section 
introduces our concept to the application of assembly tasks. 

As far as rigid workpieces are concerned, a lot of works address the problem of 
developing robust and flexible routines for typical assembling or disassembling 
tasks. The basic idea is to set up a library of encapsulated, sensor-based routines 
that can be used as a construction kit for efficiently solving complex assembly 
problems. Morrow and Khosla demonstrate the efficiency of this method in insert-
ing different kinds of plug-in connectors [19]. 

Morris shows that performing assembly tasks can be regarded as a stepwise 
increasing of the number of constraints (reducing the degrees of freedom) of one of 
the mating parts by establishing contact with the other part [22]. Therefore, detect-
ing and manipulating the contact state of the mating parts is a key issue for 
developing manipulation routines. Any routine that changes the contact state of the 
mating parts, like establishing point contact, transferring point contact to face 
contact, etc., forms a module of the construction kit for assembly operations. 



When thinking of those tasks, it is found that the basic assumptions on our 
working environment must be partly relaxed. This affects especially the 
assumptions of one single contact and of a convex polyhedral obstacle.2 However, 
this does neither affect the applicability of the set of contact states nor the rules 
derived for state transitions. 

Let us consider the problem of inserting an elastic pneumatic hose into an U-
shaped guiding groove as shown in Figure 3. 

F1

F2

E1

E2

E3

  

Figure 3: Two states of the insertion process of a hose into an U-shaped guiding groove 

Depending on the boundary conditions, there are several possibilities to perform 
this task. A rather simple and robust procedure is as follows: 

• Establish an initial contact between the edge of the hose and edge E1 of the 
groove. 

• Move the hose downwards without loosening contact until the hose touches 
either one of the edges E2 or E3. 

• Establish contact between the hose edge and F1. 
• Move the hose downwards without loosening contact with F1 until it gets in 

contact with F2. 

Translating this procedure into a sequence of contact states and state transitions 
leads to the following: 

N→E/E1→E/E1∧(E/E2∨E/E3)  
→E/F1→E/F1∧E/F2 

Obviously, it would be rather simple to generate a robot program to perform this 
task if a library of sensor-based, encapsulated routines for the required state 
transitions was available. Performing assembly tasks in this way requires neither 
exact knowledge about the mechanical workpiece properties nor a quantitative 
calculation of the workpiece shape. 

                                                           
2 The occurrence of a second contact is needed as a trigger signal for initiating a new 

gripper motion. However, the further behavior of the second contacts is not relevant for 
performing the task. 



3. Human Transition Recognition 

Based on the ideas introduced above, several experiments are performed in 
order to gain knowledge about the behaviour of the deformable object and to detect 
contact state transitions of the workpiece. At first, a list of features is derived from 
the manual manipulation experiments. Secondly, characteristic measurement curves 
are generated by observing the features during a state transition. The manual 
manipulation experiments are verified with a robot and two technical sensor 
systems in the next section. 

3.1 Sensor data features 

In the first experiment, a human grips a low elastic workpiece, which belongs to 
the material class E- defined in [20], for example a pneumatic wire. Those 
workpieces are deformed elastically when the deforming force is greater than 
gravity. As obstacles for the manipulation, cubic and pyramidal objects are used 
similar to the objects shown in Figure 2. Then, each transition of the graph between 
two stable states with one unstable state in between is examined by a human 
simulating some sensors, which are in our case visual sensors (a stationary camera 
with several different viewpoints and a hand camera) and a force/torque sensor. The 
observed features are one-dimensional values that are directly measured by the 
sensor or derived from those low-level data. Examples are one single coordinate of 
the free workpiece endpoint or the angle of the tangent in this point. 

3.2 Characteristic functions 

By observing manually initiated state transitions, we find that the change of the 
values of the (one-dimensional) features always can be assigned either to a 
characteristic feature change description L(a,b,c,d) or to a description P(a,b,c,d) 
which are both defined in Table 1. L(a,b,c,d) is a useful description when it can be 
assumed that the curve of feature values is piecewise linear. This is found to be true 
for slow workpiece motions, for smoothing of the values, and when there is no 
sudden stress release. 

Type Parameter Condition 

L a := sign(lim ( ) lim ( ))t t t tf t f t→ + → −−
0 0

 

 b := sign(lim ( ))t t f t→ −0
∆  

 c := sign(lim ( ))t t f t→ +0
∆  

 d := sign(lim ( ) lim ( ))t t t tf t f t→ + → −−
0 0

∆ ∆  

P a := f t t( )≤ 0
 

 b, c: f t t f t b t e c t( ) ( ) sin( )> = + −
0 0 ω  

Table 1: Definition of the parameters L(a,b,c,d) and P(a,b,c) characterizing the changes in 
the curves of the feature values 



Note that a,b,c,d are defined as elements of the set {−1,0,+1}. If there is a 
sudden stress release and oscillations in the workpiece occur, P(a,b,c) can be used 
to describe the feature value curve. Examples for some characteristic curves are 
provided in Figure 4. 
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Figure 4: Examples for the observed characteristic changes of features f(t). L(0,0,-1,-1): 
change after constancy, L(0,1,-1,-1): roof/valley, L(0,1,1,1): slope change, some jumps 

L(±1,...), and the general look of a curve of type P(a,b,c) 

3.3 Human observation 

One result of the manual experiments concerning the vision sensor is shown in 
Table 2. In the table, all state transitions that occur between two stable states are 
classified according to the four visual features curvature u(t), endpoint p(t), tangent 
angle in the endpoint g(t), angle between endpoints n(t). Due to the simulation of 
low sample rates, oscillations that would result in a P(a,b,c)-curve are not observed. 

For the theoretical force/torque analysis we assume an ideal force/torque sensor, 
i.e., a sensor with infinite resolution and without internal noise. Furthermore, we do 
not consider friction.3 In a first practical validation, where the tactile sense of a 
human hand joint is used as a substitute for a wrist-mounted technical force/torque 

                                                           
3  Some additional assumptions concerning the contact state transitions which are of minor 

importance here are given in [21]. 



sensor, we find all the classes of feedback curves defined in Figure 4. Similar 
results as in Table 2 can be expected. 

 
 Characteristic feature change for stationary vision observation 

Transition u(t) p(t) g(t) n(t) 

N→V/F (0,0,c,d) (0,±1,0, ±1) (0,0,c,d) (0,0,c,d) 

N→E/E (0,0,c,d) (0,±1,±1,±1) (0,0,c,±1) (0,0,c,±1) 

N→E/F (0,0,c,d) (0,±1,±1,±1) (0,0,±1,±1) (0,0,1,±1) 

V/F→N (0,±1,0,±1) (0,0,c,d) (0,±1,0,±1) (0,±1,0,±1) 

V/F→E/F (0,±1,0,±1) (0,0,c,d) (0,±1,0,±1) (0,±1,0,±1) 

V/F→V/E→N (±1,b,0, ±1) (±1,b,c,d) (±1,b,0,±1) (±1,b,0,±1) 

V/F→V/E→V/F (0,±1,±1,±1) (0,±1,±1,±1) (0,±1,±1,±1) (0,±1,±1,±1) 

V/F→V/E→E/E (0,±1,±1,±1) (0,±1,±1,±1) (0,±1,±1,±1) (0,±1,±1,±1) 

E/E→N (0,±1,0,±1) (0,±1,±1,±1) (0,±1,0,±1) (0,±1,0,±1) 

E/E→E/F (0,±1,0,±1) (0,±1,0,±1) (0,±1,0,±1) (0,±1,0,±1) 

E/E→V/E→N (±1,b,0, ±1) (±1,b,c, ±1) (±1,b,0, ±1) (±1,b,0, ±1) 

E/E→V/E→V/F (0,±1,±1,±1) (0,±1,±1,±1) (0,±1,±1,±1) (0,±1,±1,±1) 

E/E→E/V→N (±1,b,0,±1) (±1,b,c,±1) (±1,b,0,±1) (±1,b,0,±1) 

E/E→E/V→E/E (0,b,c,±1) (0,b,c,±1) (0,b,c,±1) (0,b,c,±1) 

E/E→E/V→E/F (0,b,c,±1) (0,b,c,±1) (0,b,c,±1) (0,b,c,±1) 

E/F→N (0,±1,0,±1) (0,±1,±1,±1) (0,±1,0,±1) (0,±1,0,±1) 

E/F→V/F (0,b,b,0) (0,±1,0,±1) (0,b,b,0) (0,b,b,0) 

E/F→E/E (0,0,±1,±1) (0,0,±1,±1) (0,0,±1,±1) (0,0,±1,±1) 

E/F→E/→VN (±1,b,0, ±1) (±1,b,c, ±1) (±1,b,0, ±1) (±1,b,0, ±1) 

E/F→E/V→E/E (0,b,c,d) (0,b,c,d)) (0,b,c,d) (0,b,c,d) 

E/F→E/V→E/F (0,b,c,d) (0,b,c,d) (0,b,c,d) (0,b,c,d) 

Table 2: Characteristic changes of four visual features for each of the contact state transitions 

3.4 Observation with technical sensors 

In the case of “real” sensor systems, we again obtain measurement value curves 
that can be qualitatively characterized by the classes defined in Figure 4. This holds 
true for all possible state transitions and special measurement values of two sensors: 
a CCD camera observing the DLO from a stationary viewpoint and a 6 DOF 
force/torque sensor mounted at the wrist of an industrial robot. The main difference 
with respect to the curves from the human observation is the presence of noise. 
Periodic and damped oscillations in the curves coming from released inner stress of 
the DLO are only observed if the sample rate of the sensor is high enough.  

In order to see what is measured during a state transition, we need to analyze for 
example the initiated transition N→V/F. As similar observations are made for the 



vision system (see next Section), we only consider the case with a force/torque 
sensor. Let F(t) and M(t) be the vectors of force and moment measured by the 
force/torque sensor. Assuming that both force and moment are zero when the DLO 
is in state N, we can observe the following: When the workpiece touches the 
obstacle face, it is deformed, causing force |F| and moment |M| rising in a linear 
manner. Both |F| and |M| increase as long as the gripper motion is continued. The 
same result is obtained for transitions N→E/E or N→E/F. During the complete 
motion, F is aligned with the normal of the obstacle face. 

Experiments with other transitions show that any state transition is generally 
accompanied by a distinct change in the course of these functions [23]. Therefore, 
the task of detecting contact state transitions can be transferred into the problem of 
detecting these changes in the force and moment signals. The next section 
introduces our approach for the automatic transition recognition based on the 
automatic detection of those signal changes. 

4. Automatic Transition Recognition 

This section deals with the automatic state transition recognition that is used to 
perform automatically sensor-based robot operations. Again, we use the two 
different sensors: CCD-camera and force/torque sensor. 

4.1 General concept 

Since we believe that robust manipulation is possible without geometric 
reconstruction and without an exact model of the workpiece and the scene, our 
focus is on measuring features of the workpiece, especially the features stating any 
deformation in the workpiece. The deformation in the workpiece is detected by the 
change in several visual and force/torque features, which are extracted from the 
workpiece shape in the image space or the inner forces and torques resulting in a 
measureable stress. Since deformation can mean a change in the workpiece state in 
the context of one state model, changes of the measured features of the workpiece 
and knowledge about the initial workpiece state are used to derive the current 
contact state as illustrated in Figure 5. Please note that the coarse obstacle geometry 
is a-priori given, since it is assumed not to change and therefore can be easily 
assigned by the programmer or an environment data base. 

In our context, sensori-motor primitives transfer a deformable workpiece from a 
given initial (A) stable contact state to another, desired contact state (E) with 
guarded robot moves: during the robot motion, the workpiece features are evaluated 
and used to recognize the current workpiece state. Based on the current state 
estimation, the robot is moved by a sequence of linear movement commands that 
aim to transfer the workpiece to a desired final state. Generally speaking, a sensor 
feature-based, sensor-driven robot control is built. The core of the control are task-
independent sensori-motor primitives which here are also referred to as 
manipulation skills [24, 19]. In this work, sensori-motor primitives control the state 



of the deformable workpiece. In general, these primitives have a controller-like 
structure as illustrated in Figure 6 and can be combined to task dependent robot 
operations like such as the threading of a workpiece through a hole. 

The next section describes the details of the feature extraction for the two 
sensors vision and and force torque sensor and a further section shows details of the 
recognition process. 

   
⇓ ⇓ ⇓ 
N V/F V/F 

Figure 5: Recognition of workpiece states in an image sequence 
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Figure 6: Structure of sensori-motor primitives with initial state (A) and final state (E) 

4.2 Feature extraction 

This section explains how to extract the features for measuring and recognizing 
a transition from the sensors. At first, the visual segmentation is discussed. 
Secondly, the analysis of the force-torque sensor is regarded. 

4.2.1 Visual feature extraction 

Up to now, many approaches realizing different tasks of a visually guided 
robotic system are stated in literature [25]. However, there are only few approaches 
concerning deformable objects, in spite of many important industrial applications 
[1]. However, it is obvious that vision sensors are well-suited for observing 
characteristic shape changes of deformable objects. In that way, the information 
provided by vision sensors is complementary to that of other sensors as for example 
force/torque sensors. But how can the object be segmented from the image? And 
which image features can be used for state transition recognition of the object? 

In order to get information about the shape of a deformable workpiece, it is 
necessary to segment the workpiece from the image background. This is commonly 
known as segmentation. Here, it is assumed that the workpiece is observed from a 



stationary viewpoint where characteristic shape changes occur in the image.4 After 
the segmentation, the deformable workpiece has to be characterized and so some 
features of the visual data have to be derived. Thus, we need to handle two tasks: 
workpiece segmentation and feature extraction. 

Since there is no need to extract the obstacles from the image and a stationary 
camera is given, we are using a differential image method to get an idea where the 
main information about the deformable workpiece is. For that, the current image of 
the scene including the workpiece is subtracted from a reference image of the scene 
without workpiece. Currently, we also have some extraction algorithms for the hand 
camera which work without the differential image method. 

Assuming a nearly constant illumination, the image information is furthermore 
reduced by binarizing the current differential image which results in an image where 
the workpiece is black and the background completely white or vice versa. The 
threshold for binarization is determined by taking a value near the mean gray value 
of the differential image. Even changing illumination is allowed if the pixels not 
belonging to the workpiece of the differential image are taken as new reference 
image pixels. After the workpiece image has been segmented, the next step is to 
generate a representation of the workpiece from which features can be derived 
which describe the deformation. In the case of linear workpieces, the curve of the 
projected shape is characteristic for the deformation state. Thus, data from the 
image of the workpiece represent the workpiece curve. Unfortunately, even thin 
linear workpieces produce an image with several pixels of extension. In order to get 
a single curve, the workpiece has to be thinned with thinning operations. But since 
thinning operations are time consuming iterative operations and tend to be not 
robust against perturbations in the image, we developed a new algorithm based on a 
contour following principle. The algorithm searches characteristic image points 
along the image border of the workpiece. The binarization has not to be made over 
the whole image, and thus, we save time by performing the binarization locally 
while searching for the contour. Further details can be found in [26]. 

Now the workpiece is approximated by points that lie on one borderline of its 
image. With little effort, it is possible to collect base points of the workpiece that 
have the same pixel distance. The Manhattan norm is used as distance value. 
Characteristic base points with different distances are already given by the corner 
points of the rectangles. Figure 7 shows a workpiece with detected base points. A 
similar but more complex algorithm has been developed for the hand camera. This 
algorithm computes also a base point list similar to the one for the stationary 
camera. Thus, the representation of the workpiece using a base point list is 
independent from the used sensor although some particular features derived from 
the base point list may behave different for the two different vision sensors. 

                                                           
4  Working in the image space allows us to change the camera position without needing a 

subsequent calibration process. 



 

Figure 7: With the stationary camera detected pneumatic wire and found base points (white 
dots) 

Using the base point list as a representation of the workpiece in the image, the 
features derived from this list give hints to the contact state of the workpiece. These 
hints come up during the time of robot manipulation. Thus, dynamic features are 
regarded. Note that the initial and final workpiece state from the graph are given by 
the operator. 

With a list of base points of the two-dimensional image space, three types of 
characteristic features are considered. These features concern with (1) the start or 
endpoint of the list, (2) one point within the list, or (3) the whole list of base points. 
Experiments with our vision system show that features of type (1) and (3) give the 
most useful information about the workpiece state for a stationary camera as well as 
for a hand camera. 

The following list provides examples for these types of features, which can be 
efficiently computed: 

• The pixel length l(t) of the workpiece. Here, the length is the sum of the lines 
between the base points in pixels. 

• The angle a(t) between the line through the two endpoints and the image axis 
u. 

• The coordinates p(t)=(u(t),v(t)) of the endpoint not gripped are used for 
detecting changes of the contact state of the endpoint. Changes depend on the 
geometric relation between the workpiece and the workpiece endpoint. 

• The tangent angle g(t) in the endpoint indicates a change of the geometric 
relation between endpoint and obstacle.  

• The maximum curvature or the sum of curvatures where the curvature of a 
base point (ui,vi) is approximated by the discretization of the curvature k for 
regular curves f according to [27]: 

• k u v
f u v f u v f u v f u v

f u v f u v
i i

i i i i i i i i

i i i i

( , )
( , ) ( , ) ( , ) ( , )
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The first experiments reported in the next section show the applicability of this 
approach for robust state transition detection, when appropriate features are 
combined. 

Having discussed the visual feature extraction, it now shall be considered how 
the features for state transition detection may be extracted by means of a (non-ideal) 
force/torque sensor mounted at the robot wrist. 



4.2.2 Force/torque feature extraction 

So far, we have discussed the forces caused by the interaction between DLO and 
obstacle. However, in most practical situations, there is a significant additional load 
due to gravity. As long as we restrict the gripper trajectory to translational motions, 
the gravity only causes a constant offset for both the force and the moment. 
Therefore, it does not have to be considered if absolute thresholds are avoided in 
the detection algorithm. 

Opposite to the handling of rigid workpieces, especially two additional 
problems must be regarded: First, the force caused by contact with the rigid 
environment is generally low. This results in the need for a high sensor resolution. 
However, the resolution is correlated with the measuring range (A high resolution 
requires a small measuring range and vice versa). Therefore, the measuring range 
should be as small as possible. Because the force and moment caused by gravity is 
typically much larger than the contact force, the required measuring range (and, 
thus, the obtained resolution) is determined by gravity. 

Secondly, all contact forces highly depend on both the workpiece and specific 
situation. Therefore, it is necessary to either have rather precise a priori knowledge 
about the workpiece and the task, or to base the transition detection on the qualita-
tive coarse of force and moment while avoiding absolute thresholds. In order to 
meet the fundamental requirements given for manipulation skills, the second 
approach should be preferred. 

As the first step of the signal processing, some filtering is required for noise 
reduction. In our experiments, we succeeded in using a moving average low pass 
filter which can be implemented very efficiently for our purpose. Below, we 
generally refer to F and M as filtered force and moment signals. 

For evaluating the 6D force/moment vector, there are several possibilities. We 
succeeded in evaluating the absolute values of force and moment or in evaluating 
the six single signals independently. The directions of the vectors do not have to be 
considered here because it does not promise to be advantageous and the effort for a 
vectorial evaluation is rather high. In the following discussion of the detection algo-
rithms, we always refer to a general function f, which is sampled. This may be either 
some visual features or a single component of F or M, or the absolute values of 
these vectors. 

4.3 State transition recognition: detection of characteristic 
functions 

Now, the following two questions are investigated: how can state transitions be 
detected with a sensor system (vision and force/torque sensor) and what is 
necessary to perform the state transitions reliably and robustly with a robot system? 

By observing state transitions executed by the robot and the corresponding 
feature values processed and analyzed by our sensor systems, we find that the 
change in the values of the (one-dimensional) features follows the same pattern as 
for the manual experiments. As a consequence, we can use them as well here. This 
means especially that we have to provide at least two state transition detection 



algorithms, at least one for each curve type L and P. 
Fortunately, through several different experiments for each the vision and 

force/torque sensor, we found that almost the same algorithms can be applied on 
both sensor systems. Only some parameters of the algorithms change depending on 
the sensor. The algorithm parameters are also dependent on the current 
environment. In the following, the two algorithms, which are still in the test phase, 
are described. further details can be found in [23]. 

4.4 Sensor signal processing 

After the analytical discussion of the state transitions in the previous section, it 
shall be considered how they may be detected by means of a (non-ideal) vision 
sensor (stationary camera or robot hand-mounted camera) or a (non-ideal) 
force/torque sensor (FTS) mounted at the robot wrist. Before presenting the 
evaluation algorithms, some general aspects are discussed. 

The detection of the L(a,b,c,d) transitions can be traced back to the problem of 
detecting (more less abrupt) changes in the slope of the feature curve f provided 
from a certain sensor. For the moment, we assume a function with always positive 
slope and the slope being higher for t > t0 than for t < t0. 

The detection algorithm is based the fact that the slope )(tf ′  of function f(t) 

changes rather abruptly for t = t0. For the ideal case of two linear segments, )(tf ′  is 

a saltus function. Since this is not the case in practical applications and there is 
generally some noise remaining after low-pass filtering, we use the following 
function instead of )(tf ′ . Let ∆t be the sampling period, and be f(t) = f(i∆t) = fi the 

function value sampled in the current time step i, mMSL, i is the slope of the mean 
straight line (MSL) computed from the k+1 samples i-k, i-k+1,..., i by a standard 
algorithm. Based on mMSL, we define 
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Ratio,  

as the relative slope change of two MSLs touching at i0. 
To clarify the characteristics of ∆mRatio, Figure 8 shows the values fi of a discrete 

function vector f with slopes mleft = 1 and mright = 4 together with ∆mRatio, i. The 
mean straight lines are computed with k+1 = 21 samples. At the beginning, ∆mRatio 
is 0, i.e., both slopes in the nominator of ∆mRatio have the same value. As i is ap-
proaching i0+k, ∆mRatio increases. For i = i0+k, it reaches an extremum which is 
equal to the relative slope ratio of mleft and mright. For i > i0+k, the function 
approaches zero again with ∆mRatio = 0 for i > i0+2k. Using this function, the task of 

                                                           
5 In both cases the gripper motion is restricted to linear motions because rotation generally 

influence the measured moment, and thus, may lead to the erroneous detection of 
transitions. 



detecting a slope change in f is transformed into the task of detecting an extreme 
value of vector ∆mRatio.6 

i0+k
i

fi
∆ m Ratio, i

i0  

Figure 8: Discrete function fi consisting of two linear segments and relative difference 
∆mRatio of the mean straight line 

However, the course of ∆mRatio has typically much more extrema than there are 
state transitions to be detected. Therefore, we use the following algorithm with 
some additional criteria. The vectors mMSL and ∆mRatio are defined as given above, 
bMSL, i is the intercept of the MSL in sample i, defining the MSL together with 
mMSL, i. 

function IsTransition(i: integer): boolean; 
const σmax, MaxDevmax, εSearch 

∆mRatio, min, ∆mmin; 
begin 

fi := ReadSensorData; 
for j := 0 to k do 

Devj := fi-k+j - (mMSL, i * j + bMSL, i); 
σ := StdMeanDev(Dev); 

MaxDev := max(Dev); 
IsValidi := σ ≤ σmax 

and  MaxDev ≤ σ∗MaxDevmax; 
ii := i - εSearch; 

IsTransition:=  IsValidii 
and IsValidii-k 

and IsExtreme(∆mRatio, ii, εSearch) 
and | ∆mRatio, ii | ≥ ∆mRatio, min 

and mMSL, ii – mMSL, ii-k ≥ ∆m min; 
end; 

After sampling a new data value fi from the sensor, we compute the MSL given 
by the samples i-k, ... i. If the following two conditions are fulfilled, we suppose the 
sampled data to be valid (IsValidi: = true): 

                                                           
6  On the one hand, the sharpness of the extreme value is increased with k decreasing. On 

the other hand, the susceptibility to distortions is increased, too. 



• the standard mean deviation σ between the data values and the MSL is not 
greater than a threshold σmax, and 

• the maximum deviation MaxDev from the MSL is not greater than the 
MaxDevmax-fold of σ. 

Otherwise, the data are considered to be corrupted by noise or other distortions 
(IsValidi := false). 

After performing this check, ∆mRatio, i is computed as described above. Please 
note that the algorithm is based on a search for extreme values of ∆mRatio. 
Therefore, a state transition in sample i0 can not be detected immediately, but only 
in sample i0+k+εSearch, with 2εSearch being the width of the window used for the 
extremum search. (In the opposite to the handling of rigid materials, a delayed 
detection of state transitions is less critical for deformable objects.) Therefore, the 
transition detection is performed for sample ii = i-εSearch in step i. 

For a state transition, the value sampled in step ii must fulfill the following 
conditions: 
• For both MSLs used for computing ∆mRatio, i, the condition IsValid must be 

fulfilled. That is, the regarded area of the data array must not be severely 
disturbed. 

• The function vector ∆mRatio must suppose an extremum at position ii as 
discussed above. 

• Both the absolute value of ∆mRatio, ii (that is, the relative slope difference of the 
MSLs) and the absolute slope difference ∆mii must be greater or equal than 
given threshold values ∆mRatio, min and ∆mmin, respectively. 

Figure 9 clarifies these conditions for a N → V/F transition, using the absolute 
value of the moment vector M as measuring signal. 
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Figure 9: Absolute value of moment M for a transition N → E/E 

In the formulation given above, the algorithm considers only one case of all 
possible slope changes. According to some above assumptions, the slope of the 
considered function may be either positive, negative, or zero for both t < t0 and 
t > t0. Therefore, the algorithm must be extended. The algorithm given above can be 
adopted to the detection of all kinds of transitions by considering the signs of 
∆mRatio and ∆m. 



For detecting oscillations P(a,b,c), we have to remind the fact that none of its 
characteristics, i.e., frequency, amplitude and damping, are generally known in 
advance. Thus, an algorithm is required for the robust on-line detection of arbitrary 
(sinusoidal) oscillations. 

Our detection algorithm is based on the following assumptions: 

1. though the oscillation period T is unknown, we can give a lower boundary Tmin 
with T ≥ Tmin (and possibly also an upper boundary Tmax). 

2. though both the (initial) amplitude A0 and damping are unknown, we can give a 
lower amplitude boundary Amin and a number nmin with A ≥ Amin for at least nmin 
consecutive oscillation extrema. 

For the detection, we perform an online search for extreme values in the force or 
moment function. An oscillation is detected when there are nmin consecutive 
extrema, each having a temporal distance of at least Tmin and an elongational dis-
tance of at least Amin to the preceding one, as shown in Figure 10 for nmin=3. Though 
both the oscillation amplitude and the period depend on the workpiece and the 
situation, the algorithm proved to work reliably for a large variety of workpieces 
and situations without changing Amin and Tmin. 
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Figure 10: Amount of moment vector M for a V/F→V/E→N sequence. For clarity reasons, 
the static load due to gravity is not shown 

5. Experimental Results 

In this section, results of the sensor-based robot manipulation of deformable 
linear objects using the state transition recognition approach are presented. Both 
sensor systems are used: machine vision and force/torque measurement. 

5.1 Vision-based workpiece manipulation 

For the robot manipulation experiments, a Kuka KR15 robot is used. The robot 
controller executes motion commands sent from a Linux-PC with 350 MHz Intel 



Pentium II Processor. As stationary camera, a standard video CCD-Camera (Hitachi 
KP M3) is used, and as hand camera a Teli CS 3710 C is used. The data are sent by 
a standard frame grabber (Eltec PC-EYE I) to the vision processing computer which 
is a Linux-PC with either a 133 MHz or a 350 MHz Intel Pentium II Processor. As 
force torque sensor an experimental sensor of the “Deutsche Luft- und. 
Raumfahrtgesellschaft” (DLR) is used. The gripped workpiece is a pneumatic 
polyurethane wire with the outer diameter of 6 mm and a length of 300 mm. The 
obstacle is a car door frame which is mounted in a horizontal lying position. Details 
of the software system and its structure can be found in [28]. 

   

Figure 11: A sequence of images where a pneumatic wire is segmented and tracked with the 
hand camera 

The segmentation and feature analysis algorithms were tested in various 
experiments and work well under both daylight and artificial lighting conditions. 
Measurements yield a mean execution time of 1.1ms on an Intel Pentium machine 
with 133 MHz processor when a workpiece is detected. For common situations and 
their well-known problems, usually a small set of parameters has to be adapted what 
can be done from an expert in a few minutes. Figure 11 shows a sequence of images 
where a pneumatic wire is segmented and tracked with the hand camera by using a 
gray value difference detection with the Sobel operator. 

Since the force/torque sensor produces very similar feature data compared to 
both vision sensors, subsequently only experiments involved in the detection of a 
state transition with our force/torque sensor will be reported. Furthermore, the 
algorithms described here have been investigated for both isolated state transitions 
and an assembly task. 

5.2 Force/torque-based workpiece manipulation 

As robot manipulator, a KUKA KR 15 industrial robot with PC-based KR C1 
robot controller has been used. As DLOs, we used a Polyurethane pneumatic wire 
with 6 mm outer and 4 mm inner diameter, a spring steal wire of 1 mm diameter, 
and a commercial spring steal ruler of length 0.5 m and (18 X 0.5) mm2 cross 
section. Due to the bending rigidity of the objects, the ruler shows the highest 
contact forces, while they are smallest for the pneumatic hose. Accordingly, the 
difficulty of detecting state transitions increases in this order, too. 



As an example, Figure 9 shows the absolute value of moment M for a sequence 
N → E/F →E/E with motion direction MD1 according to Figure 3 for the steal 
ruler and the hose. Though the contact force is considerably higher for the steal 
ruler, the transitions were detected correctly for both materials with adopting only 
the parameter ∆mmin. Compared to the steal ruler, the detection of the N → E/F 
transition is critical for the hose because the force caused by the E/F-contact is very 
small. In such cases, the reliability can be considerably improved if the time of the 
state transition is approximately known. If this condition is fulfilled, erroneous 
detections of transitions can be avoided by starting the detection algorithm only 
some time before the detection. Especially when starting and stopping gripper 
motions, the detection of state transitions should not be active. 
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Figure 12: Transition sequence N → E/F →E/E for steal ruler (left) and pneumatic hose 
(right), using the following parameters: Sampling period ∆t = 10 ms, k = 80 samples, 

∆mmin = 1*10-5Nm (ruler) respectively ∆mmin = 2*10-5Nm (hose), ∆mRatio, min = 0.5, 
σmax = 4*10-5 Nm, εSearch = 15 samples 

Compared to the moment shown here, the force signal is often found to be rather 
noisy and could hardly be evaluated. This is due to the fact that the forces to be 
measured are rather small. However, because the distance between the gripper and 
the contact point is rather long, even these small forces cause significant moments. 
Especially all disturbances caused by the (rather high) inertia in the gripper impact 
on the force much more than on the moment. 

In addition to the investigation of isolated transitions, we performed the task of 
inserting a pneumatic hose into a guiding groove as described in [21] and used the 
algorithm presented here for detecting the contact state transitions. The algorithm 
proved to be reliable in this task. However, we find that the detection is less critical 
for the transitions with the contact point being rather close to the gripper than for 
transitions with the contact point (point of force application) being far from the 
gripper. This is caused by the fact that the bending rigidity of the workpiece 
increases with decreasing length between the gripper and the contact point. 
Especially for low contact forces, some problems are caused by friction which may 
be of larger influence than the change of contact force. Thus, the friction coefficient 
between the workpiece and the obstacle should be as small as possible. 



6. Conclusions and Future Work 

In the assembly of rigid workpieces, the consideration of contact states and state 
transitions has been proven to be a suited method for creating robust manipulation 
routines for multiple purposes. We expect that this is valid for deformable work-
pieces as well. In this paper, we investigate contact states and state transitions of 
deformable linear objects in a rigid environment. The application to a typical 
industrial problem shows that this principle can be easily used for describing 
assembly tasks. 

In this chapter, a new and systematic approach to the machine vision-based and 
force/torque-based robot manipulation of deformable linear workpieces is 
proposed. This powerful approach reduces the computational needs by using a 
simple state-oriented model of the workpiece. 

The states describe the relation between the workpiece and an obstacle, and they 
are derived from the sensor data and the features delivered by two different sensor 
systems (vision and FTS). Using the vision sensors, the workpiece image is 
segmented from a standard video frame using a new and fast segmentation 
algorithm. With the FTS, forces and moments can be measured directly. Finally, for 
both sensor systems, the workpiece features are computed in order to recognize 
state transitions during the manipulation of the workpiece by a robot. 

Experimental results prove the applicability of our approach. Characteristic 
feature changes are derived from manual manipulation and observation 
experiments. They are used for implementation and optimization of the sensor 
processing and the workpiece state classification. Two state transitions that are 
recognized reliably with our system are presented. 

Because there are only two main types of characteristic functions (oscillations 
and slope changes), two detection algorithms were developed for detecting the 
transitions. Both of them where found to be reliable in an experimental 
investigation. However, the robustness of the detection depends on several physical 
and technical parameters as for example the workpiece rigidity, friction coefficients, 
and the sensor resolution. 

For future work, we need to further investigate on which parameters can be 
computed automatically and how can their number be minimized. We have to 
answer the question which sensor system is useful for which transition and under 
which conditions. This will also include a comparison of the results of our research 
for every sensor system. As further step, we will concatenate the implemented 
vision-based robot primitives for deformable linear objects in order to execute 
complex manipulation tasks. 

The detection algorithms presented here contain some “hard” threshold values 
that need to be set according to the specific task. Additionally, the detection may 
fail in the presence of negligible uncertainties. Therefore, we propose that a 
fuzzification of the algorithms will improve both the generality and reliability of the 
state transition recognition. For improving the reliability when contact forces are 
small, we will investigate the usage of force/torque sensors with very high reso-



lution. The next major step is to construct encapsulated routines for performing 
manipulation tasks, including both gripper motions and transition detection. 
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