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Abstract

In this paper we construct a multiscale solution method for the gravi-

metry problem, which is concerned with the determination of the

earth's density distribution from gravitational measurements. For

this purpose isotropic scale continuous wavelets for harmonic func-

tions on a ball and on a bounded outer space of a ball, respectively,

are constructed. The scales are discretized and the results of numer-

ical calculations based on regularization wavelets are presented. The

obtained solutions yield topographical structures of the earth's surface

at di�erent levels of localization ranging from continental boundaries

to local structures such as Ayer's Rock and the Amazonas area.
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2 1 INTRODUCTION

1 Introduction

The increasing interest in advanced methods in signal and image processing

motivated the development of Euclidean wavelets (see for example Mallat

[14] (1989)). For more details on Euclidean wavelets and their application

in signal and image processing see Mallat's presentation at the International

Congress of Mathematicians 1998 ([15]) and the references herein. Later

on the advantages of wavelets became of interest for geomathematical prob-

lems such as the representation of the earth's gravitational �eld. Since the

common operators in geodesy and geophysics are isotropic (cf. for example

Svensson [20] (1983)), the introduced scale continuous spherical wavelets and

their discretizations (see Freeden, Windheuser [11] (1996)) were chosen to be

product kernels

	�(�; �) =

1X
n=0

2n+1X
j=1

(	�)
^
(n)Yn;j(�)Yn;j(�); (1)

where �; � are unit vectors and fYn;jgn2N;j2f1;:::;2n+1g is an orthonormal system
of homogeneous harmonic polynomials. This isotropy allows the application

of the addition theorem for spherical harmonics (see for example [8], p. 37)

which enables the representation of these kernels as one-dimensional func-

tions

	�(�; �) =

1X
n=0

(	�)
^
(n)

2n+ 1

4�
Pn(� � �); (2)

where Pn is the Legendre polynomial of degree n. Moreover, pyramid schemes

are available as fast numerical algorithms (see Schreiner [19] (1996) for the

band{limited case, Freeden [7] (1999) for the non{band{limited case and Beth

[4] (2000) for the generalization to vector �elds including error control). For

more details on spherical wavelets and their application to geomathematical

problems we refer to Freeden et al. ([8] (1998)), Freeden ([7] (1999)) and the

references in the monographs.

A group theoretical approach for the construction of scale continuous spher-

ical wavelets is used by Vandergheynst ([21] (1998), see also Antoine, Van-

dergheynst [1] (1999)). These wavelets are in general not isotropic such that

they are not suitable for most of the geoscienti�c problems but might be

appropriate in image processing. However, scale discrete versions of these

wavelets have not been constructed and they have not been applied to real

problems yet, such that their numerical properties and their applicability still

have to be investigated.

Since a regular surface is a better approximation to the earth's surface than
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a sphere, Freeden, Schneider ([10] (1998)) developed scale discrete wavelets

on these generalized domains.

However, mathematical models in the geosciences do not always use func-

tions, whose domain is a surface. An example of such an interesting geo-

mathematical problem is the gravimetry problem, which is concerned with

the inversion of Newton's gravitational potential

� 7!

Z
earth

�(x)

jx� �j
dx: (3)

The reconstruction of the density distribution of the earth has numerous

applications, for example in geoexploration and seismology. A characteris-

tic drawback of this inverse problem is the non{uniqueness of the solution.

More precisely, only the harmonic part of an L2{density function can be

reconstructed from the gravitational potential. The orthogonal space of so{

called anharmonic functions is the null space of the corresponding Fredholm

integral operator of �rst kind. Therefore, solution strategies for the gravime-

try problem should be aware of the fact that only the restriction to harmonic

functions yields a uniquely solvable problem. The anharmonic part of the

earth's density distribution must be determined from non{gravitational a

priori information (see e.g. Weck [24] (1972), Ballani, Stromeyer [3] (1990),

Ballani et al. [2] (1993) and Michel [16] (1999)). Therefore, we restrict our

attention to the construction of a multiresolution for harmonic functions in

this work.

In Michel ([16]) scale discrete wavelets and scaling functions for harmonic

functions on the inner space of a sphere and a bounded outer space (for

example the area from the earth's surface to a satellite orbit), respectively,

are constructed for the development of a multiscale solution method for the

gravimetry problem.

The standard technique in physical geodesy is an expansion of the investi-

gated functions in a basis of homogeneous harmonic polynomials. This has

obvious disadvantages. The most essential drawback is the global support

of the basis, such that a highly localized resolution is only obtainable by in-

creasing the maximum degree of the truncated singular value decomposition

to extreme sizes, which is from the numerical point of view very expensive

and severely instable. Uncertainty principles in this context (see for example

Freeden, Michel [9] (1999)) show that the product of the variances in space

and momentum must be larger than a given positive constant. Therefore, a

purely momentum localizing technique like the calculation of Fourier coe�-

cients with respect to homogeneous polynomials has no space localization,

such that, as an improvement, kernels are needed which have a positive vari-
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ance in space as well as in momentum. Wavelets satisfy this desired property.

Moreover, the choice between band{limited and non{band{limited wavelets

allows the variation of the intensities of the localizations.

Whereas the usual approach to scale discrete wavelets, i.e. the kernels 	J are

only de�ned for values J 2 N or J 2 Z, begins with the introduction of scale

continuous wavelets, i.e. kernels 	� with � 2 R
+ (see for example Freeden,

Windheuser [11] and Freeden et al. [8], p. 227), which are then discretized,

the approach in Michel ([16]), such as the approaches in Freeden, Schneider

([10]) and Freeden ([7]), directly constructs scale discrete wavelets. We will

see in this work that it is also possible to develop a continuous wavelet the-

ory for the gravimetry problem, from which scale discrete wavelets can be

derived, which are very similar to those introduced in Michel ([16]). Since

the Fredholm integral operator in (3) is isotropic, the constructed wavelets

are chosen to be isotropic, too. Here, we restrict our attention to the bilinear

case, since this approach allows to represent a function via a wavelet coe�-

cient scheme. Finally, we discuss the application of the introduced wavelets

and scaling functions to the gravimetry problem and show some results of

numerical calculations for the density on the earth's surface from the NASA,

GSFC, and NIMA Earth Geopotential Model (EGM96).

2 Harmonic Functions

In this section we will present the de�nitions and important well-known prop-

erties of harmonic functions. By N we denote the set of all non-negative

integers. Z is the symbol for the set of integers and R is the symbol for the

set of real numbers, such that R+

0
represents all non-negative real numbers

and R+ represents all positive real numbers. The Euclidean scalar product

on Rn is denoted by x � y :=
nP
i=1

xiyi, x; y 2 R
n .

Every integral used in this work is a Lebesgue integral. As usual L2(D) de-

notes the set of all classes of almost everywhere identical squareintegrable

functions on the measurable set D � R
n .

De�nition 2.1 ([5], p. 496) Let D � R
n be connected. A function F 2

C(2)(D) is called harmonic i� �F (x) = 0 for all x 2 intD. The set of all
harmonic functions in C(2)(D) is denoted by Harm(D).

As domains of the considered functions we use the unit sphere


 :=
�
� 2 R3

�� j�j = 1
	

(4)
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and the closures of the bounded outer space

B



ext
:=
�
x 2 R3

�� � < jxj < 

	

(5)

(
 > � su�ciently large) and the inner space

Bint :=
�
x 2 R3

�� jxj < �
	

(6)

of the sphere B with radius � > 0. B is supposed to be an approximation

to the earth's surface. One can use for example the maximum radius of a

satellite orbit as 
.

The introduction of the restriction jxj � 
 in B



ext
allows us to use outer har-

monics (see De�nition 2.2) of degree �1 in L2

�
B


ext

�
. In physical geodesy it

is usual to avoid coe�cients of this degree by choosing an appropriate earth's

�xed coordinate system (cf. [12]).

As already mentioned fYn;jgn2N;j2f1;:::;2n+1g denotes a complete orthonormal
system in Harm(
), such that Yn;j is the restriction of a homogeneous har-

monic polynomial of degree n to 
.

De�nition 2.2 Let a system of spherical harmonics fYn;jgn2N; j=1;:::;2n+1 be
given as introduced above. Then we de�ne the outer harmonics by

Hext

�n�1;j
(�;x) :=

r
2n� 1

�3 � �2n+2
�2n+1

�
�

jxj

�n+1

Yn;j

�
x

jxj

�
; x 2 B


ext
; (7)

where n 2 N and j 2 f1; :::; 2n+ 1g and

cext(n; �) :=

r
2n� 1

�3 � �2n+2
�2n+1
: (8)

De�nition 2.3 ([10];[16], p. 15) Let n 2 N. Then we de�ne

Harmn

�
B


ext

�
:= span

�
Hext

�n�1;j
(�; �)

�� j 2 f1; :::; 2n+ 1g
	
;

Harm0:::n

�
B


ext

�
:= span

�
Hext

�m�1;k
(�; �)

��m 2 f0; :::; ng;

k 2 f1; :::; 2m+ 1g
	
;

Harm0:::1

�
B


ext

�
:= span

�
Hext

�m�1;k
(�; �)

��m 2 N ; k 2 f1; :::; 2m+ 1g
	
:

Moreover, we de�ne Harm0:::m

�
B



ext

�
:= f0g, if m < 0.

Using the well known theorem of orthogonal decompositions in Hilbert spaces

(cf. [25], p. 82) we de�ne the following operators.
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De�nition 2.4 Let n 2 N. Then Pn : L2

�
B



ext

�
! Harm0:::n

�
B



ext

�
is the

projection operator on Harm0:::n

�
B



ext

�
.

Theorem 2.5

Harm0:::1

�
B



ext

�L2(B
ext)
= Harm

�
B



ext

�
: (9)

Concerning the proof we refer to [6]. This property has an immediate conse-

quence.

Corollary 2.6 The outer harmonics are a complete orthonormal system in

Harm
�
B


ext

�
with respect to L2

�
B


ext

�
. Hence, for all F 2 Harm

�
B


ext

�
there exists a sequence fF^(�n� 1; j)gn2N;j=1;:::;2n+1 such that

F =

1X
n=0

2n+1X
j=1

F^(�n� 1; j)Hext

�n�1;j
(�;�) (10)

in the sense of L2

�
B


ext

�
, i.e.

lim
N!1






F �
NX
n=0

2n+1X
j=1

F^(�n� 1; j)Hext

�n�1;j
(�;�)







L2(B
ext)

= 0; (11)

where
F^(�n� 1; j) =

�
F;Hext

�n�1;j
(�;�)

�
L2(B
ext)

(12)

for all n 2 N and all j 2 f1; :::; 2n+ 1g.

3 Product Kernels

For discussing wavelets and �lters we have to introduce product kernels and

convolutions (see also [16], p. 60�).

De�nition 3.1 A function K 2 L2

�
B


ext
� B


ext

�
with

K(x; y) =

1X
n=0

K^(�n� 1)

2n+1X
j=1

Hext

�n�1;j
(�;x)Hext

�n�1;j
(�;y) (13)

is called (harmonic outer) product kernel. The sequence fK^(�n�1)gn2N is
called symbol of the product kernel. (cf. [10]; [16], p. 60)

The convergence of the series is understood in the L2

�
B


ext

�
-topology and in

pointwise sense for all x; y 2 B


ext
.
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Note that the restrictions of these product kernels to spheres are isotropic.

Therefore, they can be represented by a one-dimensional function using the

addition theorem for spherical harmonics (cf. for example [8], p. 37 and [16],

p. 61).

Now we can de�ne convolutions.

De�nition 3.2 Let K;L 2 L2

�
B



ext
� B




ext

�
be two product kernels. Fur-

thermore, let F 2 Harm
�
B



ext

�
be a given function. We de�ne the convolu-

tions by

(K � F )(x) :=

Z
B



ext

K(x; y)F (y) dy 8 x 2 B


ext
; (14)

(K � L)(x; y) :=

Z
B



ext

K(x; z)L(z; y) dz 8 x; y 2 B


ext
: (15)

Theorem 3.3 Let K;L 2 L2

�
B



ext
� B




ext

�
be two product kernels with the

symbols fK^(�n� 1)gn2N and fL^(�n� 1)gn2N, respectively. Furthermore,

let F 2 Harm
�
B


ext

�
be a given function. Then K � L is a product kernel in

L2

�
B


ext
�B


ext

�
with

(K � L)^(�n� 1) = K^(�n� 1)L^(�n� 1) 8n 2 N ; (16)

and K � F is a function in Harm
�
B


ext

�
with

(K � F )^(�n� 1; j) = K^(�n� 1)F^(�n� 1; j)

8n 2 N 8 j 2 f1; :::; 2n+ 1g: (17)

De�nition 3.4 Let K 2 L2

�
B


ext
�B


ext

�
be a product kernel. The product

kernel K(m), m 2 N n f0g, where

K(m+1) := K �K(m); K(1) := K; (18)

is called mth iterated kernel of K.

Consequently, we get a corollary of Theorem 3.3.

Corollary 3.5 Let K 2 L2

�
B


ext
� B


ext

�
be a product kernel with the cor-

responding symbol fK^(�n� 1)gn2N. Then�
K(m)

�^
(�n� 1) = (K^(�n� 1))

m
(19)

for all m 2 N n f0g and all n 2 N.
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4 Continuous Wavelets of Order m

First of all we want to de�ne the wavelets as a family of product kernels.

De�nition 4.1 Let w : R+ ! R
+ be a positive integrable function and m 2

N [ f�1g be a given number. We call w a weight function. Furthermore, let
f	�g�2R+ be a family of harmonic product kernels. They are called (outer)
(scale continuous) wavelets of order m, if their symbols satisfy the following
conditions:

(i) For every n 2 N with n > m

1Z
0

�
(	�)

^
(�n� 1)

�
2

w(�) d� = 1: (20)

(ii) For every � 2 R+ and every n 2 f� 2 N j 0 � � � mg

(	�)
^
(�n� 1) = 0: (21)

(iii) For all R 2 R+

1X
n=m+1

(2n+ 1)2
1Z
R

�
(	�)

^
(�n� 1)

�2
w(�) d� < +1: (22)

In this case the kernel 	 := 	1 is called mother wavelet.

Note that
1R
0

symbolizes the Lebesgue integral on R+ .

The introduction of the orderm allows the combination of the multiresolution

analysis with an expansion in outer harmonics up to degree m. Note that

in the case m = �1 some expressions and conditions in this work can be

omitted. The symbol
�1P
n=0

represents, for example, the empty sum and is

de�ned to be equal to zero.

Lemma 4.2 Let w : R+ ! R
+ be a weight function and let f	�g�2R+ be a

family of outer scale continuous wavelets of order m 2 N [ f�1g. Then

1X
n=m+1

(2n+ 1)2
1Z
R

�
(	�)

^
(�n� 1)

�2
w(�) d� = (23)

=

1Z
R

1X
n=m+1

(2n+ 1)2
�
(	�)

^
(�n� 1)

�
2

w(�) d� (24)

for all R 2 R+ .
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Proof: The Beppo Levi Theorem (see [23], p. 331f) allows us to interchange

summation and integration here, q.e.d.

For the wavelets we can now de�ne a dilation and a translation in an abstract

sense.

De�nition 4.3 Let f	�g�2R+ consist of outer scale continuous wavelets of
order m 2 N [ f�1g. The dilation operator D� and the shifting operator Ry

are de�ned by

D�	 := 	�; (25)

(Ry	�)(x) := 	�(y; x); (26)

where � 2 R+ and y 2 B


ext
. Furthermore, we use the denotation

	�;y := Ry	�: (27)

Now we want to de�ne a generalization of L2

�
R
+ � B


ext

�
.

De�nition 4.4 Let w : R+ ! R
+ be a weight function. We de�ne the space

L2

w

�
R
+ � B


ext

�
:=

8><
>:F : R+ �B


ext
! R

�������
Z

B



ext

1Z
0

F (�; y)2w(�)d�dy <1

9>=
>;
(28)

and the subspace

N2

w
:=

8><
>:F 2 L2

w

�
R
+ � B


ext

� �������
Z

B



ext

1Z
0

F (�; y)2w(�) d� dy = 0

9>=
>; (29)

and introduce
L2

w

�
R
+ � B




ext

�
:= L

2
w(R+�B




ext)=N2
w
: (30)

For the space L2

w

�
R
+ � B


ext

�
we de�ne

(F;G)
L2
w(R+�B




ext)
:=

Z
B



ext

1Z
0

F (�; y)G(�; y)w(�) d� dy; (31)

where F;G 2 L2

w

�
R
+ � B


ext

�
.
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The proof of the following lemma is easy.

Lemma 4.5 Let w : R+ ! R
+ be a weight function.

Then the mapping (:; :)
L2
w(R+�B




ext)
is a scalar product on L2

w

�
R
+ � B




ext

�
.�

L2

w

�
R
+ �B


ext

�
; (:; :)

L2
w(R+�B




ext)

�
is a Hilbert space.

Lemma 4.6 Let w : R+ ! R
+ be a weight function and let the product

kernels in f	�g�2R+ be wavelets of order m 2 N [ f�1g. Furthermore, let

F 2 Harm
�
B



ext

�
be a given arbitrary function. Then the identity

k	� � FkL2
w(R+�B




ext)
� jjF jj

L2(B
ext)
(32)

holds and consequently

	� � F 2 L2

w

�
R
+ � B


ext

�
: (33)

Proof: From Theorem 3.3 we know that

	� � F =

1X
n=0

2n+1X
j=1

(	�)
^
(�n� 1)F^(�n� 1; j)Hext

�n�1;j
(�;�) (34)

in the sense of L2

�
B


ext

�
. If we compute the square of the L2

w

�
R
+ �B


ext

�
-

norm of this convolution we get

1Z
0

Z
B



ext

((	� � F ) (x))
2
dxw(�) d� =

1Z
0

k	� � Fk
2

L2(B
ext)
w(�) d�

=

1Z
0

1X
n=0

2n+1X
j=1

�
(	�)

^
(�n� 1)

�2
(F^(�n� 1; j))

2
w(�) d�: (35)

The Beppo Levi Theorem allows us to interchange the integration and the

summation over n.

k	� � Fk
2

L2
w(R+�B




ext)

=

1X
n=0

2n+1X
j=1

1Z
0

�
(	�)

^
(�n� 1)

�
2

w(�) d� (F^(�n� 1; j))
2

=

1X
n=m+1

2n+1X
j=1

F^(�n� 1; j)2

� jjF jj2
L2(B
ext)

; q.e.d. (36)
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More precisely, we obtained that

k	� � FkL2
w(R+�B




ext)
=






P
Harmm+1:::1(B
ext)

L
2(B
ext)

F







L2(B
ext)

; (37)

where the norm on the right hand side is taken over a function which is the

projection of F onto the closure of the space

Harmm+1:::1

�
B


ext

�
:= span

�
Hext

�n�1;j
(�;�)

��n 2 N ;n � m + 1; j 2 f1; :::; 2n+ 1g
	
: (38)

The following lemma gives us an interesting connection between the scalar

products in L2

�
B



ext

�
and in L2

w

�
R
+ �B




ext

�
.

Lemma 4.7 Let w : R+ ! R
+ be a weight function and let the product

kernels in f	�g�2R+ be wavelets of order m 2 N [ f�1g. Furthermore, let

F1; F2 2 Harm
�
B



ext

�
be given functions. Then

(F1; F2)L2(B
ext)
= (PmF1;PmF2)L2(B
ext)

+(	� � F1;	� � F2)L2
w(R+�B




ext)
; (39)

where P�1G := 0 for all G 2 Harm
�
B


ext

�
.

Proof: We get

(F1; F2)L2(B
ext)
� (PmF1;PmF2)L2(B
ext)

=

1X
n=m+1

2n+1X
j=1

(F1)
^(�n� 1; j)(F2)

^(�n� 1; j)

=

1X
n=m+1

2n+1X
j=1

(F1)
^(�n� 1; j)(F2)

^(�n� 1; j) �

�

Z
1

0

�
(	�)

^
(�n� 1)

�2
w(�) d�

=

1X
n=m+1

2n+1X
j=1

(F1)
^(�n� 1; j)(F2)

^(�n� 1; j) �

� lim
R!0+

1Z
R

�
(	�)

^
(�n� 1)

�2
w(�) d�: (40)
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As ������(F1)
^(�n� 1; j)(F2)

^(�n� 1; j)

1Z
R

�
(	�)

^
(�n� 1)

�
2

w(�) d�

������
� j(F1)

^(�n� 1; j)(F2)
^(�n� 1; j)j

1Z
0

�
(	�)

^
(�n� 1)

�
2

w(�) d�

= j(F1)
^(�n� 1; j)(F2)

^(�n� 1; j)j (41)

for all n 2 N with n > m and all R 2 R+ and the series

1X
n=m+1

2n+1X
j=1

j(F1)
^(�n� 1; j)(F2)

^(�n� 1; j)j (42)

converges absolutely, the Weierstra� criterion for uniform convergence (see

[22], p. 142) is satis�ed and we may interchange lim
R!0+

and
1P

n=m+1

(see [22],

p. 141) in (40). The result is

(F1; F2)L2(B
ext)
� (PmF1;PmF2)L2(B
ext)

= lim
R!0+

0
@ 1X

n=m+1

2n+1X
j=1

(F1)
^(�n� 1; j)(F2)

^(�n� 1; j) �

�

1Z
R

�
(	�)

^
(�n� 1)

�
2

w(�) d�

1
A : (43)

The Beppo Levi Theorem now allows us to interchange summation and in-

tegration in (43). We get

(F1; F2)L2(B
ext)
� (PmF1;PmF2)L2(B
ext)

= lim
R!0+

1Z
R

1X
n=m+1

2n+1X
j=1

(F1)
^(�n� 1; j)(F2)

^(�n� 1; j) �

�
�
(	�)

^
(�n� 1)

�
2

w(�) d�

=

Z
1

0

(	� � F1;	� � F2)L2(B
ext)
w(�) d�

= (	� � F1;	� � F2)L2
w(R+�B




ext)
; q.e.d. (44)

Now we can introduce the continuous wavelet transform.
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De�nition 4.8 Let w : R+ ! R
+ be a weight function and let f	�g�2R+

be a family of wavelets of order m 2 N [ f�1g. Then the bilinear wavelet
transform

(WT ) : Harm
�
B



ext

�
! L2

w

�
R
+ �B




ext

�
(45)

is de�ned by

(WT )(G)(�; z) :=

Z
B



ext

	�;z(x)G(x) dx: (46)

Note that we use the notationWT for the continuous wavelet transform and

WT for the discrete wavelet transform in [16]. Lemma 4.6 shows that the

images of WT are really in L2

w

�
R
+ � B


ext

�
.

For this wavelet transform we can give a reconstruction formula.

Theorem 4.9 (Reconstruction Formula)

Let w : R+ ! R
+ be a weight function and let f	�g�2R+ be a family of

wavelets of order m 2 N [ f�1g. Furthermore, let F 2 Harm
�
B


ext

�
with

F^(�n� 1; j) = 0 (47)

for all n 2 f� 2 N j 0 � � � mg and all j 2 f1; :::; 2n+ 1g be given. Then

F =

Z
B



ext

1Z
0

(WT )(F )(�; y)	�;yw(�) d� dy (48)

in the sense of L2

�
B



ext

�
.

Proof: Let R 2 R+ and x 2 B


ext
be arbitrary. We have

Z
B



ext

1Z
R

(WT )(F )(�; y)	�;y(x)w(�) d� dy

=

Z
B



ext

1Z
R

Z
B



ext

F (z)	�(z; y) dz	�(y; x)w(�) d� dy

=

Z
B



ext

F (z)

0
B@

1Z
R

Z
B



ext

	�(z; y)	�(y; x) dy w(�) d�

1
CA dz: (49)
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Furthermore, we obtain

1Z
R

Z
B



ext

	�(z; y)	�(y; x) dy w(�) d� (50)

=

1Z
R

	(2)

�
(z; x)w(�) d�

=

1Z
R

1X
n=0

2n+1X
j=1

�
	^

�
(�n� 1)

�
2

Hext

�n�1;j
(�;z)Hext

�n�1;j
(�;x)w(�) d�

=

1Z
R

1X
n=0

�
	^

�
(�n� 1)

�
2

�
�2

jzjjxj

�n+1

(cext(n; �))
2 �

2n+ 1

4�
Pn

�
z

jzj
�
x

jxj

�
w(�) d�

=

1X
n=0

1Z
R

�
	^

�
(�n� 1)

�
2

�
�2

jzjjxj

�n+1

(cext(n; �))
2 �

2n+ 1

4�
Pn

�
z

jzj
�
x

jxj

�
w(�) d�

for all z 2 B



ext
, since

1X
n=0

������
1Z
R

�
	^

�
(�n� 1)

�
2

�
�2

jzjjxj

�n+1

(cext(n; �))
2 2n+ 1

4�
Pn

�
z

jzj
�
x

jxj

�
w(�) d�

������
�

1X
n=0

1Z
R

�
	^

�
(�n� 1)

�
2

w(�) d� (cext(n; �))
2 2n+ 1

4�
<1; (51)

as jPn(t)j � 1 for all t 2 [�1; 1] and (cext(n; �))
2
= O(n).

Now we have

Z
B



ext

1Z
R

(WT )(F )(�; y)	�;y(x)w(�) d� dy (52)



15

=

Z
B



ext

F (z)

1X
n=0

1Z
R

�
	^

�
(�n� 1)

�
2

w(�) d�

�
�2

jzjjxj

�n+1

(cext(n; �))
2 �

�
2n+ 1

4�
Pn

�
z

jzj
�
x

jxj

�
dz:

Let HR 2 L
2

�
B



ext
�B




ext

�
be given by

H^

R
(�n� 1) :=

0
@ 1Z

R

�
	^

�
(�n� 1)

�
2

w(�) d�

1
A

1
2

; n 2 N : (53)

Note that

1X
n=0

(2n+1) (H^

R
(�n� 1))

2
=

1X
n=m+1

(2n+1)

1Z
R

�
	^

�
(�n� 1)

�
2

w(�) d� < +1:

(54)

Using the product kernel HR we �ndZ
B



ext

1Z
R

(WT )(F )(�; y)	�;yw(�) d� dy (55)

= F �H
(2)

R

=

1X
n=m+1

2n+1X
j=1

F^(�n� 1; j)

1Z
R

�
	^

�
(�n� 1)

�
2

w(�) d�Hext

�n�1;j
(�;�)

in the sense of L2

�
B



ext

�
. Thus,

lim
R!0+




F � F �H
(2)

R




2
L2(B
ext)

(56)

= lim
R!0+

1X
n=m+1

2n+1X
j=1

(F^(�n� 1; j))
2

0
@1�

1Z
R

�
	^

�
(�n� 1)

�
2

w(�) d�

1
A

2

:

Since

(F^(�n� 1; j))
2

0
@1�

1Z
R

�
	^

�
(�n� 1)

�
2

w(�) d�

1
A

2

� (F^(�n� 1; j))
2

(57)
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for every abitrary R 2 R
+ and all n 2 N n f� 2 N j 0 � � � mg, j 2

f1; :::; 2n+ 1g and

1X
n=m+1

2n+1X
j=1

(F^(�n� 1; j))
2
� jjF jj2

L2(B
ext)
< +1; (58)

we get

lim
R!0+




F � F �H
(2)

R




2
L2(B
ext)

=

1X
n=m+1

2n+1X
j=1

(F^(�n� 1; j))
2
lim
R!0+

0
@1�

1Z
R

�
	^

�
(�n� 1)

�
2

w(�) d�

1
A

2

= 0: (59)

Hence,

F =

Z
B



ext

1Z
0

(WT )(F )(�; y)	�;yw(�) d� dy (60)

in the sense of L2

�
B


ext

�
, q.e.d.

5 Scaling Functions

In the scale discrete theory of [16] we �rst de�ned scaling functions and then

used them in order to de�ne wavelets. Here we do it the other way round.

De�nition 5.1 Let w : R+ ! R
+ be a weight function and let the kernels

in f	�g�2R+ be wavelets of order m 2 N [ f�1g. The corresponding (scale
continuous) scaling functions f�RgR2R+ are de�ned by

(�R)
^
(�n� 1) :=

8><
>:

1 if n � m�
1R
R

�
(	�)

^
(�n� 1)

�
2

w(�) d�

�1
2

if n > m
; n 2 N :

(61)

Lemma 5.2 The scaling functions de�ned in De�nition 5.1 are product ker-

nels in L2

�
B


ext
� B


ext

�
.
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Proof: We obtain

k�Rk
2

L2(B
ext�B



ext)
(62)

=

1X
n=0

(2n+ 1)
�
(�R)

^
(�n� 1)

�2

=

mX
n=0

(2n+ 1) +

1X
n=m+1

(2n+ 1)

1Z
R

�
(	�)

^
(�n� 1)

�2
w(�) d�:

According to (22) this is �nite, q.e.d.

The scale continuous scaling functions also yield a kind of approximate iden-

tity.

Theorem 5.3 Let the kernels in f	�g�2R+ be wavelets of orderm 2 N[f�1g
and let f�RgR2R+ be the corresponding family of scaling functions. Then for

all F 2 Harm
�
B


ext

�
the identity

F = lim
R!0+

(�R)
(2) � F (63)

holds in the sense of L2

�
B


ext

�
.

Moreover, if the kernels
n
�
(2)

R

o
R2R+

are uniformly bounded, i.e. there exists

T 2 R
+ , such that 


�(2)

R




2
L2(B
ext�B




ext)
� T (64)

for all R 2 R
+ , and K � B




ext
is a compact subset, then identity (63) also

holds in the sense of C(0)(K).

Proof: We have

(�R)
(2) � F =

1X
n=0

2n+1X
j=1

�
(�R)

^
(�n� 1)

�2
F^(�n� 1; j)Hext

�n�1;j
(�;�)

=

mX
n=0

2n+1X
j=1

F^(�n� 1; j)Hext

�n�1;j
(�;�) +

+

1X
n=m+1

2n+1X
j=1

1Z
R

�
(	�)

^
(�n� 1)

�2
w(�) d� �

� F^(�n� 1; j)Hext

�n�1;j
(�;�) (65)
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and

F � (�R)
(2) � F =

1X
n=m+1

2n+1X
j=1

0
@1�

1Z
R

�
(	�)

^
(�n� 1)

�
2

w(�) d�

1
A �

� F^(�n� 1; j)Hext

�n�1;j
(�;�): (66)

This implies


F � (�R)
(2) � F




2
L2(B
ext)

(67)

=

1X
n=m+1

2n+1X
j=1

0
@1�

1Z
R

�
(	�)

^
(�n� 1)

�
2

w(�) d�

1
A

2

(F^(�n� 1; j))
2
:

We see that for all R 2 R+ the inequality

0 �

0
@1�

1Z
R

�
(	�)

^
(�n� 1)

�2
w(�) d�

1
A

2

(F^(�n� 1; j))
2

� (F^(�n� 1; j))
2

(68)

holds because of (20). As the series

1X
n=0

2n+1X
j=1

(F^(�n� 1; j))
2
= jjF jj2

L2(B
ext)
(69)

converges, the Weierstra� criterion (see [22], p. 142) says that the series in

(67) converges uniformly. Hence, we are allowed to interchange lim
R!0+

with

the summation over n in (67) (see [22], p. 141). We get

lim
R!0+




F � (�R)
(2) � F




2
L2(B
ext)

=

1X
n=m+1

2n+1X
j=1

lim
R!0+

0
@1�

1Z
R

�
(	�)

^
(�n� 1)

�
2

w(�) d�

1
A

2

�

� (F^(�n� 1; j))
2

= 0: (70)
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Concerning the uniform convergence on K we consider a sphere �r with

radius r, where � < r < minfjxj : x 2 Kg =: �. We observe that for all

x 2 �r and all R 2 R+ we obtain�������
Z

B



ext

�
(2)

R
(x; y)F (y) dy

������� �
0
B@Z
B



ext

�
�
(2)

R
(x; y)

�
2

dy

1
CA

1
2
0
B@Z
B



ext

F (y)2 dy

1
CA

1
2

: (71)

Moreover, we �ndZ
B



ext

�
�
(2)

R
(x; y)

�
2

dy

=







1X
n=0

2n+1X
j=1

�
�
(2)

R

�^
(�n� 1)Hext

�n�1;j
(�;x)Hext

�n�1;j
(�;�)







L2(B
ext)

=

1X
n=0

2n+1X
j=1

��
�
(2)

R

�^
(�n� 1)

�
2 �
Hext

�n�1;j
(�;x)

�
2

=

1X
n=0

2n+1X
j=1

��
�
(2)

R

�^
(�n� 1)

�
2

(cext(n; �))
2

�
�

r

�
2n+2

�
Yn;j

�
x

jxj

��
2

� max
n2N

 
(cext(n; �))

2

�
�

r

�
2n+2

!
1X
n=0

��
�
(2)

R

�^
(�n� 1)

�
2
2n+ 1

4�

� max
n2N

 
(cext(n; �))

2

�
�

r

�
2n+2

!
T �

1

4�
; (72)

since Pn(1) = 1.

Let �n be the n{dimensional Lebesgue measure. We now want to show that

there exists r 2]�; �[, such that

lim
R!0+




F � �
(2)

R
� F



2
L2(�r)

= 0: (73)

Assume that such a radius does not exist. Then for every r 2]�; �[ there

exists a subset Er � �r with �2(Er) > 0, such that
�
�
(2)

R
� F
�
(x) does

not converge to F (x) for all x 2 Er. Otherwise, the pointwise convergence

almost everywhere in combination with (71) and (72) would yield the L2 (�r)-

convergence according to the dominated convergence theorem. Consequently,�
�
(2)

R
� F
�
(x) does not converge to F (x) for all x 2 E :=

S
�<r<�

Er, where
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�3(E) > 0. However, the L2

�
B



ext

�
-convergence implies the pointwise con-

vergence almost everywhere in B



ext
, such that we obtain a contradiction.

Let �r be a sphere such that Eq. (73) holds. Since F and �
(2)

R
� F are

harmonic in B



ext
(cf. Theorem 5.6) and in particular continuous on �r, the

unique solution of the corresponding outer Dirichlet problem on (�r)ext :=

fx 2 R3 j jxj > rg is given by

F � �
(2)

R
� F =

Z
�r

G(�; y)
�
F � �

(2)

R
� F
�
(y) dy; (74)

where G is the Green's function for this problem (see e.g. [13]). Hence,

lim
R!0+




F � �
(2)

R
� F




C(0)(K)

�








Z
�r

(G(�; y))2 dy








1
2

C(0)(K)

lim
R!0+




F � �
(2)

R
� F




L2(�r)

(75)

= 0; q.e.d.

We can also, like in the scale discrete case, start with a scaling function and

then come to the wavelets.

Theorem 5.4 (cf. [8], p. 239) Let f�RgR2R+ be a family of uniformly
bounded scaling functions of order m 2 N [ f�1g with weight function
w : R+ ! R

+ , such that

1X
n=0

(2n+ 1)2 (�^
R
(�n� 1))

2
< +1 (76)

for all R 2 R+ . Furthermore, let the symbols�
(�R)

^
(�n� 1)

	
n2N; R2R+

; (77)

as functions of R be di�erentiable and monotonically decreasing for every
n 2 N, such that for all R 2 R+ they satisfy

(�R)
^
(�n� 1) = 1; (78)

if n 2 f� 2 N j 0 � � � mg, and

lim
R!1

(�R)
^
(�n� 1) = 0; (79)
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if n 2 N with n > m.
If these kernels generate approximate identities, i.e. if for arbitrary F 2

Harm
�
B



ext

�

F = lim
R!0+

(�R)
(2) � F (80)

in the sense of L2

�
B



ext

�
and if there exist product kernels f	�g�2R+ �

L2

�
B


ext
�B


ext

�
with

(	�)
^
(�n� 1) =

�
�

1

w(�)

d

d�

�
(��)

^
(�n� 1)

�
2

� 1
2

(81)

for all n 2 N and all � 2 R
+ , then f	�g�2R+ are the associated wavelets of

order m.

Proof: As (��)
^
(�n � 1) and consequently

�
(��)

^
(�n� 1)

�2
is mono-

tonically decreasing in �, the expression � 1

w(�)

d

d�

�
(��)

^
(�n� 1)

�2
is non-

negative. First of all, we get

1Z
R

�
(	�)

^
(�n� 1)

�
2

w(�) d�

= �

1Z
R

1

w(�)

�
d

d�

�
(��)

^
(�n� 1)

�
2

�
w(�) d�

= �

1Z
R

d

d�

�
(��)

^
(�n� 1)

�
2

d�

=
�
(�R)

^
(�n� 1)

�
2

(82)

for all R 2 R+ and all n 2 N with n > m. Hence, (61) is valid.

As (�R)
^
(�n � 1) is constant in R for n 2 f� 2 N j 0 � � � mg we have

(	�)
^
(�n� 1) = 0 for all n 2 f� 2 N j 0 � � � mg and all � 2 R

+ . This is

property (ii).

Now we come to the remaining properties of the wavelets.

(i)

1Z
0

�
(	�)

^
(�n� 1)

�2
w(�) d� = lim

R!0+

�
(�R)

^
(�n� 1)

�2
= 1 (83)
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for n > m because of (80): The uniform boundedness of the kernels, i.e.

k�Rk
2

L2(B
ext�B



ext)
� T (84)

for all R 2 R
+ , where T is independent of R, and the monotonicity of the

symbols imply the convergence here and identity (80) implies that the limit

is 1.

(iii) We get

1X
n=m+1

(2n + 1)2
1Z
R

�
(	�)

^
(�n� 1)

�
2

w(�) d�

�
1X

n=m+1

(2n+ 1)2
�
(�R)

^
(�n� 1)

�
2

< +1; q.e.d. (85)

We can introduce scale spaces and detail spaces like in the scale discrete case.

De�nition 5.5 Let the kernels in f	�g�2R+ be wavelets of order m 2 N [
f�1g with the corresponding family of scaling functions f�RgR2R+. For
�; R 2 R

+ we de�ne the scale spaces by

VR :=
n
(�R)

(2) �G
���G 2 Harm

�
B


ext

�o
(86)

and the detail spaces by

W� :=
n
(	�)

(2) �G
���G 2 Harm

�
B


ext

�o
: (87)

Also here the scale spaces are the images of low-pass �lters as condition (iii)

implies that for all R 2 R
+ the sequence8<

:
1Z
R

�
(	�)

^
(�n� 1)

�
2

w(�) d�

9=
;

n2N

(88)

converges to 0 for n!1.

Conditions (i) and (ii) show that in the convolution with 	
(2)

� only the fre-

quencies with n > m are considered. Hence, the detail spaces are images of

band-pass �lters as the Fourier coe�cients of the wavelets must converge to

0 for n!1.

Another property that we obtain is the multiresolution.
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Theorem 5.6 (Multiresolution) Let f�RgR2R+ be scaling functions of or-
der m 2 N [ f�1g. Then the following properties are satis�ed by the scale
spaces:

a)

Harm0:::m

�
B



ext

�
� VR1

� VR2
� Harm

�
B



ext

�
(89)

for 0 < R2 � R1,

b)

[
R>0

VR
L2(B
ext)

= Harm
�
B



ext

�
: (90)

Proof: a) The fact that

(�R)
^
(�n� 1) = 1 (91)

for all R 2 R+ , if n � m, implies

(�R)
(2) � F = F (92)

for all R 2 R+ and F 2 Harm0:::m

�
B


ext

�
. Hence, the inclusion

Harm0:::m

�
B


ext

�
� VR (93)

holds for all R 2 R+ .

Let R1; R2 2 R
+ with R2 � R1 be given and let F 2 Harm

�
B


ext

�
be an

arbitrary function. Let N :=
�
n 2 N

�� (�R2
)
^
(�n� 1) = 0

	
. We de�ne

G 2 Harm
�
B


ext

�
by

G^(�n� 1; j) :=

8<
:

0 if n 2 N�
(�R1)

^

(�n�1)

(�R2)
^

(�n�1)

�
2

F^(�n� 1; j) else
: (94)

G is in Harm
�
B


ext

�
, because

jjGjj2
L2(B
ext)

=

1X
n=0

2n+1X
j=1

(G^(�n� 1; j))
2

(95)

=
X

n2NnN

2n+1X
j=1

�
(�R1

)
^
(�n� 1)

(�R2
)
^
(�n� 1)

�4

(F^(�n� 1; j))
2
:
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By construction (�R)
^
(�n�1) is monotonically decreasing inR for all n 2 N.

Hence,

0 � (�R1
)
^
(�n� 1) � (�R2

)
^
(�n� 1) (96)

for all n 2 N and consequently

jjGjj2
L2(B
ext)

�
X

n2NnN

2n+1X
j=1

(F^(�n� 1; j))
2

� jjF jj2
L2(B
ext)

: (97)

Because of the above mentioned monotonicity and the non-negativity of the

symbols of all �R we have

(�R1
)
^
(�n� 1) = 0 (98)

for all n 2 N . This implies

(�R1
)
(2) � F =

1X
n=0

2n+1X
j=1

�
(�R1

)
^
(�n� 1)

�2
F^(�n� 1; j)Hext

�n�1;j
(�;�)

=
X

n2NnN

2n+1X
j=1

�
(�R2

)
^
(�n� 1)

�2�(�R1
)
^
(�n� 1)

(�R2
)
^
(�n� 1)

�2

�

� F^(�n� 1; j)Hext

�n�1;j
(�;�)

= (�R2
)
(2) �G: (99)

Hence, VR1
� VR2

. Finally, every function in VR is harmonic for all R 2 R+ ,

because

(�R)
(2) � F =

1X
n=0

2n+1X
j=1

�
(�R)

^
(�n� 1)

�
2

F^(�n� 1; j)Hext

�n�1;j
(�;�) (100)

in the sense of L2

�
B


ext

�
with




(�R)
(2) � F




2
L2(B
ext)

=

1X
n=0

2n+1X
j=1

�
(�R)

^
(�n� 1)

�
4

(F^(�n� 1; j))2

�
1X
n=0

2n+1X
j=1

1 � (F^(�n� 1; j))
2

= jjF jj2
L2(B
ext)

(101)
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for all F 2 Harm
�
B



ext

�
.

b) For F 2 Harm
�
B


ext

�
we consider the sequence

��
� 1

n+1

�
(2)

� F

�
n2N

. We

have �
� 1

n+1

�
(2)

� F 2 V 1
n+1

(102)

for all n 2 N. Thus, ��
� 1

n+1

�
(2)

� F

�
n2N

�
[
R>0

VR (103)

and consequently Theorem 5.3 says that

lim
n!1

�
� 1

n+1

�
(2)

� F = F 2
[
R>0

VR
jj�jj

L
2(B
ext); q.e.d. (104)

As usual we have a possibility to come from one scale space to another by

adding detail information.

Theorem 5.7 Let w : R+ ! R
+ be a weight function and let the product

kernels in the family f	�g�2R+ be wavelets of order m 2 N [ f�1g. Further-
more, let f�RgR2R+ be the corresponding family of scaling functions. Then

for all F 2 Harm
�
B


ext

�

(�R2
)
(2) � F = (�R1

)
(2) � F +

R1Z
R2

(	�)
(2) � F w(�) d� (105)

(with respect to L2

�
B


ext

�
) for all R1; R2 2 R

+ with R2 � R1.

Proof: We have

(�R)
(2) � F =

1X
n=0

2n+1X
j=1

�
(�R)

^
(�n� 1)

�
2

F^(�n� 1; j)Hext

�n�1;j
(�;�)

=

mX
n=0

2n+1X
j=1

F^(�n� 1; j)Hext

�n�1;j
(�;�)

+

1X
n=m+1

2n+1X
j=1

0
@ 1Z

R

�
(	�)

^
(�n� 1)

�
2

w(�) d�

1
A �

� F^(�n� 1; j)Hext

�n�1;j
(�;�) (106)
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in L2

�
B



ext

�
. Consequently,

(�R2
)
(2) � F � (�R1

)
(2) � F (107)

=

1X
n=m+1

2n+1X
j=1

0
@ R1Z
R2

�
(	�)

^
(�n� 1)

�
2

w(�) d�

1
AF^(�n� 1; j)Hext

�n�1;j
(�;�):

The Beppo Levi Theorem implies

(�R2
)
(2) � F � (�R1

)
(2) � F

=

R1Z
R2

 
1X

n=m+1

2n+1X
j=1

�
(	�)

^
(�n� 1)

�
2

F^(�n� 1; j)Hext

�n�1;j
(�;�)

!
w(�) d�

=

R1Z
R2

�
(	�)

(2) � F
�
w(�) d� (108)

in the sense of L2

�
B



ext

�
, q.e.d.

6 Examples

In [8], p. 242f examples for spherical scale continuous wavelets are given.

As the conditions for the wavelets refer to the symbols we can transfer the

spherical wavelets to our wavelets.

Example 6.1 (Abel-Poisson Wavelet of Order m)

We de�ne

(	�)
^
(�n� 1) :=

(
0 if n � mq

2n

w(�)
e�n� if n > m

; (109)

where m � 0.

It is easy to check the conditions (i) to (iii).

Example 6.2 (Gau�-Weierstra� Wavelet of Order m)

We de�ne

(	�)
^
(�n� 1) :=

(
0 if n � mq

2

w(�)

p
n(n + 1)e�n(n+1)� if n > m

; (110)

where m � 0.

Again conditions (i) to (iii) are satis�ed.
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7 Scale Discretized Wavelets

In analogy to [8] we now introduce scale discretized wavelets. Let f�jgj2Z be
a strictly monotonically decreasing sequence with the properties

lim
j!1

�j = 0 and lim
j!�1

�j =1: (111)

An example of such a sequence is �j = a�j, where a > 1. The usual choice

is a = 2.

This allows us now to de�ne wavelet packets in the usual way.

De�nition 7.1 Let f	�g�2R+ consist of wavelets of order m 2 N [ f�1g.
The product kernels 	P

j
, j 2 Z, de�ned by

�
	P

j

�^
(�n� 1) :=

0
B@

�jZ
�j+1

�
	^

�
(�n� 1)

�
2

w(�) d�

1
CA

1
2

; n 2 N; (112)

are called P-wavelet packets.

8 Scale Discrete Wavelets

In [16] scale discrete harmonic wavelets have been introduced for the bounded

outer space and the inner space of the sphere B. We will see now that the

scale continuous and scale discretized wavelets introduced in this paper can

be used to derive scale discrete wavelets similar to the type treated in [16].

De�nition 8.1 Let f	�g�2R+ be a family of scale continuous wavelets of
order m 2 N [ f�1g. The corresponding family of wavelet packets with
respect to a series f�jgj2Z be denoted by f	P

j
gj2Z.

We de�ne the corresponding scale discrete scaling functions �D

J
, J 2 Z, by�

�D

J

�^
(�n� 1) := (��J

)
^
(�n� 1); n 2 N ; (113)

where f�RgR2R+ is the system of scaling functions referring to the scale con-
tinuous wavelets.
Furthermore, the elements of two systems of product kernels f	D

J
gJ2Z and

f~	D

J
gJ2Z are called scale discrete primal and dual wavelets, respectively, if

they satisfy the following equation

�
	D

J

�^
(�n� 1)

�
~	D

J

�^
(�n� 1) =

��
	P

j

�^
(�n� 1)

�
2

(114)



28 8 SCALE DISCRETE WAVELETS

for all J 2 Z and all n 2 N.
We de�ne the scale discrete scale spaces V D

J
, J 2 Z, and detail spaces WD

J
,

J 2 Z, by

V D

J
:=

n�
�D

J

�(2)
� F

���F 2 Harm
�
B



ext

�o
; (115)

WD

J
:=

n
	D

J
� ~	D

J
� F

���F 2 Harm
�
B


ext

�o
: (116)

We see that the P-wavelet packets represent a special case of scale discrete

wavelets. Note that�
�D

J

�^
(�n� 1) = (��J

)
^
(�n� 1)

=

0
@ 1Z
�J

�
(	�)

^
(�n� 1)

�
2

w(�) d�

1
A

1
2

=

0
B@ J�1X

j=�1

�jZ
�j+1

�
(	�)

^
(�n� 1)

�
2

w(�) d�

1
CA

1
2

=

 
J�1X
j=�1

��
	P

j

�^
(�n� 1)

�
2

! 1
2

=

 
J�1X
j=�1

�
	D

J

�^
(�n� 1)

�
~	D

J

�^
(�n� 1)

!1
2

;(117)

if n > m.

The following theorem shows the similarities to the scale discrete kernels in

[16], which also satisfy the conditions a) to h) for all J 2 N in case of the

order m = 0.

Theorem 8.2 Let f�D

J
gJ2Z be a family of scale discrete scaling functions of

order m 2 N and f	D

J
gJ2Z and f~	D

J
gJ2Z be corresponding families of scale

discrete primal and dual wavelets, respectively. Then the following properties
are satis�ed.

a)
�
�D

J

�^
(�n� 1) = 1 for all J 2 Z, if n 2 f� 2 N j 0 � � � mg.

b)
�
�D

J1

�^
(�n� 1) �

�
�D

J2

�^
(�n� 1) for all J1; J2 2 Z with J1 � J2.

c) admissibility condition

1X
n=0

(2n+ 1)2
��
�D

J

�^
(�n� 1)

�
2

< +1 (118)
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for all J 2 Z.

d) lim
J!1

�
�D

J

�^
(�n� 1) = 1 for all n 2 N.

e) approximate identity: lim
J!1




F �
�
�D

J

�
(2)

� F



2
L2(B
ext)

= 0 for all F 2

Harm
�
B



ext

�
.

f) multiresolution:

(i) Harm0:::m

�
B


ext

�
� V D

J1
� V D

J2
� Harm

�
B


ext

�
for all J1; J2 2 Z

with J1 � J2.

(ii)
S
J2Z

V D

J

k:k
L
2(B
ext) = Harm

�
B


ext

�
.

g) re�nement equation

�
	D

J

�^
(�n� 1)

�
~	D

J

�^
(�n� 1)

=
��
�D

J+1

�^
(�n� 1)

�
2

�
��
�D

J

�^
(�n� 1)

�
2

(119)

for all J 2 Z.

h) scale step property:

�
�D

J2

�(2)
� F =

�
�D

J1

�(2)
� F +

J2�1X
J=J1

	D

J
� ~	D

J
� F (120)

(in the sense of L2

�
B


ext

�
) for all F 2 Harm

�
B


ext

�
and all J1; J2 2 Z

with J1 < J2.

Proof: Let the scale discrete kernels be derived from the families of wavelets

f	�g�2R+, wavelet packets f	P

j
gj2Z and scaling functions f�RgR2R+. We

remember that we de�ned

(�R)
^
(�n� 1) :=

8><
>:

1 if n � m�
1R
R

�
(	�)

^
(�n� 1)

�
2

w(�) d�

�1
2

if n > m
: (121)

Hence, property a) is obviously satis�ed.

Now let J1; J2 2 Z with J1 � J2 be given. Note that f�JgJ2Z is strictly
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monotonically decreasing. We obtain�
�D

J1

�^
(�n� 1) =

�
��J1

�^
(�n� 1)

=

0
B@

1Z
�J1

�
(	�)

^
(�n� 1)

�2
w(�) d�

1
CA

1
2

�

0
B@

1Z
�J2

�
(	�)

^
(�n� 1)

�
2

w(�) d�

1
CA

1
2

=
�
�D

J2

�^
(�n� 1); (122)

if n > m. Concerning property c) it is easy to see that

1X
n=m+1

(2n + 1)2
��
�D

J

�^
(�n� 1)

�
2

(123)

=

1X
n=m+1

(2n+ 1)2

0
@ 1Z
�J

�
(	�)

^
(�n� 1)

�
2

w(�) d�

1
A < +1 (124)

for all J 2 Z because of (22).

Property d) is trivially satis�ed, if n � m. Now let n > m. Then

lim
J!1

�
�D

J

�^
(�n� 1) = lim

J!1

0
@ 1Z
�J

�
(	�)

^
(�n� 1)

�
2

w(�) d�

1
A

1
2

=

0
@ 1Z

0

�
(	�)

^
(�n� 1)

�
2

w(�) d�

1
A

1
2

= 1: (125)

e) Since lim
R!0+




F � �
(2)

R
� F



2
L2(B
ext)

= 0 for all F 2 Harm
�
B



ext

�
and

lim
J!1

�J = 0, where �J > 0 for all J 2 Z, we have

lim
J!1




F �
�
�D

J

�(2)
� F



2
L2(B
ext)

= lim
J!1



F � �(2)

�J
� F


2
L2(B
ext)

(126)

= lim
R!0+




F � �
(2)

R
� F



2
L2(B
ext)

= 0
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for all F 2 Harm
�
B



ext

�
.

The multiresolution f) is an immediate result of the scale continuous mul-

tiresolution: Let J1; J2 2 Z with J1 � J2. Then �J1 � �J2 and

Harm0:::m

�
B



ext

�
� V D

J1
= V�J1 � V�J2 = V D

J2
� Harm

�
B



ext

�
: (127)

Property (ii) is a consequence of e).

The re�nement equation can be proved by the following considerations. If

n � m, both sides of the equation vanish. If n > m, we get��
�D

J+1

�^
(�n� 1)

�
2

�
��
�D

J

�^
(�n� 1)

�
2

=

1Z
�J+1

�
(	�)

^
(�n� 1)

�2
w(�) d��

1Z
�J

�
(	�)

^
(�n� 1)

�2
w(�) d�

=

�JZ
�J+1

�
(	�)

^
(�n� 1)

�2
w(�) d�

=
��
	P

J

�^
(�n� 1)

�
2

=
�
	D

J

�^
(�n� 1)

�
~	D

J

�^
(�n� 1): (128)

Finally, the scale step property can be proved by using the scale continuous

version of it. Let J1; J2 2 Z with J1 < J2. Then �J1 > �J2 . In analogy to the

proof of the reconstruction formula we �nd�
�D

J2

�(2)
� F =

�
��J2

�
(2)

� F (129)

=
�
��J1

�
(2)

� F +

�J1Z
�J2

	(2)

�
� F w(�) d�

=
�
��J1

�
(2)

� F +

J2�1X
J=J1

�JZ
�J+1

	(2)

�
� F w(�) d�

=
�
��J1

�
(2)

� F +

J2�1X
J=J1

�JZ
�J+1

Z
B



ext

	(2)

�
(�; x)F (x) dxw(�) d�

=
�
��J1

�
(2)

� F +

J2�1X
J=J1

Z
B



ext

F (x)

�JZ
�J+1

	(2)

�
(�; x)w(�) d� dx
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=
�
��J1

�
(2)

� F +

J2�1X
J=J1

Z
B



ext

F (x) �

�
1X
n=0

2n+1X
j=1

�JZ
�J+1

�
	^

�
(�n� 1)

�
2

w(�) d�Hext

�n�1;j
(�;x)Hext

�n�1;j
(�;�) dx

=
�
��J1

�
(2)

� F +

J2�1X
J=J1

Z
B



ext

F (x)
�
	D

J
� ~	D

J

�
(x; �) dx

=
�
�D

J1

�(2)
� F +

J2�1X
J=J1

	D

J
� ~	D

J
� F (130)

for all F 2 Harm
�
B


ext

�
in the sense of L2

�
B


ext

�
.

Hence, all properties are satis�ed, q.e.d.

Note that the scale continuous mother wavelets 	1 correspond to the scale

discrete mother wavelets 	D

0
and ~	D

0
in case of a sequence �J = a�J with

a > 1. In [16] the dilation is constructed for a = 2.

Example 8.3 The scale discrete scaling functions in the Abel-Poisson case
are given by �

�D

J

�^
(�n� 1) = e�n�J ; (131)

and in the Gau�-Weierstra� case they satisfy�
�D

J

�^
(�n� 1) = e�n(n+1)�J : (132)

Note that a direct construction of scale discrete wavelets and scaling functions

for our domain without the need of a scale continuous theory is also possible

(see [16]). In this context band-limited product kernels like the cp (cubic

polynomial) scaling functions, de�ned by

�
�D

J

�^
(�n� 1) =

�
(1� n)2(1 + 2n); if 0 � n � (�J)

�1

0; if n > (�J)
�1 (133)

(cf. for instance [19]), are used besides non-band-limited product kernels like

in Example 8.3. If the cp scaling functions were constructed out of a system

of scale continuous wavelets f	�g�2R+, the equation

1Z
R

�
(	�)

^
(�n� 1)

�2
w(�) d� =

�
(1� n)4(1 + 2n)2; if 0 � n � R�1

0; if n > R�1

(134)
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would have to be satis�ed for every R 2 R
+ . It appears to be impossi-

ble to �nd such wavelets. At least formula (81) cannot be applied, since

(�R)
^
(�n� 1) is not di�erentiable with respect to R in n�1, if n > 0.

Remark 8.4 We can �nd a solution to this problem, if we use distributions.
De�ning

(	�)
^
(�n� 1) := (1� n)2

1 + 2np
w(�)

�(�� n�1); (135)

where � is the delta distribution, we obtain in the sense of distributions, using
the common notation in physics and assuming that �2 := �,

1Z
R

�
(	�)

^
(�n� 1)

�2
w(�) d� =

1Z
R

(1� n)4(1 + 2n)2�(�� n�1) d�

= (1� n)4(1 + 2n)2 �

�
1; if n�1 2 [R;1[

0; else

=
�
(�R)

^
(�n� 1)

�2
: (136)

Even Eq. (81) holds if we read it in the context of distributions. The Heavi-
side function H : R ! R is de�ned by

H(t) =

�
1; if t > 0

0; if t � 0
: (137)

Therefore, we can write�
(�R)

^
(�n� 1)

�
2

= (1� n)4(1 + 2n)2
�
1�H

�
R� n�1

��
(138)

and obtain�
(	�)

^
(�n� 1)

�2
= �

1

w(�)

d

d�

�
(1� n)4(1 + 2n)2

�
1�H

�
�� n�1

���
=

1

w(�)
(1� n)4(1 + 2n)2�

�
�� n�1

�
(139)

in the sense of a distributional derivative. A further investigation is a chal-
lenge for future work.

Remark 8.5 (Inner Wavelets) The scale continuous, the scale discretized

and the scale discrete concepts for harmonic functions on B



ext
can analo-

gously be constructed for harmonic functions on the closed inner space Bint

using the inner harmonics

H int

n;j
(�;x) :=

r
2n+ 3

�3

�
jxj

�

�n

Yn;j

�
x

jxj

�
(140)
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as L2
�
Bint

�
-orthonormal basis (see also [16] for the scale discrete multireso-

lution and wavelets).

9 Application to the Gravimetry Problem

The gravimetry problem is concerned with the inversion of Newton's gravi-

tational potential

TF =

Z
Bint

F (x)

jx� �j
dx: (141)

The investigation of the earth's interior is one of the oldest problems in

science history. In the late 1930s the increasing need for oil motivated a

prospecting technique based on gravitational measurements (see for example

[17] and [18]). A series of further investigations of this problem followed,

where the determination of the earth's density distribution from measure-

ments of the gravitational potential or related quantities was discussed from

theoretical as well as practical point of view. For an exemplary overview of

publications concerned with the gravimetry problem see [16] and the refer-

ences therein.

However, the investigation of the earth's interior is not only needed for

prospecting for oil and other rare resources. It has a series of other ap-

plications, among which seismology certainly plays an important role. A

better understanding of the geophysical wave propagation is only possible if

current models of the earth's composition are improved.

Since the second usual method of investigating the earth's interior is the

seismic inversion, which reconstructs re
ections of seismic waves on density

discontinuities from delays in the arrival of the waves at seismographs, den-

sity models obtained via this technique should, from the scienti�c point of

view, not be used for developing a seismological and tectonical model for

the earth. Therefore, methods for the determination of the earth's inner

structures that are independent of seismological measurements, such as the

discussion of the gravimetry problem, are needed.

We can generalize Eq. (141) by de�ning the operator T : L2
�
Bint

�
!

L2

�
B


ext

�
by

TF =

Z
Bint

k(x; �)F (x) dx; (142)
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where k 2 L2

�
Bint �B




ext

�
is the integral kernel with

k(x; y) =

1X
n=0

2n+1X
j=1

k^(n)H int

n;j
(�;x)Hext

�n�1;j
(�;y) (143)

for all x 2 Bint and all y 2 B



ext
. We assume that k^(n) 6= 0 for all n 2 N . In

case of the Newton potential we have

k^(n) =
4�

(2n+ 1)�cint(n; �)cext(n; �)
(144)

for every n 2 N (see [8], p. 44 and [16], p. 32).

This inverse problem TF = P is ill-posed for the following reasons:

� Existence: A solution exists i� P 2 Harm
�
B


ext

�
with

1X
n=0

2n+1X
j=1

�
P^(�n� 1; j)

k^(n)

�
2

< +1: (145)

� Uniqueness: The solution is not unique, more precisely

ker T =
�
Harm

�
Bint

��?
L
2(Bint) =: Anharm

�
Bint

�
; (146)

where dimAnharm
�
Bint

�
=1. Consequently, only the harmonic part,

i.e. the projection on Harm
�
Bint

�
, of the solution F can be uniquely

reconstructed from P .

� Stability: The inverse operator�
T
���
Harm(Bint)

��1
: T (Harm

�
Bint

�
)! Harm

�
Bint

�
(147)

is not continuous. Hence, the inversion is unstable, which means that

small errors in the measurements of P can yield a completely di�erent

solution Fharm. Therefore, a regularization is required, such that a

stable determination of an approximation of Fharm becomes possible.

For the proofs and further details we refer to [16].

For our considerations we now choose an arbitrary family of scale continuous

wavelets f	�g�2R+ and construct the corresponding families of scale contin-

uous scaling functions f�RgR2R+, P-wavelet packets
�
	P

j

	
j2Z

(with respect

to a sequence f�jgj2Z), scale discrete scaling functions
�
�D

J

	
J2Z

and scale
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discrete primal and dual wavelets
�
	D

J

	
J2Z

,
n
~	D

J

o
J2Z

. These kernels are

constructed on Bint � Bint as well as B



ext
�B




ext
.

We denote the Fourier coe�cients of a function F 2 Harm
�
Bint

�
by

F^(n; j) :=
�
F;H int

n;j
(�;�)

�
L2(Bint)

: (148)

Furthermore, we will use the indices \int" and \ext", if it needs to be stressed

whether the considered functions are de�ned on Bint or B



ext
.

The following theorem gives us an important information about the construc-

tion of the harmonic solution of the gravimetry problem and approximations

to it.

Theorem 9.1 Let P 2 T
�
L2
�
Bint

��
be a given function. Then the unique

harmonic solution F 2 Harm
�
Bint

�
of TF = P is given by

F^(n; j) =
P^(�n� 1; j)

k^(n)
8n 2 N 8 j 2 f1; :::; 2n+ 1g: (149)

Furthermore, HJ =
�
�D

int;J

�
(2)

�F is the unique scale space solution of THJ =�
�D

ext;J

�
(2)

� P , HJ 2 V D

int;J
, for every J 2 Z and ĤJ = 	D

int;J
� ~	D

int;J
� F is

the unique detail space solution of TĤJ = 	D

ext;J
� ~	D

ext;J
� P , ĤJ 2 WD

int;J
,

for every J 2 Z. Moreover,

HJ2
= HJ1

+

J2�1X
J=J1

ĤJ (150)

for all J1; J2 2 Z with J1 < J2 and

lim
J!1

HJ = F (151)

in L2
�
Bint

�
.

For reasons of brevity we only give a sketch of a proof.

Sketch of a Proof: It is clear that

TF =

1X
n=0

2n+1X
j=1

F^(n; j)k^(n)Hext

�n�1;j
(�;�)

=

1X
n=0

2n+1X
j=1

P^(�n� 1; j)Hext

�n�1;j
(�;�) (152)



37

(in the sense of L2

�
B



ext

�
) i� (149) is satis�ed.

The uniqueness of the solutions of the �ltered equations is given, since only

harmonic functions are considered. We have

THJ =

1X
n=0

2n+1X
j=1

'J(n)
2
P^(�n� 1; j)

k^(n)
k^(n)Hext

�n�1;j
(�;�)

=
�
�D

ext;J

�(2)
� P (153)

and analogously

TĤJ = 	D

ext;J
� ~	D

ext;J
� P (154)

with respect to L2

�
B


ext

�
. The scale step property and the approximate

identity (cf. Theorem 8.2) imply (150) and (151), q.e.d.

This result means that we are able to construct an arbitrarily good approxi-

mation to the exact harmonic solution by determining a scale space solution,

i.e. by solving the �ltered equation

THJ =
�
�D

ext;J

�(2)
� P: (155)

Moreover, we can improve the approximation by increasing the scale. This

can, for example, be realized by adding consecutive detail space solutions.

Two di�culties are still left. First, we need a regularization in order to have

a stable, i.e. continuous, determination of the approximations to the exact

harmonic solution. Second, we may not assume that P is given in terms of

Fourier coe�cients, such that we need a method that can treat a discrete

data set of the potential.

Both problems are solved by the following theorem.

Theorem 9.2 Let
�
�D

J

	
J2Z

� L2
�
Bint � Bint

�
be scale discrete inner scal-

ing functions satisfying

1X
n=0

(2n+ 1)3

�������
��
�D

J

�^
(n)
�
2

k^(n)

������� < +1 (156)

for every J 2 Z. Moreover, let the operators TJ : T
�
L2
�
Bint

��
! V D

int;J
,

J 2 Z, be given by

TJP :=

Z
B



ext

KJ(�; y)P (y) dy; P 2 T
�
L2
�
Bint

��
; (157)
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where the kernel KJ : Bint � B



ext
! R is de�ned by

KJ(x; y) :=

1X
n=0

2n+1X
j=1

��
�D

J

�^
(n)
�
2

k^(n)
H int

n;j
(�;x)Hext

�n�1;j
(�;y); (158)

x 2 Bint; y 2 B



ext
. Then every KJ , J 2 Z, is a function in L2

�
Bint � B




ext

�
and C(0)

�
Bint � B


ext

�
. Moreover, if P 2 T

�
L2
�
Bint

��
, then HJ = TJP is

the unique scale space solution at scale J of Theorem 9.1 and TJ is continuous
for all J 2 Z.

Again we only give a sketch of a proof for reasons of brevity.

Sketch of a Proof: We have�������
1X

n=N

2n+1X
j=1

��
�D

J

�^
(n)
�
2

k^(n)
H int

n;j
(�;x)Hext

�n�1;j
(�;y)

�������
�

1X
n=N

2n+1X
j=1

��
�D

J

�^
(n)
�
2

k^(n)
O(n)

����Yn;j
�
x

jxj

�
Yn;j

�
y

jyj

�����

�
1X

n=N

(2n+ 1)

��
�D

J

�^
(n)
�
2

k^(n)
O(n)

2n+ 1

4�
�! 0 (159)

for N !1. Hence, KJ 2 C(0)

�
Bint � B


ext

�
� L2

�
Bint � B


ext

�
. Moreover,

the Parseval identity implies

(TJP ) (x) = (K(x; �); P )
L2(B
ext)

(160)

=

1X
n=0

2n+1X
j=1

��
�D

J

�^
(n)
�
2

k^(n)
H int

n;j
(�;x)P^(�n� 1; j):

Thus, TJP = HJ 2 V D

int;J
.

TJ is continuous, since

kTJPk
2

L2(Bint) � sup
n2N

��
�D

J

�^
(n)
�
4

(k^(n))
2

jjP jj2
L2(B
ext)

; q.e.d.

The conditions on the symbols are for example satis�ed by the Abel-Poisson

scaling functions and the Gau�-Weierstra� scaling functions in case of the
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gravimetry problem. Figures 1 and 2 show the results of the determination

of Abel-Poisson scale space and detail space solutions at di�erent scales, plot-

ted on the surface of the earth. The corresponding sequence is �J = 2�J .

EGM96 was used as potential and the reconstruction of the solutions was

based on formula (149).

We see that the space localization increases if the scale increases. This ob-

servation corresponds to the uncertainty principles in [8] and [9].

Figure 1: harmonic scale space (left column) and detail space (right column)

solutions of the gravimetry problem at scales 4 (top) to 7 (bottom)
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Figure 2: harmonic scale space solution at scale 10 plotted around the Ama-

zonas area (left) and Australia (right), respectively { mind the high resolution

of local details like Ayer's Rock

The images of the harmonic solutions on the surface yield many interesting

topographical details, such as the Amazonas area and Ayer's Rock in Figure

2.

We know that only the harmonic part of the earth's density distribution can

be reconstructed from the gravitational potential. The method developed

in this work allows a multiscale regularization of this solution, i.e. we are

able to determine an arbitrarily good approximation to the exact harmonic

solution by solving a well{posed problem. We can improve the resolution by

increasing the scale of the regularization. Whereas former approaches only

dealt with truncated polynomial expansions having no space localization,

the new multiresolution technique allows the separation of structures with

di�erent scales of (space as well as momentum) localization.
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