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Abstract

The basic idea behind selective multiscale reconstruction of functions

from error{a�ected data is outlined on the sphere. The selective recon-

struction mechanism is based on the premise that multiscale approx-

imation can be well{represented in terms of only a relatively small

number of expansion coe�cients at various resolution levels. An at-

tempt is made within a tree algorithm (pyramid scheme) to remove

the noise component from each scale coe�cient using a priori statisti-

cal information (provided by an error covariance kernel of a Gaussian,

stationary stochastic model).

Correspondence to W. Freeden
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Introduction

While usual Fourier methods in terms of spherical harmonics are very suc-

cessful at picking out frequencies from a signal, they are utterly incapable of

dealing properly with a signal that is changing over space. This fact has been

well{known for years. To improve the applicability of Fourier analysis, var-

ious methods such as `windowed Fourier transform' have been developed to

adapt the usual Fourier procedure to allow analysis of the frequency content

of a signal at each position (cf. W. Freeden et al. (1998), W. Freeden,

V. Michel (1999)). However, the amount of localization in space and in fre-

quency is not completely satisfactory. With spherical wavelets, the amount

of localization in space and in frequency is automatically adapted, in that

only a narrow space{window is needed to examine high{frequency content,

but a wide space{window is allowed when investigating low{frequency phe-

nomena.

In physical geodesy the signals mostly are `output functions' of invariant

pseudodi�erential operators (such as the gravity anomaly operator, the

Stokes' operator, the `upward and downward continuation' operators, etc).

Thus, good space{frequency localization becomes available with spherical

wavelets reecting the rotational symmetry of these operators. This means

that those kernel functions are appropriate to examine features of the sig-

nal of any size by `spherical cap windowing'. In other words, the capability

of multiresolution analysis is guaranteed by a `rotation invariant zoom{in,

zoom{out' property. The basic framework of this approach has been pro-

vided by the spherical wavelet theory developed by the Geomathematics

Group at the University of Kaiserslautern during the last years. A general-

ization to the georelevant harmonic case and its application to spaceborne

data has been given by W. Freeden (1999). Multiscale developments for

the gravimetry problem have been presented by V. Michel (1999).

A signal is a family of measurements, today typically obtained electronically.

These quantities could be gravity anomalies, potential values, derivatives at

the earth's surface or at a satellite orbit, etc. In signal processing, the

interest lies in reconstructing the signal with only minimal loss of receipt.

However, signals are typically contaminated by random noise, and an impor-

tant part of signal processing is accounting for this noise. In consequence,

a particular emphasis lies on denoising, i.e. extracting the `true' signal from

the noisy version actually observed. This endeavor is precisely the goal in

statistical function estimation. Here, the interest is to `smooth' the noisy
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data in order to obtain an estimate of the underlying function. In Euclidean

theory of wavelets signal processors now have new, fast tools at their disposal

that are well{suited for denoising signals, not only those with smooth, well{

behaved natures, but also those originals with strong irregularities (for a

survey the reader is e.g. referred to T.R. Ogden (1997) and the references

therein). In fact, the advantages of Euclidean wavelets translate directly

over to statistical data analysis. One of the key advantages that Euclidean

wavelets have in signal processing are the associated fast algorithms.

The objective of this article is to discuss geodetically relevant spherical

wavelets with an eye toward data analysis, giving only the mathematics

necessary for a good understanding of how spherical wavelets work in de-

noising. First the basic ideas of spectral denoising in terms of spherical

harmonics are recapitulated in their simplest framework of a Gaussian and

stationary stochastic model. With the basic introduction of spherical mul-

tiscale approximation, selective thresholding within a pyramid scheme of

recursive decomposition is presented. This approach is strongly inuenced

by the concept of sparse wavelet representation of functions in Euclidean

spaces (cf. J.B. Weaver et al. (1991), D.L. Donoho, I.M. Johnstone

(1994, 1995)). The thresholding scheme is designed to distinguish between

expansion coe�cients that belong to the reconstruction, corresponding to

`true' coe�cients which contribute signi�cant signal, and those that do not

belong to the reconstruction, corresponding to negligible coe�cients. In do-

ing so, the signal is `projected' onto an approximation space for some small

scale (representing the smooth components of the data) and then coe�-

cients at higher resolution are thresholded so that the noise is suppressed

but the �ne{scale details are included. Finally, some examples are given for

multiscale denoising a function involved in an ill{posed problem of physical

geodesy (such as the determination of the anomalous potential from gravity

anomalies via Stokes' equation and the calculation of the gravitational po-

tential from second order radial derivatives at satellite height via the satellite

gradiometry equation).

1 Preliminaries

N denotes the set of all positive integers, and N0 = N [ f0g. As usual,

R
3 denotes three{dimensional Euclidean space. For all elements x 2 R

3 ,
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x = (x1; x2; x3)
T , di�erent from the origin, we have

x = r�; r = jxj =
q
x21 + x22 + x23; (1)

where � = (�1; �2; �3)
T is the uniquely determined directional unit vector of

x. The unit sphere in R3 is denoted by 
. If the vectors "1; "2; "3 form the

canonical orthonormal basis in R3 , the points � 2 
 may be represented in

polar coordinates by

� = t"
3 +

p
1� t2

�
cos'"1 + sin'"2

�
; (2)

t = cos#; # 2 [0; �]; ' 2 [0; 2�) : (3)

1.1 Spherical Harmonics

The spherical harmonics Yn of degree n are de�ned as the everywhere on


 in�nitely di�erentiable eigenfunctions of the Beltrami operator �� corre-

sponding to the eigenvalues (��)^(n) = �n(n+ 1), n = 0; 1; : : :, where the

Beltrami-operator is the spherical part of the Laplace operator in R3 . As it is

well{known, the functionsHn : R
3 ! R de�ned byHn(x) = r

n
Yn(�), x = r�,

are homogeneous polynomials in rectangular coordinates which satisfy the

Laplace equation �xHn(x) = 0, x 2 R
3 . Conversely, every homogeneous

harmonic polynomial of degree n when restricted to 
 is a spherical harmonic

of degree n. The Legendre polynomials Pn : [�1;+1]! [�1;+1] are the only
everywhere on [�1;+1] in�nitely di�erentiable eigenfunctions of the Legen-
dre operator (1� t

2)(d=dt)2�2t(d=dt), which satisfy Pn(1) = 1. Apart from

a multiplicative constant, the `Legendre function' Pn("
3�) : 
 ! [�1;+1],

� 7! Pn("
3 � �), � 2 
, is the only spherical harmonic of degree n which

is invariant under orthogonal transformations leaving "
3 �xed. The lin-

ear space Harmn of all spherical harmonics of degree n is of dimension

dim(Harmn) = 2n+1. Thus, there exist 2n+1 linearly independent spher-

ical harmonics Yn;1; : : : ; Yn;2n+1 in Harmn. Throughout the remainder of

this paper we assume this system to be orthonormal in the sense of the

L2(
){inner product

(Yn;j; Ym;k)L2(
) =

Z



Yn;j(�)Ym;k(�)d!(�) = �n;m�j;k (4)

(d! denotes the surface element). An outstanding result of the theory of

spherical harmonics is the addition theorem

2n+1X
k=1

Yn;k(�)Yn;k(�) =
2n+ 1

4�
Pn(� � �); (�; �) 2 
� 
 : (5)
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The close connection between the orthogonal invariance and the addition

theorem is established by the Funk{Hecke formulaZ



H(� � �)Pn(� � �)d!(�) = (H(��); Pn(��))L2(
) = H
^(n)Pn(� � �); (6)

H 2 L1[�1;+1], �; � 2 
, where the Legende transform H
^(n) is given by

H
^(n) = 2�

+1Z
�1

H(t)Pn(t) dt; n = 0; 1; : : : : (7)

The sequence fH^(n)gn2N0 is called the symbol of H. For more details

about the theory of spherical harmonics the reader is referred, for example,

to C. M�uller (1966) and W. Freeden et al. (1998).

We let �(
) stand either for the space C(
) or Lp(
), 1 � p < 1, (with

the corresponding norm k � k�(
)). In what follows we are mainly interested,

however, in results for the Hilbert space (L2(
); (�; �)L2(
)). Any function

of the form H� : 
 ! R, � 7! H�(�) = H(� � �), � 2 
, is called a �{zonal

function on 
. Zonal functions are constant on the sets of all � 2 
, with

� � � = h, h 2 [�1;+1]. The set of all �{zonal functions is isomorphic to the
set of functions H : [�1;+1] ! R. This gives rise to interpret the spaces

C[�1;+1] and L2[�1;+1] with norms de�ned correspondingly as subspaces

of C(
) and L2(
). Analogously, we let �[�1;+1] stand either for the

space C[�1;+1] or Lp[�1;+1], 1 � p < 1 (with the corresponding norm

k � k�[�1;+1]). In particular,

kHkL2[�1;+1] =

0@2� +1Z
�1

jH(t)j2 dt

1A1=2

= kH("3�)kL2(
); H 2 L2[�1;+1] :

(8)

1.2 Spectral Approximation

The spherical Fourier transform H 7! (FT )(H), H 2 L2(
), is given by

((FT )(H)) (n; k) = H
^(n; k) = (H;Yn;k)L2(
) : (9)
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FT forms a mapping from L2(
) onto the space l
2(N ) of all sequences

fHn;kg satisfying

X
(n;k)2N

H
2
n;k =

1X
n=0

2n+1X
k=1

H
2
n;k <1; (10)

where

N = f(n; k)jn = 0; 1; : : : ; k = 1; : : : ; 2n+ 1g : (11)

For fHn;kg 2 l
2(N ) we de�ne the mapping (FT )�1 : l2(N )! L2(
) by

(FT )�1(Hn;j) =

1X
n=0

2n+1X
k=1

Hn;kYn;k : (12)

Then (FT )�1(FT ) = IL2(
) and (FT )(FT )�1 = Il2(N ) (I is the identity

operator). Moreover, it should be noted that for G;H 2 L2(
) the relation

lim
N!1

G�
NX
n=0

2n+1X
k=1

H
^(n; k)Yn;k


L2(
)

= 0 (13)

implies G = H almost everywhere on the unit sphere 
. The series

1X
n=0

2n+1X
k=1

F
^(n; k)Yn;k (14)

is called the spherical Fourier expansion of F (with Fourier coe�cients

F
^(n; k), n = 0; 1; : : : ; k = 1; : : : ; 2n + 1). For all F 2 L2(
) the prop-

erty

lim
N!1

F �
NX
n=0

2n+1X
k=1

F
^(n; k)Yn;k


L2(
)

= 0 (15)

is equivalent to the Parseval identity

kFk2
L2(
) = (F; F )L2(
) =

1X
n=0

2n+1X
k=1

�
F
^(n; k)

�2
: (16)

The recovery of a function F 2 L2(
) by its Fourier expansion (in the sense

of k � kL2(
)) is equivalent to the following conditions (see, for example W.

Freeden et al. (1998)):
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(i) (closure). The system fYn;kgn=0;1;:::;k=1;:::;2n+1 is closed in L2(
), i.e.

for any number " > 0 and any function F 2 L2(
) there exists a linear

combination Z =
PN

n=0

P2n+1
k=1 dn;kYn;k such that kF � ZkL2(
) � ".

(ii) (completeness). The system fYn;kgn=0;1;:::;k=1;:::;2n+1 is complete in

L2(
), i.e. F 2 L2(
) with F
^(n; k) = 0 for n = 0; 1; : : : ; k =

1; : : : ; 2n+ 1 implies F = 0.

(iii) The system fYn;kgn=0;1;:::;k=1;:::;2n+1 is a Hilbert basis of L2(
), i.e.

spann=0;1;:::;k=1;:::;2n+1fYn;kg
k�kL2(
) = L2(
); (17)

where `span' means the set of all �nite linear combinations.

1.3 Multiscale Approximation

Assume that H 2 L2[�1;+1] and F 2 L2(
). Then the convolution of H

against F is de�ned by

H � F =

Z



H (��)F (�)d!(�): (18)

Two important properties of spherical convolutions should be listed: (i)

If F 2 L2(
) and H 2 L2[�1;+1], then H � F is of class L2(
). (ii) If

H1;H2 2 L2[�1;+1], then the convolution of H1;H2 is of class C[�1;+1],
and we have

(H1 �H2)(� � �) =
Z



H1 (� � �)H2(� � �)d!(�) (19)

and

(H1 �H2)
^ (n) = H

^
1 (n)H

^
2 (n); n 2 N0 : (20)

We usually writeH(2) = H�H to indicate the convolution ofH 2 L2[�1;+1]
with itself. H(2) is said to be the second iterated kernel of H. More general,

H
(p) = H

(p�1) �H for p = 2; 3; : : : and H
(1) = H. Obviously,�

H
(p)
�^

(n) =
�
H
^(n)

�p
; n 2 N0 ; p 2 N : (21)

Next we consider a strict monotonically decreasing sequence f�jgj2Z of real
numbers satisfying

lim
j!1

�j = 0 and lim
j!�1

�j =1 (22)
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(for example, �j = 2�j , j 2 Z). The sequence f�jgj2Z can be understood as

a subdivision of the `scale interval' (0;1) into a countable, strict monoton-

ically decreasing sequence.

Let f��jgj2Z be a subfamily of L2[�1;+1] satisfying the condition

�^�j (0) = 1 (23)

for all j 2 Z. Then, the family fI�jgj2Z of operators I�j , de�ned by

I�j (F ) = ��j � F; F 2 L2(
); (24)

is called a singular integral in L2(
). f��jgj2Z is called kernel of the singular
integral.

If f��jgj2Z is a kernel of a singular integral satisfying the conditions

(i) for all n 2 N0 lim
j!1

�^�j (n) = 1 and lim
j!�1

�^�j (n) = 0,

(ii) there exists C > 0 such that sup
n2N0

j�^�j (n)j � C for all j 2 Z,

then the corresponding singular integral
�
I�j

	
j2Z

is called approximate iden-

tity.

It is known (see e.g. W. Freeden et al. (1998)) that

lim
j!1

kI�j (F )� FkL2(
)

= lim
j!1

 
1X
n=0

2n+1X
k=1

�
F
^(n; k)

�2 �
1� �^�j (n)

�2!1=2

= 0 ; (25)

provided that
�
I�j

	
j2Z

is an approximate identity.

Assume that the kernel f��jgj2Z is non{negative (i.e. ��j (t) � 0 almost

everywhere on the interval [�1;+1] for all j 2 Z). Then the following

properties are equivalent (cf. W. Freeden, K. Hesse (2000)):

(i) fI�jgj2Z is an approximate identity in L2(
),

(ii) lim
j!1

�^�j (n) = 1 for all n 2 N0 ,

(iii) lim
j!1

�^�j (1) = 1,
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(iv) lim
j!1

�R
�1

��j (t) dt = 0 for all � 2 (�1;+1) (localization property).

Assume that fI�jgj2Z is an approximate identity in L2(
). Then it follows

that
n
I
(q)
�j

o
; q 2 N, de�ned by

I
(q)
�j
(F ) = �(q)

�j
� F; F 2 L2(
); (26)

is an approximate identity in L2(
) (observe that (�
(q)
�j )

^(n) = ((��j )
^(n))q

for all n 2 N0 such that lim
j!1

(�
(q)
�j )

^(n) = 1 for all n 2 N0).

Our results lead us to the following statement: Assume that f��jgj2Z is

a kernel constituting an approximate identity in L2(
). Then the limit

relation

lim
j!1

Z



�(2)
�j
(��)F (�)d!(�) � F


L2(
)

= lim
j!1

Z



Z



��j (� � �)F (�)d!(�)��j (��)d!(�) � F


L2(
)

= 0 (27)

holds for all F 2 L2(
).

For J 2 Z we set

FJ = �(2)
�J
� F =

Z



�(2)
�J
(��)F (�)d!(�) : (28)

Consider a kernel f��jgj2Z constituting an approximate identity in L2(
).

Assume that F is of class L2(
). Then a simple calculation shows us that

for all N 2 N and J 2 Z,Z



�(2)
�J+N

(��)F (�)d!(�) =

Z



�(2)
�J
(��)F (�)d!(�)

+

J+N�1X
j=J

Z



	(2)
�j
(��)F (�)d!(�); (29)

where we have used the abbreviation

	(2)
�j
(� � �) = �(2)

�j+1
(� � �)� �(2)

�j
(� � �); (30)
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j 2 Z; (�; �) 2 
�
. Hence, letting N tend to in�nity we get the following

multiscale reconstruction formula

F = FJ +

1X
j=J

Z



	(2)
�j
(��)F (�)d!(�) (31)

for every J 2 Z (in the sense of L2(
)).

Moreover, we �ndZ



�(2)
�J
(��)F (�)d!(�) = FJ�N +

J�1X
j=J�N

Z



	(2)
�j
(��)F (�)d!(�); (32)

hence, Z



�(2)
�J
(��)F (�)d!(�) =

J�1X
j=�1

Z



	(2)
�j
(��)F (�)d!(�) : (33)

Combining (31) and (33) we �nally obtain the following multiscale represen-

tation of F 2 L2(
) in the sense of k � kL2(
)

F =

1X
j=�1

Z



	(2)
�j
(��)F (�)d!(�); (34)

provided that the so{called `scaling function' f��jgj2Z forms an approximate
identity in L2(
) and the 'wavelet' f	�jgj2Z satis�es the di�erence equation
(30).

The class V�j of all functions P 2 L2(
) of the form

P = �(2)
�j
� F; F 2 L2(
); (35)

is called the scale space of level j (with respect to the scaling function

f��jgj2Z), whereas the class W�j of all functions Q 2 L2(
) of the rep-

resentation

Q = 	(2)
�j
� F; F 2 L2(
); (36)

is called the detail space of level j (with respect to the scaling function

f��jgj2Z). It is easily seen from (29) that

V�j+1
= V�j +W�j (37)

for all j 2 Z. But it should be remarked that the sum (37) generally is neither

direct nor orthogonal (note that an orthogonal decomposition is given by
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the Shannon scaling function). The equation (37) can be interpreted in

the following way: The set V�j contains a �ltered (`smoothed') version of a

function belonging to L2(
). The lower the scale, the stronger the intensity

of smoothing. By adding `details' contained in the detail space W�j the

space V�j+1
is created, which consists of a �ltered (`smoothed') version at

resolution j + 1 (cf. W. Freeden et al. (1998), W. Freeden (1999)).

Finally, for all n = 0; 1; : : :; k = 1; : : : ; 2n+ 1, we obtain

F
^(n; k) =

1X
j=�1

F
^(n; k)

�
	(2)
�j

�^
(n) : (38)

But this means that
+1X

j=�1

�
	(2)
�j

�^
(n) = 1 (39)

for n = 0; 1; : : :. By construction we are therefore led to a partition of unity

as follows

+1X
j=�1

(	^

�j
(n))2 =

0@ J�1X
j=�1

+

1X
j=J

1A (	^

�j
(n))2

= (�^�J (n))
2 +

1X
j=J

(	^

�j
(n))2

= (�^�J (n))
2 +

1X
j=J

�
(�^�j+1

(n))2 � (�^�j (n))
2
�

= 1 (40)

for n 2 N0 .

Remark. Before we continue with some examples, the above de�nition of

`di�erence wavelets' should be motivated in comparison to the usual concept

of Euclidean wavelet theory. For that purpose we mention that the Euclidean

interpretation of �
(2)
�j+1 � �

(2)
�j is based on a (scale continuous) function �	�

(which is speci�ed in more detail in the standard literature of Euclidean

wavelet theory, see, for example, C.K. Chui (1992), A.K. Louis et al.

(1994)) such that

�(2)
�j+1

� �(2)
�j

=

Z �j+1

�j

�	(2)
�

d�

�
: (41)
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Now the relation between the interpretation practised in Euclidean theory

and our approach developed above is given by

�(2)
�j+1

� �(2)
�j

= 	(2)
�j
� ��	(2)

�j+1

�j+1 � �j

�j+1
: (42)

Particularly, in dyadic scales, the last formula reads

�
(2)

2�(j+1) � �
(2)

2�j = 	
(2)

2�j

� ��	
(2)

2�(j+1)

2�(j+1) � 2�j

2�(j+1)

= �	
(2)

2�(j+1) : (43)

1.4 Examples

Singular integrals on the sphere are of basic interest in geomathematical

applications. We essentially distinguish two types, namely bandlimited and

non{bandlimited singular integrals.

1.4.1 Bandlimited Singular Integrals

Shannon Singular Integral. The family f��jgj2Z is de�ned by

�^�j (n) =

�
1 for n 2 [0; ��1

j )

0 for n 2 [��1
j ;1)

(44)

with a strict monotonically decreasing sequence of integers f�jgj2Z
satisfying

lim
j!�1

�j =1 and lim
j!1

�j = 0 (45)

(for example: �j = 2�j).

Smoothed Shannon Singular Integral. The family f��jgj2Z is given by

�^�j (n) =

8<:
1 for n 2 [0; ��1

j )

�j(n) for n 2 [��1
j ; �

�1
j )

0 for n 2 [��1
j ;1):

(46)
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where f�jgj2Z is de�ned as in the Shannon case and f�jgj2Z is a strict
monotonically decreasing sequence of integers satisfying

lim
j!�1

�j =1 and lim
j!1

�j = 0; (47)

�j > �j; (48)

and �j is a strict monotonically decreasing continuous function of class

C[��1
j ; �

�1
j ]; j � 0 such that

�j(�
�1
j ) = 1; �j(�

�1
j ) = 0; (49)

for example �j(t) = 2� 2�jt with �j = 2�j�1 and �j = 2�j .

1.4.2 Non{bandlimited Singular Integrals

Abel{Poisson Singular Integral. The family f��jgj2Z is given by

�^�j (n) = e
�n�j ; n 2 N0 ; j 2 Z : (50)

Tikhonov Singular Integral. The family f��jgj2Z is given by

�^�j (n) =
�
2
n

�2n + �2j

; n 2 N0 ; j 2 Z; (51)

where f�ngn2N0 is a summable sequence, i.e. �n 6= 0 for all n 2 N0 and

1X
n=0

2n+ 1

4�
�
2
n <1 : (52)

Locally Supported Singular Integral. The family fL(k)
�j gj2Z is given by

�
L
(k)
�j

�^
(n) = 2�

+1Z
�1

L
(k)
�j
(t)Pn(t) dt; n 2 N0 (53)

with

L
(k)
�j
(t) =

(
0 for �1 � t � 1� �j

1
2�

k+1

�k+1
j

(t� 1 + �j)
k for 1� �j < t � 1: (54)

For the case k = 0 this example is known as the Haar singular integral.

From J. Cui et al. (1992) we know that
�
L
(k)
�j

�^
(n) = O(n�(3=2)�k)

for n!1.
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2 Spectral Signal{to{Noise Response

Geoscientists mostly think of their measurements (after possible lineariza-

tion) as a linear operator on an `input signal' F producing an `output signal'

G

�F = G; (55)

where � is an operator mapping the space L2(
) into itself.

Usually � is an (rotation{invariant) operator such that

�Yn;k = �^(n)Yn;k; n = 0; 1; : : : ; k = 1; : : : ; 2n+ 1; (56)

where the so{called symbol f�^(n)gn2N0 is the sequence of the real numbers
�^(n). Di�erent linear operators �, of course, are characterized by di�er-

ent sequences f�^(n)gn2N0 (for more details see P. Meissl (1971), S.L.

Svensson (1983), W. Freeden et al. (1998)). The `amplitude spectrum'

fG^(n; k)g(n;k)2N of the response of � is described in terms of the amplitude

spectrum of functions (signals) by a simple multiplication by the `transfer'

�^(n).

operator symbol

�rst radial derivative n+ 1

second radial derivative (n+ 1)(n+ 2)

gravity anomaly n� 1

Stokes' 1
n�1

; n > 1

single layer potential 1
n+(1=2)

double layer potential � 1
2n+1

Table 1: Geodetically relevant operators on 


2.1 Noise Model

Thus far only a (deterministic) function model has been discussed. If a

comparison of the `output function' with the actual value were done, dis-
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crepancies would be observed. A mathematical description of these discrep-

ancies has to follow the laws of probability theory in a stochastic model. In

physical geodesy, in order to arrive at a spectral error model of su�cient

simplicity, the measurement process usually is considered to be Gaussian

and stationary. Only if it is Gaussian (normally distributed), its �rst two

statistical moments, i.e. mean value and variance, are su�cient for a com-

plete description. Only if it is stationary (homogeneous and isotropic), the

error spectrum can be considered to be rotational invariant and, therefore,

representative for almost all scalar observables of physical geodesy (as al-

ready mentioned most observables of physical geodesy are characterized by

scalar invariant pseudodi�erential operators �)

Usually the observations are not looked upon as a time series (see W.A.

Heiskanen, H. Moritz (1967), F. Sans�o, R. Rummel (1997), R. Rum-

mel (1997) and many others), but rather a function ~G on the sphere 
 (`�'
for stochastic). According to this approach it is assumed that, we have

~G = G+ ~"; (57)

where ~" is the observation noise. The two stochastical moments have to

ful�ll

E

h
~G(�)

i
= G(�); � 2 
; (58)

var

h
~G(�)

i
= var [~�(�)] = �

2
; � 2 
; (59)

and

cov

h
~G(�); ~G(�)

i
= K(� � �); (�; �) 2 
� 
 : (60)

In other words, ~� is assumed to be N(0; �2)-distributed, such that

E [~"(�) � ~"(�)] = K(� � �); (�; �) 2 
� 
; (61)

where mathematical arguments lead us to assume that the following condi-

tions are imposed on the symbol fK^(n)gn2N0 :

(C1) K
^(n) � 0 for all n � 0,

(C2)
1P
n=0

2n+1
4�

K
^(n) <1.

Both conditions (C1) and (C2) , indeed, imply the summability of the symbol

fK^(n)gn2N0 .
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2.2 Degree Variances

As any `output function' (output signal) can be expanded into an orthogonal

series of surface spherical harmonics

~G =g�F =

1X
n=0

2n+1X
k=1

�^(n) ~F^(n; k)Yn;k

=

1X
n=0

2n+1X
k=1

~G^(n; k)Yn;k (62)

in the sense of k � kL2(
), we get a spectral representation of the form

~G^(n; k) = �^(n) ~F^(n; k); (63)

n = 0; 1; : : :; k = 1; : : : ; 2n+ 1.

The signal degree{order variances of ~G =g�F are de�ned by

varn;k

�g�F� =

�Z



�g�F� (�)Yn;k(�)d!(�)�2

=

��g�F�^ (n; k)�2

=

Z



Z



�g�F� (�)�g�F� (�)Yn;k(�)Yn;k(�)d!(�)d!(�) :

(64)

Correspondingly, the signal degree variances of ~G =g�F are given by

varn

�g�F� =

2n+1X
k=1

varn;k

�g�F�

=

2n+1X
k=1

�Z



�g�F� (�)Yn;k(�)d!(�)�2

=

2n+1X
k=1

��g�F�^ (n; k)�2

=
2n+ 1

4�

Z



Z



�g�F� (�)�g�F� (�)Pn(� � �)d!(�)d!(�);
(65)
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n = 0; 1; : : :. According to Parseval's identity we clearly have

kg�F k2
L2(
) =

1X
n=0

varn

�g�F� : (66)

Physical devices do not transmit spherical harmonics of arbitrarily high

frequency without severe attenuation. The `transfer' �^(n) usually tends

to zero with increasing n. It follows that the amplitude spectra of the

responses (observations) to functions (signals) of �nite L2(
){energy are

negligibly small beyond some �nite frequency. Thus, both because of the

frequency limiting nature of the used devices and because of the nature of

the `transmitted signals', the geoscientist is soon led to consider bandlimited

functions. These are the functions ~G 2 L2(
), whose `amplitude spectra'

vanish for all n > N (N 2 N0 , �xed). In other words, varn( ~G) = 0; n > N .

A function ~G with ~G^(n; k) = 0 for n > N , k = 1; : : : ; 2n + 1, is said to

be bandlimited with the band N . Furthermore, ~G 2 L2(
) is said to be

locally supported (spacelimited) with spacewidth � around an axis � 2 
, if

the function ~G vanishes on the set of all � 2 
 with �1 � � � � � �.

Bandlimited functions are of polynomial nature and, therefore, in�nitely

often di�erentiable everywhere on 
. Moreover, it is clear that ~G is an ana-

lytic function. From the analyticity it follows immediately that a non{trivial

bandlimited function cannot vanish on any (non{degenerate) subset of 
.

The only function that is both bandlimited and spacelimited is the trivial

function. Numerical analysis would like to deal with spacelimited functions.

But as we have seen, such a function (signal) of �nite (space) support can-

not be bandlimited, it must allow signal degree variances of arbitrarily large

degrees n. Thus there is a dilemma of seeking functions that are somehow

concentrated in both space and frequency (i.e. angular momentum). The

uncertainty principle (seeW. Freeden (1999), W. Freeden, V. Michel

(1999)) is a way of mathematically expressing the impossibility of simulta-

neous con�nement of a function (signal) to space and frequency.

2.3 Degree Error Covariances

The error theory is based on the spectral degree and order error covariance

covn;k(K) =

Z



Z



K(� � �)Yn;k(�)Yn;k(�)d!(�)d!(�) (67)
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and the spectral degree error covariance

covn(K) =

2n+1X
k=1

Z



Z



K(� � �)Yn;k(�)Yn;k(�)d!(�)d!(�) : (68)

The Funk{Hecke formula yields

covn;k(K) = K
^(n) : (69)

In other words, the spectral degree and order error covariance is simply

the Legendre coe�cient of the kernel K. Moreover, from the Funk{Hecke

formula we are able to deduce in connection with the addition theorem that

for all � 2 


covn(K) =
2n+ 1

4�

Z



Z



K(� � �)Pn(� � �)d!(�)d!(�)

= (2n+ 1)K^(n) : (70)

In conclusion,

covn;k(K) =
covn(K)

2n+ 1
= K

^(n) (71)

for n = 0; 1; : : :.

2.4 Examples of Spectral Error Covariances

To make the preceding considerations more concrete we would like to list

two particularly important examples:

(1) Bandlimited white noise. Suppose that for some nK 2 N0

K
^(n) =

(
�2

(nK+1)2
; n � nK

0 ; n > nK :
(72)

The kernel reads as follows:

K(� � �) =

1X
n=0

2n+ 1

4�
K
^(n)Pn(� � �)

=
�
2

(nK + 1)2

nKX
n=0

2n+ 1

4�
Pn(� � �) : (73)
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Note that this sum is a truncated Dirac functional. It is known (see e.g.

N.N. Lebedew (1973)) that for (�; �) 2 
� 


((� � �)� 1)K(� � �) =
�
2

4�(nK + 1)
(PnK+1(� � �)� PnK (� � �)) : (74)

(2) Non{bandlimited colored noise. Assume that K : 
�
! R is given in

such a way that K^(n) > 0 for an in�nite number of non{negative integers

n, the integral
R �
�1

K(t)dt is su�ciently small (for some � 2 (1 � "; 1) for

some " > 0), and K(� � �) coincides with �
2 for all � 2 
.

Geophysically relevant examples are the following kernels:

(i) K(� � �) = �2

exp(�c)
exp(�c(� � �)); (�; �) 2 
� 
,

where c is to be understood as the inverse spherical correlation length (�rst

degree Gau�{Markov model).

(ii) K(� � �) = �2

(L
(k)
�J� )

(2)(1)
(L

(k)
�J� )

(2)(� � �); (�; �) 2 
� 
,

for some su�ciently large J� 2 N (model of small correlation length).

The Legendre coe�cients of the aforementioned kernels are calculable by

recursion (as shown in W. Freeden et al. (1998)).

2.5 Spectral Estimation

In Section 2.2 we introduced the signal degree variances, whereas Section 2.3

was concerned with the introduction of the spectral error covariances. Now

we are in position to compare the signal spectrum with that of the noise.

Signal and noise spectrum `intersect' at the so{called degree resolution set

Nres (with Nres � N ). We distinguish the following cases:

(i) signal dominates noise

varn;k(g�F ) � covn;k(K); (n; k) 2 Nres; (75)

(ii) noise dominates signal

varn;k(g�F ) < covn;k(K); (n; k) 62 Nres : (76)

Filtering is achieved by convolving a kernel H 2 L2[�1;+1] with the `sym-

bol' fH^(n)gn2N0 against g�F :
d�F =

Z



H(��)g�F (�)d!(�) (77)
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(`^' denotes `estimated'). In spectral language this reads

d�F (n; k) = H
^(n)g�F (n; k) (78)

for n = 0; 1; : : :; k = 1; : : : ; 2n+ 1.

Two important types of �ltering are as follows:

(i) Spectral thresholding

d�F =

1X
n=0

2n+1X
k=1

INres(n; k)H
^(n)

�g�F�^ (n; k)Yn;k; (79)

where IA denotes the indicator function of the set A. This approach re-

presents a `keep or kill' �ltering, where the signal dominated coe�cients are

�ltered by H 2 L2[�1;+1], and the noise dominated coe�cients are set to

zero. This thresholding can be thought of as a non{linear operator on the

set of coe�cients, resulting in a set of estimated coe�cients.

As a special �lter we mention the ideal low{pass (Shannon) �lter H of the

form

H
^(n) =

�
1 ; n � nres

0 ; n > nres;
(80)

where nres = infnf(n; k) 2 Nresg. In that case all frequencies n � nres are

allowed to pass, whereas all frequencies n > nres are completely eliminated.

(ii) Wiener{Kolmogorov �ltering. Now we choose

d�F =

1X
n=0

2n+1X
k=1

H
^(n)

�g�F�^ (n; k)Yn;k (81)

with

H
^(n) =

varn(g�F )
varn(g�F ) + covn(K)

; n 2 N0 : (82)

This �lter produces an optimal weighting between signal and noise (pro-

vided that complete independence of signal and noise is assumed). Note the

similarity to the Tikhonov Singular Integral in (51).

For more details about �ltering in physical geodesy the reader is referred

to E.W. Grafarend (1982), H. Moritz (1980), R. Rummel (1997), F.

Sans�o, R. Rummel (1997).
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3 Multiscale Signal{to{Noise Response

Consider a sequence f��jgj2Z constituting an approximate identity in L2(
)

(as introduced in Section 1.3). Then an `output signal' ~G 2 L2(
) of an

operator � can be represented in multiscale approximation as follows

~G =

+1X
j=�1

Z



	(2)
�j
(��) ~G(�)d!(�); (83)

where the equality is understood in k�kL2(
){sense. This result is equivalent

to the identity

lim
N!1

g�F �
0@�g�F�

J0
+

NX
j=J0

Z



	(2)
�j
(��)(g�F )(�)d!(�)

1A
L2(
)

= 0 (84)

for every J0 2 Z. In terms of spherical harmonics we easily obtainZ



	(2)
�j
(��)(g�F )(�)d!(�) = 1X

n=0

2n+1X
k=1

��g�F�^ (n; k)� (	^

�j
(n))2Yn;k; (85)

where we have set

	(2)
�j
(� � �) = �(2)

�j+1
(� � �)� �(2)

�j
(� � �); (86)

j 2 Z, (�; �) 2 
 � 
. Note that we restrict ourselves to the so{called P-

wavelet concept (for other wavelet approaches see Freeden et al. (1998)).

3.1 Scale and Position Variances

Denote by L2(Z� 
) the space of functions H : Z� 
! R satisfying

1X
j=�1

Z



(H(j; �))2 d!(�) <1 : (87)

L2(Z� 
) is a Hilbert space equipped with the inner product

(H1;H2)L2(Z�
) =

+1X
j=�1

Z



H1(j; �)H2(j; �)d!(�) (88)
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corresponding to the norm

kHkL2(Z�
) =

0@ +1X
j=�1

Z



(H(j; �))2 d!(�)

1A1=2

: (89)

Consider a kernel f��jgj2Z constituting an approximate identity in L2(
).

From the multiscale formulation of an `output function' ~G = g�F 2 L2(
)
(see Section 1.3) we immediately obtain�g�F ;g�F�

L2(
)

=

1X
n=0

2n+1X
k=1

��g�F�^ (n; k)�2 +1X
j=�1

��
	�j

�^
(n)
�2

=

+1X
j=�1

Z



�Z



�g�F� (�)	�j
(� � �)d!(�)

�2

d!(�)

=

+1X
j=�1

Z



�Z



Z



�g�F� (�)�g�F� (�)	�j
(� � �)	�j

(� � �)d!(�)d!(�)

�
d!(�) :

(90)

The signal scale and space variance of g�F at position � 2 
 and scale j 2 Z
is de�ned by

var
2
j;�

�g�F� = Z



Z



�g�F� (�)�g�F� (�)	�j (� � �)	�j (� � �)d!(�)d!(�) :

(91)

The signal scale variance of g�F is de�ned by

var
2
j (
g�F ) = Z




var
2
j;�(
g�F )d!(�) : (92)

Obviously, we haveg�F2
L2(
)

=

+1X
j=�1

var
2
j (
g�F )

=

+1X
j=�1

Z



var
2
j;�

�g�F� d!(�)
=

var�;� �g�F�2
L2(Z�
)

: (93)
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Expressed in the spectral language of spherical harmonics we get

var
2
j;�

�g�F� =
=

1X
n=0

2n+1X
k=1

1X
m=0

2m+1X
l=1

	^
�j
(n)	^

�j
(m)

�g�F�^ (n; k) �
�
�g�F�^ (m; l)Yn;k(�)Ym;l(�) : (94)

Consequently,

var2
j

�g�F� =

Z



var2
j;�

�g�F� d!(�) = 1X
n=0

2n+1X
k=1

�
	^
�j
(n)
�2 ��g�F�^ (n; k)�2

:

(95)

With the convention Z = Z� 
 we formally writeg�F2
L2(
)

=

ZX
(j;�)2Z

var
2
j;�(
g�F )d!(�) = var�;�(g�F )

L2(Z)
: (96)

We mention that the Beppo-Levi Theorem justi�es the notation
RP

in (96),

as we are allowed to interchange integration and summation. Note that all

integrations are understood in the Lebesgue-sense.

3.2 Noise Model

Let K : (�; �) 7! K(� � �), (�; �) 2 
 � 
, satisfy the conditions (C1) and

(C2) stated in Section 2.1. The error theory is based on the scale and space

error covariance at � 2 


covj;�(K) =

Z



Z



K(� ��)	(2)
�j
(� ��)	(2)

�j
(� ��)d!(�)d!(�); � 2 
 : (97)

The scale error covariance is de�ned by

covj(K) =

Z



covj;�(K)d!(�) : (98)

Note that

covj(K) = 4� covj;�(K) (99)
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for all � 2 
. We obviously have

covj;�(K) =

1X
n=0

2n+ 1

4�
K
^(n)

�
	^

�j
(n)
�4

: (100)

It is clear from our stochastic model that the scale error covariance cannot

be dependent on the position � 2 
. This is also indicated by the spectral

formula:

covj;�(K) =
1

4�

1X
n=0

covn(K)
�
	^
�j
(n)
�4

: (101)

3.3 Scale and Space Estimation

Signal and noise scale `intersect' at the so{called scale and space resolution

set Zres � Z. We distinguish the following cases:

(i) signal dominates noise

varj;�

�g�F� � covj;�(K); (j; �) 2 Zres : (102)

(ii) noise dominates signal

varj;�

�g�F� < covj;�(K); (j; �) 62 Zres : (103)

Via the multiscale reconstruction formula the (�ltered) J{level approxima-

tion of the error{a�ected function g�F reads as follows

(g�F )J =

JX
j=�1

Z



	(2)
�j
(��)

�g�F� (�)d!(�) : (104)

In shorthand notation,

(g�F )J =

ZX
(j;�)2Z
j�J

	(2)
�j
(��)(g�F )(�)d!(�) : (105)

For J su�ciently large, g�F is well{represented by (g�F )J . In other words,

all the higher{level coe�cients are regarded as being negligible, i.e. (g�F )J wg�F .
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4 Selective Multiscale Reconstruction

Similar to what is known in taking Fourier approximation, we are able to

take multiscale approximation by replacing the (unknown) error{free func-

tion �F of the representation

(�F )J =

Z



�(2)
�J0

(��)(�F )(�)d!(�)

+

J�1X
j=J0

Z



	(2)
�j
(��)(�F )(�)d!(�) (106)

by (an estimate from) the error{a�ected function g�F such as

(g�F )J =

Z



�(2)
�J0

(��)(g�F )(�)d!(�)
+

J�1X
j=J0

Z



	(2)
�j
(��)(g�F )(�)d!(�); (107)

J > J0. Computing the following coe�cients at position � 2 


vJ0;� =

Z



�(2)
�J0

(� � �)(�F )(�)d!(�) (108)

wj;� =

Z



	(2)
�j
(� � �)(�F )(�)d!(�); j = J0; : : : ; J � 1; (109)

and

~vJ0;� =

Z



�(2)
�J0

(� � �)(g�F )(�)d!(�) (110)

~wj;� =

Z



	(2)
�j
(� � �)(g�F )(�)d!(�); j = J0; : : : ; J � 1 (111)

will, of course, require adequate methods of numerical integration on the

sphere.

4.1 Equidistributions

Many integration techniques are known from the literature (for a survey on

approximate integration on the sphere see, for example, W. Freeden et al.

(1998)). In what follows we base approximate integration on the concept of
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equidistribution. This concept is indeed of particular signi�cance in future

satellite geodesy and geomagnetics, where millions of data of su�ciently

dense nodal widths on (nearly) circular, polar orbits will be provided by

satellite missions (such as CHAMP, GRACE, GOCE).

In order to formulate suitable discretizations of the integrals ~vJ0;�; ~wj;� we

make the following restrictions on the nodal systems to be used.

A point system XN = f�N1 ; : : : ; �NN g � 
 of N points �N1 ; : : : ; �
N
N is said to

be an �{equidistribution, if there is a partition of 
 into N mutually disjoint

measurable parts ��N1
; : : : ; ��N

N
of equal area 4�

N with the property that each

point �Ni , i 2 f1; : : : ; Ng, is associated to ��Ni
in such a way that

sup
�2�

�N
i

��� � �
N
i

�� � N
��
; (112)

where � is a positive constant.

Our approach now will be based on the additional, but not very restric-

tive assumption that all functions �
(2)
�j (��)g�F ; j = J0; : : : ; J , are Lipschitz{

continuous on 
. Then it follows that for every � 2 


~wj;� =

NjX
i=1

Z
�
�
Nj
i

	(2)
�j

(� � �)
�g�F� (�)d!(�)

=
4�

Nj

NjX
i=1

	(2)
�j

�
� � �Nj

i

��g�F� (�Nj

i )

+

NjX
i=1

Z
�
�
Nj
i

�
	(2)
�j
(� � �)

�g�F� (�)�	(2)
�j
(� � �Nj

i )
�g�F� (�Nj

i )
�
d!(�):

(113)

Consequently, for j = J0; : : : ; J � 1 and � 2 
, it follows from the Lipschitz

continuity that

~wj;� =
4�

Nj

NjX
i=1

	(2)
�j
(� � �Nj

i )(g�F )(�Nj

i ) +O(N
��j
j ); (114)

provided that f�Nj

1 ; : : : ; �
Nj

Nj
g � 
 is an �j{equidistribution. An analogous

argument applies to ~vJ0;�.
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The investigations which follow will essentially be based on the observation

that the values ~vJ0;�; ~wj;�, j = J0; : : : ; J � 1, can be determined by the

following fomulae:

~vJ0;� w

4�

NJ0

NJ0X
i=1

�(2)
�J0

(� � �NJ0

i )(g�F )(�NJ0

i ); (115)

~wj;� w

4�

Nj

NjX
i=1

	(2)
�j
(� � �Nj

i )(g�F )(�Nj

i ); j = J0; : : : ; J � 1 (116)

(`w' always means that the error is assumed to be negligible for su�ciently

large Nj).

4.2 A Pyramid Scheme

In accordance to the ideas developed by W. Freeden (1999) we now de-

scribe a pyramid scheme for the recursive computation of the integrals ~vJ0;�,

~wj;� for j = J0; : : : ; J � 1.

Let fXNj
g, j = J0; : : : ; J , be a sequence of �j{equidistributions XNj

=

f�Nj

1 ; : : : ; �
Nj

Nj
g such that

�(2)
�j
(��) �g�F w

NjX
i=1

�(2)
�j
(� � �Nj

i )~a
Nj

i ; j = J0; : : : ; J; (117)

	(2)
�j
(��) �g�F w

NjX
i=1

	(2)
�j
(� � �Nj

i )~a
Nj

i ; j = J0; : : : ; J � 1; (118)

where the coe�cients ~a
Nj

i are given by

~a
Nj

i =
4�

Nj

g�F ��Nj

i

�
; (119)

for j = J0; : : : ; J .

What we are going to realize is a tree algorithm (pyramid scheme) with the

following ingredients: Starting from a su�ciently large J such that

g�F (�) w �(2)
�J
(��) �g�F w NJX

i=1

�(2)
�J
(� � �NJ

i )~a
NJ

i ; � 2 
; (120)
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we want to show that the coe�cient vectors ~aNj =
�
~a
Nj

1 ; : : : ; ~a
Nj

Nj

�
2 R

Nj

j = J0; : : : ; J � 1, (being, of course, dependent on the function g�F under

consideration) can be calculated such that the following statements hold

true:

(i) The vectors ~aNj , j = J0; : : : ; J � 1, are obtainable by recursion, i.e.

~a
Nj�1

i w

4�

Nj�1

NjX
l=1

�(2)
�J

�
�
Nj�1

i � �Nj

l

�
~a
Nj

l : (121)

(ii) For j = J0; : : : ; J

�(2)
�j
(��) �g�F =

NjX
i=1

�(2)
�j
(� � �Nj

i )~a
Nj

i ; (122)

and for j = J0; : : : ; J � 1

	(2)
�j
(��) �g�F =

NjX
i=1

	(2)
�j
(� � �Nj

i )~a
Nj

i : (123)

Our considerations are divided into two parts, viz. the initial step concerning

the scale level J and the pyramid step establishing the recursion relation:

The Initial Step. For suitably large J , �
(2)
�J (��) �g�F is su�ciently close

to (g�F )(�) for all � 2 
. Formally spoken, the kernel �
(2)
�J replaces the

Dirac{functional � as follows:

�(2)
�J
(��) �g�F wg�F (�) = �(��) �g�F : (124)

This is the reason why the coe�cients ~aNJ = (~aNJ

1 ; : : : ; ~aNJ

NJ
) 2 R

NJ are

assumed to be given in the form

~a
NJ

i =
4�

NJ

�g�F���NJ

i

�
: (125)

Moreover, it is obvious that

	(2)
�J
(��) �g�F =

NJX
i=1

	(2)
�J
(� � �NJ

i )~aNJ

i : (126)
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The Pyramid Step. An essential tool for the pyramid scheme is the fact that

~a
Nj

i =
4�

Nj

�g�F���Nj

i

�
w

4�

Nj
�(2)
�J
(��Nj

i ) �g�F (127)

for j = J0; : : : ; J . Thus it follows that

�(2)
�j
(��) �g�F w NjX

i=1

�(2)
�j
(� � �Nj

i )~a
Nj

i : (128)

From (128) we are easily able to verify (cf. W. Freeden (1999)) that

�g�F�^ (n; k) = NjX
i=1

~a
Nj

i Yn;k

�
�
Nj

i

�
(129)

for n = 0; 1; : : : ; k = 1; : : : ; 2n + 1. Note that the coe�cients ~a
Nj

i are inde-

pendent of the choice of the kernel f�(2)
�j g. In particular, we have

	(2)
�j
(��) �g�F w NjX

i=1

	(2)
�j
(� � �Nj

i )~a
Nj

i : (130)

We now come to the recursion step. On the one hand side we have from

(120)

�(2)
�J
(��) �g�F w NjX

i=1

�(2)
�J
(� � �Nj

i )~a
Nj

i : (131)

On the other hand side we have

�(2)
�j�1

(��) �g�F w Nj�1X
i=1

�(2)
�j�1

(� � �Nj�1

i )~a
Nj�1

i (132)

with coe�cients ~a
Nj�1

i given by

~a
Nj�1

i w

4�

Nj�1
�(2)
�J
(��Nj�1

i ) �g�F : (133)

Inserting (131) into (133) we �nd (121). In other words, the coe�cients

~a
Nj�1

i can be calculated recursively starting from the level J . Moreover, the
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coe�cients are independent of the special choice of the kernel. This �nally

leads us to the formulae

�(2)
�j
(��) �g�F w NjX

i=1

�(2)
�j
(� � �Nj

i )~a
Nj

i ; j = J0; : : : ; J; (134)

and

	(2)
�j
(��) �g�F w NjX

i=1

	(2)
�j
(� � �Nj

i )~a
Nj

i ; j = J0; : : : ; J � 1; (135)

with coe�cients ~a
Nj

i given by (125) and (121).

This recursion procedure leads us to the following decomposition scheme:

g�F ! ~aNJ ! ~aNJ�1 ! : : : ! ~aNJ0

# # #
~wJ ;� ~wJ�1;� ~wJ0;� :

(136)

The coe�cient vectors ~aNJ0 , ~aNJ0+1 ; : : : allow the following reconstruction

scheme of g�F :
~aNJ0 ~aNJ0+1 ~aNJ0+2

# # #

	
(2)
�J0

�g�F 	
(2)
�J0+1

�g�F 	
(2)
�J0+2

�g�F
& & &

�
(2)
�J0

�g�F ! +! �
(2)
�J0+1

�g�F ! +! �
(2)
�J0+2

�g�F ! +! : : : :

(137)

It is worth mentioning that the coe�cient vectors ~aNj do not depend on

the special choice of the scaling function f�(2)
�j gj2Z in L2(
). Moreover, the

coe�cients can be used to calculate the wavelet transforms 	�j (��) �g�F for

j = J0; : : : ; J � 1 and all � 2 
.

4.3 Empirical Multiscale Coe�cients

In Section 2.1 we introduced the error model such that for any � 2 


~�(�) is N(0; �2)-distributed, i.e. E[
�g�F� (�)] = (�F ) (�), var[

�g�F� (�)] =
var[~�(�)] = �

2. Furthermore, we have cov[~�(�); ~�(�)] = K(� � �) for �; � 2 
.
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Theorem 4.1.For j = J0; : : : ; J � 1, and all � 2 
, the expectation value

and variance of ~wj;� satisfy

E[ ~wj;�] = wj;�; (138)

var[ ~wj;�] = covj;�(K): (139)

Proof. The Fubini Theorem of measure theory allows us to interchange in-

tegration and the calculation of the expectation values, as the considered

Lebesgue integrals are �nite. In doing so we obtain

E[ ~wj;�] =

Z



	(2)
�j
(� � �)E

h�g�F� (�)i d!(�)
= wj;�: (140)

Next we see that

var[ ~wj;�] = E

h
( ~wj;� �E[ ~wj;�])

2
i
=

= E

�Z



Z



	(2)
�j
(� � �)	(2)

�j
(� � �)~�(�)~�(�)d!(�)d!(�)

�
=

Z



Z



	(2)
�j
(� � �)	(2)

�j
(� � �)E[~�(�)~�(�)]d!(�)d!(�)

=

Z



Z



	(2)
�j
(� � �)	(2)

�j
(� � �)K(� � �)d!(�)d!(�)

= covj;�(K): (141)

This is the desired result. �

Following the ideas proposed by D.L. Donoho, I.M. Johnstone (1994,

1995), each empirical coe�cient consists of a certain amount of noise, but

only relatively few consist of signi�cant signal. Therefore, the canonical

question is to ask which of the coe�cients contain signi�cant signal, and

which are mostly noise. Once we have chosen the set of coe�cients con-

taining signi�cant signal, some attempt might be made to remove the noise

from each empirical coe�cient. The idea of thresholding represents a very

useful method to estimate (g�F )J .
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4.4 Scale Thresholding

Since the large `true' coe�cients are the ones that should be included in a

selective reconstruction, in estimating an unknown function it is natural to

include only coe�cients larger than some speci�ed threshold value.

In our context a `larger' coe�cient is taken to mean one that satis�es for

j = J0; : : : ; J and i = 1; : : : ; Nj�
~a
Nj

i

�2
w

�
4�

Nj

�2 Z



Z



(g�F )(�)(g�F )(�)�(2)
�j
(� � �Nj

i )�(2)
�j
(� � �Nj

i )d!(�)d!(�)

�
�
4�

Nj

�2 Z



Z



K(� � �)�(2)
�j
(� � �Nj

i )�(2)
�j
(� � �Nj

i ) d!(�)d!(�)

= k
2
j ; (142)

where we have used the abbreviation

kj =
4�

Nj

 
1X
n=0

2n+ 1

4�
K
^(n)

�
�^�j (n)

�4!1=2

: (143)

Remark. In particular for bandlimited white noise of the form (cf. R. Rum-

mel (1992))

K(� � �) =
�
2

4�
P0(� � �) =

�
2

4�
; (144)

(�; �) 2 
� 
, we �nd

kj =
2
p
�

Nj
�

�
�^�j (0)

�2
; j = J0; : : : ; J : (145)

For the given threshold values kj such an estimator can be written in explicit

form: �d�F�
J

=

NJ0X
i=1

I
fj~a

NJ0
i j�kJ0g

�(2)
�J0

(��NJ0

i )~a
NJ0

i

+

J�1X
j=J0

NjX
i=1

I
fj~a

Nj
i j�kjg

	(2)
�j

�
��Nj

i

�
~a
Nj

i : (146)
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In other words, the large coe�cients (relative to the threshold kj ; j =

J0; : : : ; J � 1) are kept intact and the small coe�cients are set to zero.

Motivated by our results explained in Section 5.3 the thresholding will be

performed on ~vJ0;� and ~wj;�, j = J0; : : : ; J � 1. The thresholding estimators

of the true coe�cients vJ0;�, wj;� can thus be written in the form

v̂J0;� =

NJ0X
i=1

�kJ0

�
~a
NJ0

i

�
�(2)
�J0

�
� � �NJ0

i

�
;

ŵj;� =

NjX
i=1

�kj

�
~a
Nj

i

�
	(2)
�j

�
� � �Nj

i

�
; (147)

where the function �� is the hard thresholding function

�
hard
� (x) =

�
x if jxj � �

0 otherwise :
(148)

The `keep or kill' hard thresholding operation is not the only reasonable

way of estimating the coe�cients. Recognizing that each coe�cient ~wj;�

consists of both a signal portion and a noise portion, it might be desirable to

attempt to isolate the signal contribution by removing the noisy part. This

idea leads to the soft thresholding function as considered by D.L. Donoho,

I.M. Johnstone (1994)

�
soft
� (x) = sgn(x)maxf0; jxj � �g (149)

which can also be used in the identities (147) stated above. When soft

thresholding is applied to a set of empirical coe�cients, only coe�cients

greater than the threshold (in absolute value) are included, but their values

are `shrunk' toward zero by an amount equal to the threshold �.

Summarizing all our results we �nally obtain the following thresholding mul-

tiscale estimator�d�F�
J

=

NJ0X
i=1

�kJ0

�
~a
NJ0

i

�
�(2)
�J0

(��NJ0

i )

+

J�1X
j=J0

NjX
i=1

�kj

�
~a
Nj

i

�
	(2)
�j

�
��Nj

i

�
: (150)

In doing so (d�F )J �rst is approximated by a thresholded (g�F )J0 , which
represents the smooth components of the data. Then the coe�cients at

higher resolutions are thresholded, so that the noise is suppressed but the

�ne{scale details are included in the calculation.
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5 Selective Multiscale Inversion of Pseudodi�er-

ential Equations

Finally our purpose is to develop a thresholded multiscale approximation

method that allows a reconstruction of ��1
G = F from error{a�ected `data'

~G =g�F .
5.1 The Operator Equation

Consider a sequence f�(2)
�j gj2Z, with �

(2)
�j 2 L2[�1;+1] for all j 2 Z, con-

stituting an approximate identity in L2(
) (in the sense of Section 1.3).

Suppose that � : L2(
)! L2(
) is an (invariant) pseudodi�erential opera-

tor with the following properties:

(i) for all integers n 2 N0

�^(n) 6= 0; (151)

(ii)
1X
n=0

�
�^(n)

�2
<1 (152)

Then it is easily seen that � represents an injective, bounded, compact op-

erator with in�nite dimensional range. The image im(�) of � is equal to the

Sobolev{like space �(L2(
)) = H(f(�^(n))�1g; 
) � L2(
) (for notational

details the reader is referred to W. Freeden et al. (1998)). Hence, it is

a well-known fact (see, for example, A.K. Louis (1989)) that ��1 is not

bounded on L2(
). Moreover, it is clear that the problem

�F̂J = ĜJ ; F̂J 2 L2(
); (153)

with

ĜJ =

NJ0X
i=1

�kJ0

�
~a
NJ0

i

�
�(2)
�J0

�
��NJ0

i

�
(154)

+

J�1X
j=J0

NjX
i=1

�kj

�
~a
Nj

i

�
	(2)
�j

�
��Nj

i

�
is solvable if and only if ĜJ is a member of im(�), i.e. ĜJ satis�es the
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spectral condition

1X
n=0

2n+1X
k=1

 
(ĜJ)

^(n; k)

�^(n)

!2

<1: (155)

In our approach the last estimate, of course, can be understood as a restric-

tion on the family f�(2)
�j gj2Z constituting an approximate identity in L2(
).

More explicitly, the operator equation (153) is uniquely solvable from the

`data' (154) by the function

F̂J =

NJ0X
i=1

�kJ0

�
~a
NJ0

i

�
��1

�
�(2)
�J0

(��NJ0

i )
�

+

J�1X
j=J0

NjX
i=1

�kj

�
~a
Nj

i

�
��1

�
	(2)
�j
(��Nj

i )
�

(156)

if and only if
1X
n=0

2n+ 1

4�

 
(�^�j (n))

2

�^(n)

!2

<1 (157)

for j = J0; : : : ; J . In consequence, all bandlimited families f��jgj2Z can be

used within the solution process.

As signi�cant examples of operator equations we �nally mention two impor-

tant problems in modern physical geodesy.

5.2 The Stokes' Problem

Denote by L2
1(
) the space of functions F 2 L2(
) satisfying F^(0; 1) = 0

and F
^(1; 1) = F

^(1; 2) = F
^(1; 3) = 0. The problem of determining

the anomalous potential on the earth's surface from given gravity anomalies

ĜJ of the form (154) is provided by the Stokes' operator � : L2
1(
) !

L2
1(
) given by �^(n) = (n� 1)�1, n = 2; 3; : : :. Obviously, the operator �

ful�lls the (canonically modi�ed) properties (151) and (152). The anomalous

potential F̂J is uniquely determined by (156) if and only if

1X
n=2

2n+ 1

4�
(n� 1)2

�
�^�j (n)

�2
<1 (158)

for j = J0; : : : ; J � 1. But this means that in addition to bandlimited func-

tions ��j , j = J0; : : : ; J , certain types of non{bandlimited kernel functions
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can be used within the computation, too. Examples (cf. Section 1.4.2) are

the Abel{Poisson singular integral or the locally supported singular integral

with k � 1. Another useful example is the Tikhonov{Philips kernel de�ned

by

�^�j (n) =
(�^(n))2

(�^(n))2 + �2j(n+
1
2
)2
; n = 2; 3; : : : : (159)

5.3 The Satellite{Gravity{Gradiometry Problem

The problem of determining the gravitational potential F̂J on the `earth's

sphere' (with radius R) from second order radial derivatives at the `orbital

sphere' (with radius  > R) (for more mathematical details seeW. Freeden

(1999)) can be formulated by an operator equation �F̂J = ĜJ , where the

symbol f�^(n)gn2N0 is given by

�^(n) =

�
R



�n
(n+ 1)(n+ 2)

2
; n = 0; 1; : : : : (160)

Obviously, the properties (151) and (152) are satis�ed. The solvability con-

dition reads as follows:
1X
n=0

2n+ 1

4�

�


R

�2n� 
2

(n+ 1)(n+ 2)

�2 �
�^�j (n)

�2
<1 : (161)

Of course, all bandlimited kernel functions or (bandlimited) truncations of

non{bandlimited kernel functions ful�ll the last condition. But it is also

possible to choose the Tikhonov{Philips{kernel in the aforementioned form,

whereas the Abel-Poisson Singular Integral merely satis�es the solvability

condition if and only if 0 < log 
R � �j , which is not ful�lled for su�ciently

large j, such that this kernel is not appropriate in that case.

In particular for bandlimited white noise of the form (cf. R. Rummel

(1997))

K(� � �) =
�
2

4�
P0(� � �); (�; �) 2 
� 
; (162)

we �nd

kj =
2
p
�

Nj
�

�
�^�j (0)

�2
; j = J0; : : : ; J � 1: (163)

This yields

F̂J =

NJ0X
i=0

�
2
p
�

NJ0

�
�
��̂J0

(0)
�2
�
~a
NJ0

i

�
��1

�
�(2)
�J0

�
��NJ0

i

��
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+

J�1X
j=J0

NJ0X
i=0

�
2
p
�

Nj
�
�
��̂j

(0)
�2
�
~a
Nj

i

�
��1

�
	(2)
�j

�
��Nj

i

��
(164)

as selective approximation of the satellite{gravity{gradiometry problem.
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