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Abstract

Mean field equations arise as steady state versions of convection-diffusion
systems where the convective field is determined as solution of a Poisson
equation whose right hand side is affine in the solutions of the convection-
diffusion equations. In this paper we consider the repulsive coupling case
for a system of 2 convection-diffusion equations. For general diffusivities
we prove the existence of a unique solution of the mean field equation by
a variational technique. Also we analyse the small-Debye-length limit and
prove convergence to either the so-called charge-neutral case or to a double
obstacle problem for the limiting potential depending on the data.



1 Introduction

Consider two species of oppositely charged particles (e.g., negatively charged
conduction electrons and positively charged holes in a semiconductor crystal or
negatively and positively charged ions in a plasma) whose motion is described
macroscopically be the drift-diffusion-Poisson system

ny = div(Vf(n) —nVQ) (1)
pr = div(Vf(p) +pV®) (2)
MO = n—p—C(z). (3)

Here n > 0 and p > 0 are the position densities of the negatively and, repectively,
positively charged particles, ® is the (self-consistent) Coulomb potential and
C(z) € L*™(R) is the difference of background ion position densities. A > 0 is
a (usually small) parameter representing the scaled Debye-length of the particle
system. f = f(s) is the (nonlinear) pressure function satisfying f’(s) > 0 for
s > 0. For the sake of simplicity we assume in this paper equal pressure-density
equations of state for both particles.

The equations (1),(2),(3) are posed in a bounded domain Q@ C R?, d € N,
where the particles are assumed to be confined. We assume zero-outflux condi-
tions:

(Vf(n) =nV®)-v=(Vf(p) +pV®P®)-r=0 on 09, (4)
and a zero-outward electric field
V®-v=0 on 09, (5)
were v denotes the (formal) exterior outward unit vector normal of 0f2.

Remark 1. The subsequent analysis can easily be extended when (3) is supplied
with homogeneous Dirichlet and homogeneous Dirichlet-Neumann boundary con-
ditions.

Also we supplement the equations by initial conditions for the densities

n(z,t=0)=n.(z) >0 , /Qno(:r) de =: N (6)
p(z,t =0) =po(z) >0 /on(:c) dx =: P (7)

N and P are the total negative and, respectively, positive charges, which
are conserved by the evolution of (1),(2). Therefore we do have to require total
charge neutrality of the system

N-P= /QC(Q;) dz. (8)



As basic reference for drift-diffusion-Poisson systems with linear diffusion
we cite [MRS90], where many further references can be found. Recently, the
limit ¢ — oo has been investigated for the bounded domain [Gaj85, GaGr89,
CJMTUO00, Ott00] and for the whole space problem [BiD099, BDM99, AMT98,
AMTU98, CIMTUO00, Ott00] and the limit A — 0 of the parabolic- elliptic system
ws analysed in [Gas, GLMS99] (where results for time intervals of O(1)-length
were obtained).

We reiterate that in this paper we consider mean field equations for two
(or one) types of repulsive particles (electrostatic Coulomb interaction). The
theory of mean-field equations in the attractive (gravitational) case is decisively
different as, in general, solutions do not exist for arbitrarily large mass-parameters
(cf., e.g. [CLMP]). This corresponds to finite-time blow-up of solutions of the
parabolic-elliptic system of convection-diffusion equations coupled attractively to
the Poisson equation, as known from , e.g., turbulence modelling and chemotaxis.

In this paper we are interested in the limit A — 0+ of the stationary system
corresponding to (1)-(8). To compute the steady state of a nonlinear (possibly de-
generate) convection-diffusion equation with given potential V = V(z) € L*>(),

uy = div(Vf(u) + uVV(2)), / uder =M >0, u>0,
Q

we write the flux as
Vfi(u)+uVV(z) =uV(h(u) +V(z)),

where the enthalpy h = h(s) is defined by

h(s) = /1 G 9)

r

Then for the equilibrium state u = uq(z) we find that h(u(z)) + V(z) is
constant on connected components of {u, > 0}. It turns out that the unique
equilibrium state, which minimizes the corresponding entropy [CIJMTUO00], is
given by

Uoo(w) = g(c— V(2)), (10)
where g is the generalized inverse of the enthalpy,
0 , o<h:=h0+) _
9(o) = _ , Voe(—oo,h).  (11)
h='(t) , h <o <h:=h(c0)

The constant ¢ in (10) is determined such that

M = /Qg(c - V(x)) dz. (12)



Note that a unique constant c satisfying (12) exists (at least) for
00 if h=o0

Me (0,M), M= _ _
/g(h—i—essing—V(x)) dr if h<oo
Q

For the typical choice

m >1 : porous medium case
f(s) =s™, m =1 : linear case (13)
m <1 : fast diffusion case
we calculate
(st —1)  , m>1 (—co<h=-—" h=o0)
h(s) = log(s) , m=1 (—co=h,h=00) (14)
o (1—5~0m) | m <1l (—o0=hh = < )
and
(+o2")™" | m>1
g(0) = exp(o) , m=1 (15)
(1 — al_Tm)_l% , o m<1

Another physically important case is given by the Fermi-Dirac distribution
[Groe86, GaGr89]

Fo) =sF ) = [P e (16)
with
h(s) = F(s) — F~'(1), —o0=h,k = oo (17)
and
90)=F (o +F(1)). (18)
where




By formally applying the solution formula (10) to (1)-(7), we obtain the steady
state drift-diffusion-Poisson system (called the “mean field equation” in the se-
quel) for the equilibrium potential ® = @,

MO = n[®] —p[®]-C(z), z€ (19)
n[® = g(a[®]+®) (20)
pl®] = g(B[P] - ®) (21)

subject to homogeneous Neumann conditions
Ve&.-v =0 on0Q. (22)

The constants «[®], 5[®] (so-called Fermi-levels), which determine the particle
densities 1 = n[®], po = p[®], are given by the normalisations

/Q o(a®]+ @) dz = N, (23)

/Q g(Bl0] - ®) dz = P, (24)

where (8) is assumed to hold for consistency reasons.

We refer to [GaGr89, CDMS99] for an analysis of (19)-(22) in the “linear”
case g(o) = exp(o) (Boltzmann distribution) and to [BDM99, Unt97] for the
model in “nonlinear” cases.

It turns out that (19)-(21) is a critical point of the functional

L[@] = %/Q|V<I>|2 dx—/ﬂC’(x)@ dz

+ [ Glalo)+ ) do+ [ G(ol] - @) do
~ Nafa] - Pgla], (25)

where G is a primitive of g. We shall show in the case h = oo that Jy is a
strictly convex, weakly lower semicontinuous, bounded from below functional
on an apropriate convex set. The solution of (19)-(21) is therefore uniquely
determined as the minimum of J,.

Actually, the constraints (23), (24) which determine o and 5 makes the prob-
lem nonlocal and it turns out that a transformed functional is easier to handle
(in case of h = oo and for carrying out the limit A — 0, see Appendix A). This
new functional reads

1
E)\(n,p):/H(n) da:—i—/H(p) dac—i-ﬁ/|VV|2 dx
Q Q 0
)



where (H') ™' = g/(0,4+00) (i-e. H' = h) and where V = V[n — p — C] is given by
-AV=n—-p-C

(with homogeneous Neuman boundary conditions) and has now to be minimized
under the constraints

N:/n(x)d:v and Pz/p(x)d:v, n>0,p>0.
Q Q

The constants a and # now simply appear as Lagrange multipliers associated to
the normalization constraints for the L'-norms of n and p.

This allows us to state our first result.
Theorem. A. With the above notations, (19)-(21) has a unique solution.

The functional E is the one which is used to study in L' the asymptotic
behaviour of drift-diffusion problems corresponding to a nonlinear diffusion (see
[CIMTU00, BDM99] for the case with a Poisson coupling; see [AMTU98, AMT98,
BiDo099] for the case with Poisson coupling and a linear diffusion). Such a frame-
work is also especially convenient for the study of the so-called insulator limit
(see [CDMS99] for a justification in terms of physical quantities) corresponding to
A — 0, and as in [CDMS99] (this paper is basically a generalization of [CDMS99]
emphasizing the abstract structure of the problem), we have to distinguish two
regimes.

Theorem. B. If either N > [, C™" dx or (equivalently) P > [, C~ dz, then the
solution of (19)-(21) converges as A — 0 to the solution of (19)-(21) with A =0,
which is unique. In the other case, there exist two measurable subsets of €2, €2,
and ), respectively, with Q, C {C > 0}, Q, C {C < 0}, and a unique solution
(no, po, Vo), which is the limit of (n,p, V) as A — 0, such that

_AVO:no_pO_C, /%dm:o, /n()dx:N, /pod.fE:P,
Q Q Q

VozessingO on Q,
AVp=C on Q\(QUQ)
Vo =esssupVy on Q,
Q
— Ct on Q, _JC oon Q,
710 on Q\Q  PPT 10 om 0\ Q,



The conditions N > [,C* dx and P > [,C~ dx are equivalent because of
the global charge neutrality (25)). In the second case, AV = C on Q\ (€2, UQ,)
and vy is constant on {2, and €2, where it reaches its maximum and its minimum
respectively. Note that this double obstacle for V' is uniquely determined by the
side condition an C* dx = N.

The paper is organized as follows. The remainder of the first section is devoted
to some preliminary results. A more detailed statement of Theorem A and its
proof are given in Section 2, and Section 3 deals with the insulator limit. Remarks
on the Legendre transform of the functional can be found in Appendix A and an
extension to unbounded domains (corresponding to one species of particles, or
two species when one looks for intermediate asymptotics) is given in Appendix B.

Before going further, let us fix some notations and state the detailed assump-
tions we shall use throughout this paper.

A.1 QCRY deN, is a bounded, nonvoid domain.

A2h:J—>R J=R":=(0,00) or J =R} := [0,00), is continuous and
strictly increasing.
h:=inf;h, h:=sup; h. J =R" iff h = —o0.

A.3 H:R — R is continuous, differentiable on R and

Vs e RY :  H'(s) = h(s).

A.4 g:(—o0,h) — J is the generalized inverse of h as defined in (11).
A5 CeL®). C= ess inf C, C =esssupC.
Q

Remark 2. a) H is strictly conver.

b) g is continuous and increasing, strictly increasing on (h, h) and lim g(t) = oo.
t—h

In the sequel we shall assume that assumptions A.1 and A.5 are always
satisfied.
Let f € L'(Q) with [, f dz = 0. If there is V € H*(Q) with [,V dz =0 and

Vo € HY(Q) : /vi-wdx:/qusdx,

- which is, e.g., the case for all f € L'(Q) N H~'(Q) with [, f dz =0 - then V
will be uniquely determined (by f) and we will set V' = V[f] and certainly

/ YV dz < oo.
Q



We observe: V[f] is a weak solution of
—AV = fa

subject to homogeneous Neumann boundary conditions. However, if, for a given
f,no such V € H*(Q) exists, then we set

[ 1ovin e = oo

We introduce for N, P € Rt with N — P = fQ C dz the set

C = {(n,p)ELi(Q)xLi(Q):/ndsz,/pd:va},
Q Q
and we define for A\ € RT,
E)\ZC—)RU{OO},
1
EA(n,p):/H(n) dx—i—/H(p) da:+—/|VV[n—p—C]|2 dx,
Q Q 2X Jo

where we make use of Jensen’s inequality ensuring that F) is bounded below.

1.1 A Semilinear Elliptic PDE of Order Two

In this section we shall derive several auxiliary results.

Proposition 1. Assume A.1 and A.5 and let A € R". Let I C R be a nonvoid,
open interval and let m : I — R be continuous and increasing with

—oo§ir;fm<Q§0, 0<C <supm < o0.
I
Then there is exactly one ® € H'(Q) with ®(z) € I for almost all x € Q and
m(®) ¢ € L'(Q), —A/V(D-V(;S:/m(@)d) d:v—/Cqb dz,
Q Q Q
for all ¢ € HY(QY). Furthermore, ® has the following properties:

1. € L™(Q), C<m (essigf@) <m <esssup <I>) <C,
Q

wn particular: there is a constant d € Rt such that

VA e R+ . ”(I)”L""(Q) S (i)



2. ® is the unique weak solution (in H*(Y)) of the semilinear elliptic PDE
AAD = m(P) — C,

subject to homogeneous Neumann boundary conditions.

5 /Qm(cp) d:c:/QCdx.

Proof. Let
¢
M:T—-R Mt :=/ m(s) ds,
to

where ¢y € I with m(ty) = 0. Since m(t(< 0 for ¢t < ¢, and since m(t) > 0 for
t > ty, the function M is a non-negative primitive of m. Furthermore, since m is
increasing, M is convex. We introduce the functional

Fy: H'(Q) —» RU {oo},

A
§/|V77\2dx+/M(n)dx—/Cndx if nec,
F\(n) = Q Q Q

3

where
Co={n€ H'(Q): n(x) € I for almost all z € Q}.

We certainly have infe, F) € R. Let (7 )ren be a minimizing sequence of F). By
assumption we have for almost all z € €2,

lim (m(t) — C(z)) <0, lim (m(t) —C(z)) >0,

t—inf I t—sup I

hence there is a compact interval [a,b] C I (which is, by the way, independent
of \) such that ¢ — M(t) — C(z)t is decreasing on (inf I, a) and increasing on
(b,sup I), i.e. for almost all z € :

Vit € (infl,a): M(t) —C(zx)t > M(a) — C(z) a,

Vit € (bysupl): M(t) — C(z)t > M(b) — C(z)b.
Now we set for £ € N,

k] :== min{b, max{a, ng}}.



Then ([m])ren is a sequence in H'(Q2) because cutting maps H'(Q) (continu-
ously) into itself. Furthermore, cutting does not increase the L?(2)-norms of the
gradients [Zie89]. Hence

Ve e N:  F([m]) < Fa(m),

and therefore ([nx])ken i @ minimizing sequence of F as well. By passing to a
subsequence (but without changing notation) we have

k] = @ € L®(Q) weak™ in L>(Q) as k — oo,

and therefore - since L>°(Q) C L?(€2) and since the L?(2 : R?)-norms of
(V[nk])ken are uniformly bounded - we have

(] = ® € H'(Q) weakly in H'(Q) as k — oo.

We readily deduce from a lower semicontinuity argument that ® is a minimizer
of Fy in H'(2). Since F) is strictly convex due to the quadratic leading term, ®
is the unique minimizer of Fy in H'(Q). The uniform bounds ny(z) € [a,b] C T
for almost all z € Q give m(®) € L*(Q2) and the associated Euler-Lagrange
equations

v¢eH1(Q);—A/qu»w:/ﬂm(@)qsdx—/ncqsdx

easily follow. The proof of the remaining statements is left to the reader. 0
In particular cases the result of Proposition 1 can be extended as follows.

Proposition 2. Assume A.1 and A.5 and let A\ € Rt. Let I C R be an open,
nonvoid interval with inf I € R or supl € R. Let m : I — R be continuous and
increasing. Assume furthermore one of the following conditions

1. IfinfI € R and if

iI}fm:QSO, 0<C <supm < 00,
I
then we set

C if inf, =)
my : [inf I,supI) — [C,00), my(p) =

m(p) if infr <p
2. If supI € R and if
—oogil}fm<Q§0, 0<C =supm,
I

then we e set

_ m(p) if p<supl
myp : (lan, Sup[] - (—OO,C], mO(p) =

C if p=supl

10



3. IfinfI,supl € R and if
ir;fszSO, 0<C =supm,
T

then we set
C if p=inf;
mo : [inf I,supT] = [C,00), molp) = { m(p) if infy < p

C it p=supl

Then there is ezactly one ® € H'(Q) with ®(x) € dom(myg) for almost all x €
and

mo (®) ¢ € L'(Q), —A/V@-v¢=/nm@wdx—/cwd@
Q Q Q
for all $ € H'(Q)). Furthermore, ® has the following properties:

1. e L*(Q), C<mg (essigf@) < my (esssgp@) < C,
in particular: there is a constant ® € R such that
VAER :  ||®]| (o) < .
2. ® is the unique weak solution (in H'(QY)) of the semilinear elliptic PDE
AAD =my(P) — C,

subject to homogeneous Neumann boundary conditions.

3 /ng(cb) d:cz/QCdx.

Proof. We consider case 1. Cases 2. and 3. can be treated in analogy. We define
the function

my : (—oo,supl) - R

C+(p—infl) if pe (—oo,infI]
mi(p) = ) )
m(p) if p € (infl,supl)
Since inf m; = —oo < C, we can apply proposition 1 to obtain:

There is exactly one ®; € H'(Q) such that ®,(z) € (—oo,sup ) for almost all
x € €2 and

my (®,) ¢ € L'(Q), —)\/ Vo, -Vo¢ = / m1 (D)o dx — / C ¢ dx,
Q Q Q
for all ¢ € H'(Q2). Furthermore, ®; has the following properties:

11



1. &, € L™(Q), C<my (essigf@l) <m (esssup ®1> <C,
Q

2. @, is the unique weak solution (in H'(f2)) of the semilinear elliptic PDE
)\A(bl = ml((bl) — C,

subject to homogeneous Neumann boundary conditions.

/m1 dx—/Cd:L'.
Q

my (®,) ¢ € L(Q —A/v<1>1 Vo = /m1 qﬁdx—/C’ngda:

We deduce from estimate 1.: my(®;) = my(®;). Hence for all ¢ € H'(Q),

mo(®1) ¢ € L' (D —)\/V@l Ve = /mo ¢dx—/0q$dx

®,(x) € dom(myg) = [inf I, sup I) for almost all z € Q,
&, € L*(Q), C<m (ess igf @1> < my <ess sup <I>1> <C,
Q

®, is a weak solution (in H'(f2)) of the semilinear elliptic PDE
AA(bl = m0(<I>1) - C,

subject to homogeneous Neumann boundary conditions, and
mo(®1) dx = / C dz.
Q Q
Now let ®*(z) € dom(my) for almost all z € 2 and

mo (®*) ¢ € L'(Q —)\/V@* Vo = /mo (;de—/C(;de

Then mo(®*) = my(P*) as well and we deduce ®* = ®; from the uniqueness
result cited above.
The verification that the semilinear elliptic PDE

AAD = my(®) — C,

subject to homogeneous Neumann boundary conditions and
/ mo(®) do = / C dz, has a unique solution in H'(Q) is left to the reader. [
Q Q

12



1.2 An Abstract Variational Problem

In this section we consider the limit A — 0 of an abstract minimization problems
with a class of functionals containing F).

Theorem 3. Let (B, ||.||) be a Banach space and let
CC*B
be nonvoid, conver and weakly closed in *B. Let

E,F:C — RU{oo}, be bounded below with iIcle < 00, iIclfF < 00.

We set
C*:={zx€C:E(x) < oo}.

For A e R let z) €C.
Assume

1. xy is for each X € RT a minimizer of Ey :== E + \7'F in C.
2. x)x — xg weakly in B as A — 0.
Then

a) limsup F(x)) < inf F.
A—0 ¢

b) If F is weakly lower sequentially continuous at o, then
F(zo) < i(I:l*f F.
¢) If F is weakly lower sequentially continuous at xo and if E(x¢) < oo, then
Zo 18 a minimizer of F in C*, i.e.

F(zo) = iél*fF.

d) If x* is a minimizer of F in C*, then

limsup E(z,) < E(z").
A—0

e) If =* is a minimizer of F in C* and if E is weakly lower sequentially con-
tinuous at xg, then

E(z) < E(x).

13



f) If E and F are weakly lower sequentially continuous at xo and if E(zq) < 0o,
then xo is a minimizer of F in C* whose “enerqy” E(xq) is less or equal the
energy E(z*) of any minimizer z* of F in C*.

Proof. a) Let —p € R be a lower bound of E in C. Let z € C with E(z) < oo.
Since A > 0 we have

AME () + p) + F(za) < ME(2) + p) + F ().
Hence by non-negativity of E(z)) + p,

limsup F'(z,) < F(x).
A—=0

b) follows from a).

c¢) If E(xy) < oo, then x4 is by b) a minimizer of F in C*.

d) Let —p € R be a lower bound of E, F. Let z, € C* be a minimizer of F in C*.
Then E(z*) < oo and we obtain for all A € R the estimate

1 1
(E(2x) +p) + 3 (F(22) + ) < (B(2:) + p) + 1 (F(2) + p),
from which we deduce E(z)) < 0o, hence z, € C*, and due to F(z.) < F(z,),
E(z)) < E(z.).

e) follows from d) and f) follows from a)-e). O

2 The Main Results

2.1 NeRT

The main result of this section is

Theorem 4. Assume A.1-A.5. Let A € R and let N, P € Rt with
N-P= / Cdx.
Q

Then:
1. The functional E\ has a unique minimizer (ny,py) in C.

2. nx,pa € L>(Q) with

Q
+

ny<C+—, pA<—

- meas(Q2)’ ~  meas(Q)’

14



3. There are oy, By € R such that

ny =g (an— A7),

=9 B+ AV,

where V) = V[ny — px — C], hence if one sets ) := —\"1Vj, then
)\A@)\zg(a,\—i—@)\)—g(ﬁ)\—CDA)—C’, /(I))\dﬂf:(),
Q
subject to homogeneous Neumann boundary conditions and

/g(a)\—{—(I))\) dr = N, /g(,B,\—CI),\) dz = P.
Q Q

Proof. Due to the lack of coercitivity (in case of A < co) of E) it is not obvious
that F, has a minimizer in C. The argumentation will be based settled on the
semilinear equation

MY = g(a+T)—g(B—T) - C (26)

subject to homogeneous Neumann boundary conditions. In (26) the constants
a,  are a priori unknown. Our program is to prove: There are o, 3 € R such
that [,g9(a+¥)dz=N, [,9(8— V) dz=P.

We consider for ¢ € (—o0, 2h) the semilinear elliptic PDE

MO =g(c+ @) —g(—P) - C (27)
subject to homogeneous Neumann boundary conditions. This problem fits with
m()=g(c+.)—g(=), I=(-hh—c)

to Proposition 1: there is a unique ®, € H'(2) which solves (27) subject to
homogeneous Neumann boundary conditions. Furthermore, ®. belongs to L*°(£2)
and if we set

nc:g(c+(1)c)a pc:g(_cbc)a

®, :=esssup ., P, :=ess igf D,
o Ze

then we deduce from (27) the estimates

g(c+®) —g(—®) <C, g(c+P)—g(—2)>C. (28)

15



Hence the functions n., p. belong to L>(2). Let us introduce

N, = / ne do = / g(c+®.)dzx, P.= /pc dr = / 9(—P,) dx.
Q Q Q Q
Then N, — P, = [,C dx and we have

P

_ N,
o) < C+ ———=, .
el zoeo) < €'+ meas(§2)

cllreoy < —C + —————.
[Pl @=Lt meas(§2)

We have to prove: there is ¢ € R such that N, = N, P, = P. This is shown
in several steps.

¢+ (N, P,) is continuous. Indeed, let ¢ € (—oc,2h) and let (cx)ren be a se-

quence in (—oc,2h) with limy_, cx = c and let (Cki(k))ken be a subsequence of
(ck)ken. We have to prove: there is a subsequence (Ci,(k))ren Of (Ciy (k) )ken With

lim N,

k— 00

oy = Neo i Foy ) = Pe.

We deduce from (28): There are Ky, K7 € N such that for all £ € N
17e || 2o ()5 [|Peg [l 2oy < K1, k> K.

Hence there is a subsequence (k3(k))gen of (k1(k))ren and there are mg,py €
L*>(Q) with

Nkg(k) — M0, Pha(k) — Mo weak™ in L>°(2) as k — oo.
We deduce:
Ppok) — Po  strongly in H'(Q) as k — oo
where
APy = ng —po — C,

subject to homogeneous Neumann boundary conditions. Hence there is a subse-
quence (kg(k))keN of (kg(k))keN with

O, k) (2) = Po(x) for almost all z € Q as k — oo.

We deduce

Toky (i) (2)
= g(Chyk) + Prair)) () = g(c + Po)(2) for almost all z €  with k£ — oo,

16



Pra(k) (@) = 9(=Pryry) () = g(—Po)(2) for almost all z € Q with & — oo.

Hence ng = n., &9 = @, po = p. and therefore due to weak* convergence in
L>(Q), limy_, o NV, = N,, limy_, o P, P..

Chy (k) ko (k)

lim,_, 5 N, = oo, lim,_ o7 P, = o0.

Here we only consider h < co. The case h = co can be treated similiarily.
Due to N, = P, + fQ C dzx it sufficies to prove: lim, ,,, P. = co. According to
c+ ®.(x) < h and —®,(z) < h for almost all z € Q, we deduce

c—h < —®,(r) <h foralmost all z € Q.

Hence

lim P, = lim [ ¢g(—®.) dz > lim g(c — h)meas(2) = occ.
c—2h c—2h JQ c—2h

If ¢ < ¢; < 2h, then ¢+ &, < ¢; + ®., and ¢, > ®.,. Indeed we have

/\Aq)c = g(C + (Pc) - g(_q)c) - C, AA(PCI = g(cl + cI)c1) - g(_q)m) - C.

Substraction and testing with [(c + ®.) — (¢1 + ®@,)]" € H(Q2) gives

i\ / IVi(e + @) — (o1 + )| de
- / (9(c+@0)—g(—Be) — (9(er+Bey) — g(~ o)) [e+-Be) — (c1 + 8] d > 0,

because ¢ is increasing and ¢ < ¢; implies —®.(x) < —®,, () for all z € Q with
c+ ®.(x) > 1 + D, (). Hence c+ @.(x) < ¢1 + P, (z) for almost all z € 2. The
estimate ®.(z) > &, (z) for almost all z € Q follows from a similiar argument by
using the test function [®,, — ®.]T € H'(Q).

In particular we deduce

If c <c, <2h, then N, < N,,, P, <P,

Behaviour of n, p, as ¢ — —oo Let ¢, € (—00,2h) be fixed. Then due to previ-
ous estimates we have for all ¢ € (—o0, ¢.],

P

Ne, + P,
meas(2)

= K,,
meas(2)

Inell ooy < C + < |Cllzoe (o) +

where K, € R" is independent of ¢ € (—o0, ¢,]. In analogy we obtain

|Pell oo (o) < K.
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We deduce: there is a sequence (ck)ren € (—00, ¢, with limg o cx = —00 and
there are n_,p_ € L*>°(2) with

Ne, — N—,Pe, — P—  weak™ in L®(Q) as £ — oo,

and certainly

lim N, = N_, lim P, =P_.

k—o0 k—o0
We also have for all £ € N,

/\A(I)ck = N¢p, — Dey, — C,
such that
||V(DCk||L2(Q:Rd) S Kl

for some K; € R* independent of £ € N. Hence - possibly after passing to a
subsequence but without changing notations -

1

o — m/ﬂ(DCk de — V_ € H'(Q) strongly in H(Q) as k — oo,

where [, V_ dz = 0. We introduce

w:=lim [ @, dr € RU {0},

k—00 o)

where we made use of the fact that ¢ — fQ ®. dx is increasing. Now it is easy to
see: Either w = oo with

®,, — oo almost everywhere on 2 as £ — oo,
or
., — ®_ strongly in H'(Q2) and almost everywhere on Q as k — oo,
where
AMP_=n_—p_—-C,

subject to homogeneous Neumann boundary conditions.We also introduce

w' = lim [ (g + @) doz € RU{—00},

k—00 o)

where we made use of the fact that ¢ — [, (c + ®.) dz is decreasing. We deduce
as above: Either w* = —oo with

¢k + P, — —00 almost everywhere on €2 as k — oo,
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or
cx + @, — @, strongly in H'(Q) and almost everywhere on 2 as k — oo,
where
MO, =n_—p_ —C,

subject to homogeneous Neumann boundary conditions.

Existence of ¢ € (—oo,2h) with N, = N, P, = P. Due to the previous results it
remains to prove: limy ,oo N, = 0 or limy_,o P, = 0. We distinguish with
respect to [, C dz.

fQ C dzxz > 0: In that case w € R is not possible, because

lim inf/ Ne, dz = lim inf/ g(cp + @, ) dx
Q Q

k—00 k—00
:0:—liminf/pckd:r—/0d:r<0
Q Q

k—o0

would follow. Hence w = co and therefore by Lebesgue’s dominated convergence
Theorem,

kll)l}loopck = /Qg(—(bck) dx = 0.
fQ C dz = 0: It is easy to see: If w = oo, then limy_, P, = 0, or if w € R, then
limk_)oo ch == 0.

fQ C dxr < 0: We consider the value of w*, proceed as in case of fQ C dr > 0 and
conclude limy_, o IV, = 0.

End of proof. We have shown: there is ¢ € R such that
AP, = g(c+ D) —g(—,) - C

subject to homogeneous Neumann boundary conditions has a solution &, €
H'(Q) with [, g(c+ @) dz =N, [,9(—P.) dz = P. We set

A
Vi = —A®, ®, dr,
A * meas(Q/Q v

1 1
— [ @ dz, = ——= [ Pcdz,
meas(2) /Q dz, P meas(2) /Q de

)y = C—
and
m=n.=g(ax=A"V), p=p.=g(B+ANA).
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Then it is easy to see that (ny,py) € C satisfy the variational inequalities
h(ny) + A™'Vy =a, on {ny > 0}
h(ny) + A7V > ay on {ny = 0} ’

h(p,\) — )\71V,\ = ﬂ)\ on {p)\ > 0}
h(px) = A™'Vy > By on {p) =0} ,

where V), = V[ny — py — C]. It is left to the reader to verify that the validity of
these variational inequalities ensures that (n,,p,) is the unique minimizer of F)
in C and to prove that n,, py have the properties as specified in the Theorem. [

2.2 AN—=0

The main result of this section is

Theorem 5. Assume A.1-A.5. Let N, P € RT with

N—P:/Cdx.
Q

For A € Rt let (ny,px) be the unique minimizer of Ey in C, see theorem /4, and
Vi =Vnyx —pr — C]. Then:

1. There is (ng,po) € C N (L*®(Q))? such that

ny — ng,pr — po  weak® in L®(Q) as A — 0,

2. Vy = Vo = Ving — po — C| strongly in H'(Q) as A — 0.
Furthermore,

8. If N > [,CT dz, P > [,C~ dz, then Vj = 0 and (ng,po) is the unique
minimizer of

F:C—RU {0}, E(n,p):/H(n) dx-l—/H(p) da
Q 0
in
CO:{(nap) EC’I’L—p:C}7é®,
i.e. there is a unique v € R and a unique p € L®(QQ) with

max{—C™*,-C~} < p, /deaU:N—/QCJr dsz—/QC_ dz,
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R(CT +p)+h(C+p)=v on {p>-CtIn{p>-C}
MCT+p)+h(C +p) =7 on {p=-CT}U{p=-C"}
determining ng, po via
n=C"+p, po=C +p.
4. If N=[,CTdz, P= [,C dz, then Vo =0 and
no=0C% py=C".

5. If N < [,Ct dz, P < [,C~ dx then there is a unique pair (Qn,p) of
measurable subsets of Q0 such that

meas(2,NQ,) =0, Q, C{C >0}, Q, C {C <0},

/C+dx:N, C™ dx =P,
n QP
ng=0C" on Q, p=C" on
no=0 on Q\Qn’ po =0 on Q\Qp’
Vo = essinfq Vy  on Q,
AVp=C on Q\ (2, UQ,) .
Vo = esssupg Vo on Q,

Proof. Let (Ag)ken be a sequence in R with limy o, Ay = 0. By the uniform
estimates on |1 ||z (), ||PAl|zo(@) there is a subsequence (g, (x))ken Of (Ak)ken
and there is (ng,py) € C such that

% 3 00
M ) — 0 Ph, ey — Po weak™ in L(Q) as k — oo.

Hence

Vi = Vo =VIno —po — C| strongly in H'(Q) as k — oo,
hence after passing to a subsequence (ka(k))ren of (k1(k))kens

V,\kz(k) — Vo for almost all x € €2 as kK — oo.
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We have to prove that (ng,py) are actually independent of the sequence
(Ak)ken- We proceed by a case-distinction and set

F:C— Rj U{oo}, F(n,p):/Q\VV[n—p—C’Hde.

The main ingredient is the application of theorem 3.

Case I: N> [,CTand P> [,C~.

We have C° # (). By theorem 3, the pair (ng,py) minimizes E in the set of all
minimizers of F' for which F is bounded, i.e. in {(n,p) € C° : E(n,p) < oo}. By
strict convexity, the functional F has exactly one minimizer in that set. It is left
to the reader to deduce the variational inequalities as specified in 3.

Case II: N = [, C" dz and P = [,C~ dz.
With the notations of Case I we have C® = {(C*,C™)}. The statement follows
from theorem 3.

Case III: N < [,C" dz and P < [,C~ dz. In this case the set C° is void.
However, we deduce from theorem 3 that (ng, pg) - we note that E(ng,py) < 0o
because ng, py € L*(Q2) - is a minimizer of F in C* = {(n,p) € C : E(n,p) < oo}.

We observe: 1, does not vanish identically. (Otherwise ng — py = C implying
N> [,C"dz, P> [,C dz). Hence due to [,V dz =0,

0 < meas({Vy < 0}), meas({V, > 0}) < meas(Q2),
and therefore

essinf Vy < esssup V.
Q Q

The sequence (ay, , — )\,;21(k)V,\k2(k)(.aﬁ))keN is, for almost all z € {V; < 0},
bounded above as £ — oo. Hence limy_, Wy = — 00 By the well-known
identification of weak* limits in L* and pointwise almost-everywhere limits of se-
quences of functions we obtain for almost all z € Q: If (ay, _/\lzzl(k)v)\@(k) (%))ken

converges in RU {£o00}, then ng(z) = limg_, 0o g(aAk2(k) — /\1;21(k)v>\k2(k) (z)). Hence,
up to a set of measure zero,

Now take z € Q such that limy_, V)\kz(k)(x) = Vo(x), that the sequence (o, k) —
A;zl(k)v/\h(k) (2))ken is bounded above and Vj(z) > essinfg V4. Then there is z € Q
with limg 0 Vi, (2) = Vo(z) = Vo(x) — 1 with some n € R* and the sequence
(o (k) — A,;zl(k)V,\kZ)(k)(z))keN is bounded above, too. Since limyo0(V, (%) —
Vs (2))/ Aka(k) = 00, we obtain up to a set of measure zero:

. . . -1
If limg oo Viey e () > essinfg Vg, then klggo (akz(k) — )\kz(k)V,\kz(k) (z)) = —00,

and ng(z) = 0 follows.
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Hence
Q,={ng >0} C{Vp = essigf%}
and in analogy

Vo <0} C{po =0}, Qp={po>0}C{Vp= esssngo},

in particular {ny > 0}N{py > 0} = 0. Now it is clear that V} satisfies the double-
obstacle problem as specified in 5. of the theorem. Concerning the pointwise
behaviour of ny on €2, we observe that V is constant on €2,. Since V € H(Q)
we deduce VV = 0 almost everywhere on ,, see [Zie89]. Furthermore, due to
the standard regularity theory of elliptic PDEs we have V € H} (). Following
[Zie89] once again we deduce 0;0;V =0, i,j = 1,...,d, almost everywhere on
each subset of {2 where 0,V is constant, in particular on €2,. Hence AV = 0
almost everywhere on €2, which implies n — C' = 0 almost everywhere on (2,
because p = 0 almost everywhere on €,,. Hence n = C* almost everywhere on
2,,. In analogy we deduce p = C'~ almost everywhere on €2,,.

As a consequence, the triple (ng, py, Vo) has the properties as specified in 5. of
the theorem.

It remains to be shown that there is at most one minimizer of F'in C*. Assume
that (n., p.) is a minimizer of F in C*. If ng—pg # n.—ps, then by strict convexity
we would obtain

F((no+n.)/2, (po +p+)/2)
/ V(0 — po — ©)/2) + ((ns — ps — C)/2)]? da

1
<—/|VV[n0—p0—C]|2das+—/|VV[n*—p*—C]|2 da
2 Ja 2 Ja

— F(noapﬂ) + F(?’L*,p*)
2 .

Hence n, —p, = ng—po and therefore n, = ng+ p, p, = po+ p for some p € L' (Q)
with fQ p dx = 0. We have on Q\ 2, ng = 0, hence p > 0, and we have in analogy
p>0onQ\Q, Since Q, and , are disjoint we obtain p > 0, hence p=0. O

Remark 3. a) Point 3 of Theorem 5 represents the case, where the limit satisfies
local charge-neutrality everywhere in §2.

b) The limit Vi in point 5 of Theorem 5 is the unique solution of a double ob-
stacle problem. The coincidence set €2, of the smaller obstacle essinfq Vjy s the
set where the electron density n equals the doping profile, the coincidence set €2,
of the larger obstacle esssupq Vjy is the set where the hole density p equals the
negative doping profile and the noncoincidence set Q \ (2, USY,) is the depletion
(vacuum) region where n = p = 0. Note that the double obstacle problem for V;
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1s somewhat nonstandard since the obstacles are not a-priorily given but deter-
mined by the constraints an C*tdx =N and fnp C~ dxz = P on the coincidence

sets. However, the a-posteriori reqularity theory for the free boundaries is by now
standard [Caf00]. They are (locally) C**-surfaces if the inhomogeneity C(x) is
ce.

Appendix A: Analysis of J,

We shall explain in a simple case the connection between the functionals .J, and
E)\, thus introducing for simplicity several technical assumptions that can be
removed with a more detailed analysis.

Consider as in the introduction the functional

J[®] = %/chm? dx—/QC(:c)@ da
+ / G(a[®] + @) dz + / G(B[D] — @) da

— Na[®] — Pp[9],
where o = o[®] and 8 = B[®] are determined by the condition
/g(a[@]—i—@) de = N, (29)
Q
/Q g(A0] - ®) dv = P, (30)

with ¢ = G' > 0, g # 0, lim,, o g(s) = 0 and bounded Q C R?. Note that
for ® € L>(Q), the map o — [, g(a + @) dz is well defined, continuous by
Lebesgue’s theorem of dominated convergence and converges to 0 and +00 as «
tends to —oo and 400, respectively. Analogous properties of course hold for the
map f — [, 9(8 — ®) dz. Note also that if g is nondecreasing (which is the case
if G is convex), then ¢’ is a positive measure on R. If we further assume that
g € L2 (R) and ¢' > 0 on R, then the functionals a[.] and §[.] are actually C*
on L*>(€2), and

Y a[cb] + ¢)x dz

d5l6]-x = & gﬂﬁ[‘[f; )de

Proposition 6. Assume Al and A5. If G € C*(R), G" = ¢ € L (R), ¢’ > 0
on R and li{rn g(s) = +o0, lim g(s) =0, then ®, is a weak solution of
S—+00 §—>—00

AADy = g(a[@y] + @)) — g(B[@A] — @) — C () (31)
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in H*NL>®(Q) subject to homogeneous Neumann boundary conditions if and only
if it is a critical point of J\[®] in H' N L®(Q). The functional J\[®] is strictly
convez, so Py is unique.

Proof. A straightforward calculation shows that for any ¢, y € H' N L%(),
a8l x = [ [V6- Vi (glaldl + 0) - (5161 - 6) — C0) x| do
+ | [ (otelol + 6) do - ] dafe] - x
= | [6(s161 - o) a - P| agte) x.

Using the constraints (29) and (30), we find that dJ,[®,] - x = 0 exactly means
that ®, is a weak solution of (31).

To prove the convexity of Jy, we shall consider ¢; and ¢ in H' N L*°(2).
Denoting ¢ = ¢ — ¢1, @' = tep1 + (1 — t)do and j(t) = Jy[¢!] for any t € (0,1), a
direct computation shows that

110 = [ ]vo'-Tu+ (g(alo] + 6 + 90616 - o) - C) )] a
and

J"(t) = A/Q VY[ de +/Q [9'(al¢] + ¢") — ¢'(Bl¢'] = ¢)] [vf do
(o d' (¢ + ¢V do)* ([ 9'(B[¢'] — ¢')¢ dx)?

Jo 9'(a[0!] + @) du Jo g' (B8] — ¢) dz
>\ / Vol da

by the Cauchy-Schwarz inequality. O

To prove the boundedness from below of Jj, it is actually simpler to consider
the functional

Ex(n,p) =/QH(n) da:+/QH(p) dx+%/QWV[n—p—C]|2 da

with H' = h and g related according to A4. Note that A2 and A3 are conse-
quences of the assumptions of Proposition 6. This functional has (according to
Theorem 3) a unique minimizer (ny,p,) in C such that

q))\ = )\_1V)\
)\A(I))\ZTL,\—p)\—C
with ny = g(a[®,] + ®)) and py = g(B[P,] — @) ,
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which is a critical point of Jy, so (by convexity) Jy is bounded from below by
JA[®,].

Note also that the constraints (29) and (30) can be rewritten as

Oj[(I)/\] + (I),\ = h(n,\)
BI®r] — @y = h(py) ’

where we make use of ny,py > 0 on €2 due to g > 0 on R. This is why
[(I),\] N fQ <I>>\)n,\ d.’l?
BI2A] P = [(h(px) + ®x)py dz

and therefore
A
J,\[(P,\] = —5/(I>,\A(P,\ diL‘—}-/G(a[(I))‘]—I—(I))‘)diL‘—f-/G(,B[(I))\]—(I))\)dl‘
Q Q

Q

—/CCD,\ dx—NOJ[(I),\]—Pﬁ[(I))‘]

= _% /Q(n,\ —py—CO)®)y dx + /(Goh(n,\) —nyh(ny)) dz

Q

+ [ (Gobn) = pahlp) dz + [ @r(ma s €) o

Q
1
—/H(m) dx—/H(p,\) dx——/ VVilna — ps — C? da
= —E)[ny, pal

using the fact that %[th(t) — Goh(t)] = h(t), and H(t) = th(t) — Goh(t) (up to a
constant which is chosen here equal to 0).

Appendix B: Unbounded domains

In this section we shall investigate (19)-(24) on unbounded domains. In this case
the analysis has to overcome several additional difficulties and further assump-
tions are needed.

We put
CE(Q) ={¢1Q: ¢ e PR},

and we assume

V.1 There is a linear operator V : L;,.(2) D dom(V) — L},

loc

all f € dom(V), the function V[f] is a weak solution of

(€2), such that for

—AV[fl=f, + homogeneous Neumann boundary conditions,  (32)
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1.e.

- [Vinasdo= [ fods, voecz@,
Q Q
V.2 The set domy(V) := {f € dom(V) : VV[f] € L*(Q : R%)} contains

T {peLOO(Q) : (supp(p) CC Q) A (/dex=0>},

and for all f € domy(V),
/vvm-va} iz = / Viflpds, VperT.
Q Q

V.3 If (fu)nen is a sequence in domy (V) with
fo— f, weakly in L}(Q) as n — oo,

and if (VV[f,]),cy is bounded in L?(Q : R?), then f € dom(V') and
lim [Viglodo= [ Viflode. voeCr(@)

Remark 4. a) It is easy to see that V.1, V.2, V.3 hold for bounded domains S
where dom(V') is the set of all f € L'(Q) with [, f dz =0 for which a function
Z € H'(Q) eaists such that [ Z dv =0 and [VZ-V¢ dz = [, f¢ dz for all
¢ € H'(Q), compare the definition of “V[f]” in the previous sections.

b) Assumptions V.1-V.3 apply in particular to Q = R%, d € N, and to respective
half-space problems, see the discussion below.

¢) The verification of V.1-V.3 of the examples of b) rely on the knowledge of a
Green’s function. Whenever such a function is available, then one may proceed
similiar as in b) to investigate the validity of V.1, V.2, V.3.

d) We note that (as e.g. in case of Q = R, d > 3) the domain dom(V') of the
operator V[.] may consist of functions which do not satisfy the global electroneu-
trality condition [, f dz = 0.

Example 1 Q =R. We set dom(V) = L'(R) and introduce for z € R and for
f € dom(V),

/OwE(f)(s)ds , >0

E(N)@) =— | fs)ds, V)= . .
/°° —/ E(f)(s)ds , <0
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It is easy to see: E : dom(V) — L*®(R) is non-expansive, i.e. Lipschitz-continuous
with Lipschitz constant 1.
Furthermore, V' = E(f) and V" = —f in the sense of distributions (see, e.g.,
[Rud]).
Hence V : dom(V) — C'(R) satisfies V.1.
If p € L*(R) has compact support and satisfies [, p dz = 0, then E(p) has
compact support, too. Since F(p) € L®(R) we deduce V'[p] = E(p) € L*(R),
thus T = {p € L*(R) : (supp(p) CC R) A ([, p dz =0)} C domy(V).

Now let f € domy(V') and let p € T. We take a sequence (f,)nen in CP°(R)
with f, — f strongly in L'(Q) as n — oo (see, e.g. [Ada]) and [, f, dz = 0 for
all n € N. Then V|[f,] € C>(R) for all n € N and therefore

[ oVitdde== [ ViaVIsl, new

Since V[p] and V"[f,]| are continuously differentiable and since V'[p] is compactly
supported, we calculate by means of an integration by parts,

- [VIV15] = [ VW de = [ BB ds, neN

Since E(p) € L*(R) is compactly supported and since E(f,) — E(f) strongly in
L>*(R), we deduce [ E(fn)E(p) dz — [ E(f)E(p) dz as n — co. On the other
hand it is easy to see that E(f,) — E(f) strongly in L*>°(R) implies V'[f,,| = V[f]
in L;,.(R) as n — oo. This settles [, pV[f,] dz — [ pV[f] dz as n — oo and
therefore

Awmwmm

= [ BOEQ) do = lim [ B()EG) dz = lin [ Viflpds
Z/RV[f]p dz.

It remains to verify V.3. If f, — f weakly in L'(R), then (f,)nen is bounded
in L'(R). Hence (V'[fu])nen = (E(fn))nen is bounded in L*®(R). Furthermore,
since the indicator function of (—oo, ) is in L*(R) for each x € R, we deduce
E(fu)(x) = E(f)(z) as n — oo for all z € R. As a consequence, V[f,](z) —
VI[fl(z) for all z € R. Due to uniform boundedness of (E(f,))nen in L®(R) we
also have: V[f,] = V[f] in L,,.(R) as n — oo. Hence V|[f,] — V[f] in the sense
of distributions as well. O

Example 2 Q = R?. We set dom(V) := L'(R?). The Green’s function of the
Laplace operator is

1
K(z) := —%logm, T €R? x#0.
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Since K(x) € L} .(R?) we have for each f € L'(R?),

loc

Kxf:= [ K(—-y)f(y)dye L, (R).

RQ
For f € L'(R?) we set

V[f] := =K % f.

V[.] certainly satisfies V.1.
We observe for ¢ =1, 2,

2m |a| |z|’

in the sense of distributions.
In the sequel we shall use several estimates on V|[f] and on VV[f]. These
results can be found in [ArNi],

Proposition 7. (Follows from Lemma 3.3c) in [ArNi]) There is a positive real
number Kg such that: If

f e L'R)NL*R?), and fdx =0, and / lz| |f(z)| dz < oo,
R? R?

then VV|[f] € L*(R? : R?) and

IVIfllizese < Ko (Il + [ Jal (@) de)

Proposition 8. (Follows from Lemma 3.1 in [ArNi]) There is a positive real
number Ko such that: If

feLl'®R), and / fdx =0,
RQ

then for all x € R?,

VIl < K ( [ imiar+ ([ @+ w2 dy)z) .

Proposition 9. (Follows from Lemma 3.1 in [ArNi]) There is a positive real
number Ko such that: If

feL' R, and / fdx=0,
RQ

then V[f] € LS(R?) with

VIl < Ko ( [ wlsena ([ a+utisol dy)) .
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Now we shall verify V.2. If p € L*°(R?) is compactly supported with [, p dz = 0,
then p fullfills the requirements of Proposition 7. Hence VV|[p] € L?(R? : R?)
and therefore p € domy (V).

Let f € domy(V). Then the function (z,y) — K(x — y)f(y)p(z) belongs to
L'(R? x R?). Hence due to the Fubini-Tonelli Theorem,

/W Viflpde == / 2 ( | K@=y) fW) dy) pla) de
= / K(z=1) f(s) plo) da,y) = -

RZ

— [ ([ 562 pta) do) s u= [ Vi a,

([ K= o) ) 100)ay

where we made use of K(—x) = K(z). Thus, in order to verify V.2, it remains
to prove

| wvIA-wVisds = [ Vids as

We take a sequence (pn)nen in C°(R?) with lim, o |0 — pnllr2me) = 0, see
[Ada]. We can assume: There is R € (0,00) such that supp(p) C {|y| < R} and
supp(pn) C {|y| < R} for all n € N. We deduce from Proposition 7:

VVip.] = VV]p] strongly in L?(R? : R?) as n — oo. (33)

Furthermore, since K € L (R?) and since p, € C*(R?), we have V|p,] €

loc

C>(R?) for all n € N, see e.g. [Ada].
Let us take © € C*°(R) with © = 1 on (—00,0] and © = 0 on [1,00). For
k € N we introduce

0, : R 5 R @,4@:@(%—1).

Then O € CX(R?) for all k € N, hence O,V [p,] € C*(R?) for all n,k € N. We
calculate for all n, k € N,

[ 1©iod do== [ Vi@V di= [ TVIF- VOV ]a) da
- /R (VVIf]- VO Vip] da + /R (VL] Vo)) O da,

where made use of V[p,] € L*®(R?) (which follows from Proposition 8) and
VV]pn] € L*(R? : R?) for all n € N.
We consider the limit n — oo now.
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Due to Proposition 8 the sequence (V[p,])nen is bounded in L*®(R?). By
Proposition 9 the sequence (V[p,])nen converges strongly in L8(IR?), to V[p] as
n — o0o. Hence for all k£ € N,

lim R2f (©Vpn]) dz = lim f (©xVIpn]) dx

— [ r@vi = [ @i dn
{k<|z|<2k} Rd
Similiar argumentations (in particular exploiting the fact that each integration is

in fact an integration over a fixed (i.e. independent of n € N) bounded domain)
yield for all £ € N,

lim [ (VV[f] VO V[pn] dz = /]R (VVIf]-V6y) Vip] da,

n—,oo R2

tim [ (VVf]- VVIp)) O dr = / (VL] VV]g]) O dr.

n—oo R

Hence for all £ € N,

/R ( VIo]) O dr = / (V1] VO,) Vo] dr + / (VL] Va) O d.
(34)

Now we consider the limit ¥ — oo. Since f Vpl|, (VV[f]- VV|[p,]) € L'(R?) and
since limy_,o, O(x) = 1 for all z € R? with 0 < O, < 1 for all k € N, we have

tim [ (7 VIp) O, o = / Vgl dr, (35)
lim [ (V7] VIG) O do = / VL] YV de (36)

Furthermore, for all £ € N and for all z € R?,

SUP,ep O(s)] Ky

< =
VO ()] < !

Now we have for all £ € N,

/R (VVIf]-VOr) VIp] da| = ‘ /{ o VA0 VI e

<[ Ve Vil do
{k<|z|<2k}

K
< K\l e ey VR ( /{ k

s OVIfR do)

<[a| <2k}

2

< 4K [V Al ( /{ wVIfas) . (3

<|z|<2k}
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Due to |[VV[f]| € L3(R? : R?),

lim \'VVIf]|? dz = 0.

k=00 J{k<|z|<2k}

We deduce from (37),

lim [ (VV[f]-VOy) V][] dz = 0. (38)

k—o0 R2

Employing (35), (36), (38) we deduce from (34) by passing to the limit £ — oo,

[ Vidda= [ wvin- vV de

Finally, let us verify V.3. Let ¢ € L®(R?) be compactly supported, let’s
say supp(¢) C {|y| < R} for some positive R. Then it is easy to deduce for all
z € R?,

Ko — y)é() dy\ < 6l /{ K@) dy < Kn |z,

R2 ly|<R}

where K, is a positive number only depending on R. As a consequence, K x ¢ €
L>®(R?). Now let (f,)nen be a sequence in L'(R?) with f, — f weakly in L'(R?)
as n — oco. Then for all ¢ € L°°(R?) with compact support,

n—o0

lim . fa(y) (K x¢)(y) dy = g fly) (K% ¢)(y) dy,

while on the other hand for all n € N by the Fubini-Tonelli Theorem,

/R2 Vifalg dz = — /IR ( 5 K(z—vy) f(y) dy> () do
- /R ( R? K(z = y) ¢(z) dx) fly) dy = — g faly) (K % )(y) dy,

and

[ vineds== [ s (<o) dy

as well. 0

Example 3 Q =R?, d > 3. We set dom(V) := L'(R?). The Green’s function of
the Laplace operator is

K(x) !

= eR? 0
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where w, is the (d — 1)-dimensional surface measure of the unit sphere in R?.
Since K € L*(R?) + L*(R%) we have for each f € L'(R?),

Kxf=[ K(-y)f(y)dyeL'R)+LR").

R4

For f € L'(R?) we set
VIf] := —K % f.

V[.] certainly satisfies V.1.
We observe for all i =1,... ,d,
1 €T;

alv[f] = _(azK) *f, 8ZK(33) = —

wa |zl Jz|’
in the sense of distributions. Furthermore, for each ¢ = 1,...,d, the function
0;K belongs to L'(R?) + L (R?).

Now let p € L®(R?) be compactly supported!. We take R € (0,00) with
supp(p) C {|ly| < R}. Then p € LP(R?) for all p € [1, oc] and we calculate for all

i=1,...,d, for all z € R¢ andforallqe(l,d%‘ll),p:q%l,

xz Ys 1 _
Vol It TV dy‘ <L [ o= o)l dy
l/| Wy JRrd
1 1—d 1 1—d l/q
[ ey ) dy < - ( / 2 — 10D dy) -
Wa Jly|<R Wd \J|y|<R

1/q R 1/q
< llollzee) (/ |y[9(1=9) dy) = _”'OHL;(R"’) (/ sd=1(1~0) ds)
Wad ly|<R Wy P 0

Rl—d+(d/q)
" (d+q—dg)awl?

lollLeray, (39)

and the estimate |9;V[p](z)| < R ||p|| oo (ray follows in analogy.
On the other hand, we have for all z € R? with |z| > 2R,

1 B 1/q
VA < - ( /| i dy) ol o e
AR

Wy

=R (] >1/q -
=T Ld ? = e d/p -R P ;
< Wy vl<R Yy |01l 2o ey di/a w;/p (|z| ) 1ol Lo (ray
(40)

! [zap dz =0 is not required here.
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and the estimate |0;V[p](x)| < %d (Jz| = R)" % ||pllzoereys |2] > R, follows in

analogy.
We set for p € (d, 00),
_ —1)"» RV % R@3
wdl/p maX{(p ) 1_1 T 11 ’ pE(d,OO)
—d) d »
K(dp, F) = v
d
max {R, R—} , p=00
d
Furthermore, we put
@) 1 . |zl < R+1
Uq,R\T) = .
(lz| =R, |o|>R+1

Then we deduce from (39), (40):

0V o]l < K(d,p, R) ||p||Lrwey ua,r, P € (d, 0] (41)
Since ugr € L"(R?) for all 7 € (d/(d — 1), o0], we deduce from (41):
Vp € (d,o0],Vr € (d/(d —1),00] :
There is a constant Ky(d, r,p, R) € (0,00) such that
”vv[p]“LT(Rd:Rd) <K, ”p”LP(Rd)' (42)
In particular: VV[p] € L2(R? : RY). Hence p € domy(V).
Remark 5. In a similiar way one can prove the estimate
VIl < Ki(d, p, R) ||pll o(ray vars (43)
where
p € (d/2,00], pe LR, supp(p) C {|y| < R},
and
1 ~ 1) R*5 R
m max{(p(2 ) d)l_L , dl_l , PE (g,OO)
w — P P
Ki(d,p,R) == P
L _
d—2"\ 24  PEe
@ 1 , |zl < R+1
Vg R\T) = .
(lz| - R)** | |z|>R+1
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Then one can proceed as above to derive from (43) that Vp] € L™ (R?) for all

r € (3%, 0] and furthermore

Vp € (d/2,00],Vr € (d/(d — 2),00] :
There is a constant K5(d,r,p, R) € (0,00) such that
V1ol zr ey < Ks [|pllowey-  (44)

The estimates (41), (42), (43), (44) allow to proceed similiar as for d = 2.

Let f € domy(V) and let p € L*°(R?) be compactly supported. Then the
function (z,y) — K(x —y) f(y) p(x) belongs to L'(R? x R?). We proceed as for
d = 2 with the aid of the Fubini-Tonelli Theorem to conclude

[ Visiods= [ Vit da.

and it remains to prove

[ v vvidds = [ Vit da.

We take a sequence (p,)nen in C®(R?) with lim, . ||p — PnllL2emay = 0, see
[Ada]. We can assume: There is R € (0,00) such that supp(p) C {|y| < R} and
supp(pn) C {|ly| < R} for all n € N. We deduce from (41):

VVip,] = VV]p] strongly in L?2(R? : R¢) as n — oo. (45)

Furthermore, since K € Li.(R?) and since p, € C*(R?), we have V[p,] €

loc

C>®(R?) for all n € N, see e.g. [Ada).
Let us take © € C*°(R) with © = 1 on (—o00,0] and © = 0 on [1,00). For
k € N we introduce?

Or: R 5 R, O4(x) = O(|z| — k).

Then O € CX(R?) for all k € N, hence O,V [p,] € C*(R?) for all n,k € N. We
calculate for all n, k € N,

[t @i == [ Vi a@vip do= [ VA V@) de
= [ (V1) Ve Vil do+ [ (VI 9Vip) O e

where made use of V|[p,] € L*(R?%) and VV|p,] € L2(R? : R?) for all n € N.
We consider the limit n — 0o now.

2The function Oy is different from the corresponding function for d = 2.
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Due to (44) the sequence (V[pn])nen is bounded in L®(R¢) and converges
strongly in L™(R?), r € (3%, 00) to V[p] as n — oo. Hence for all k € N,

lim [ f(©:V]pn]) dz = lim f (©xV[pa)) da
n—=o0 JRa 700 J{k< x| <k+1}

- / f (©xVIp)) dz = / f ©Vpl) d.
{k<|z|<k+1} Rd

Similiar argumentations (in particular exploiting the fact that each integration is
in fact an integration over a fixed (i.e. independent of n € N) bounded domain)
yield for all k£ € N,

lim [ (WVI1-VeR) Vip] do = /R (VL] V6 VIg] da,
lim /R (VLA Vo)) O = /R (VLA YV O da.
Hence for all £ € N,
[ vishewdo= [ (VViA)- VO Vigldo+ [ (VI 9VIs) . da.
(46)

Now we consider the limit k — oo. Since f V[pl, (VV[f]-VV|[p,]) € L'(R?) and
since limy_,o, O (z) = 1 for all z € R? with 0 < ©, < 1 for all £ € N, we have

tim [ (7 Vip) Oy e = / I Vel s, (47)
Yim [ (VL) VVIp)) € do = [ VIS IVIglda, (48)

Furthermore, for all £ € N and for all z € R?,

|VO,(z)| < sup |O'(s)| =: Ko.

s€[0,1]

Now we have for all £ € N,

[ wvin-vey vig ds

B ‘/{k<| |<k+1}(VV[f] -VOy) Vip] dx

< / VI Ve VIl de
{k<|z|<k+1}

< K ( / VAP d) ( / VAP d) (49)
{k<|z|<k+1} {k<|z|<k+1}
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If we take R € (0, 00) with supp(p) C {|y| < R}, then we have due to (43) for all
k € N with £ > max{2R, R + 1},

/ VIAP de < Ki(d, o0, R) [1pll / (e = R da
{k<|z|<k+1} {k<|z|<k+1}

k+1
— wa K1(d, 00, R) o]l / (s — R)2 01 g
k

k+1
<Pt Koo B ol [ 5 ds
k
< 2% wy Ki1(d, 00, R) [lpll,  (50)
while on the other hand due to |[VV[f]| € L?(R?),

lim \VVIf]|? dz = 0.
k=00 Jik<|z|<k+1}

We deduce from (49) and from (50),

lim [ (VV[f]- V) V[ dz = 0. (51)

k—o0 R

Employing (47), (48), (51) we deduce from (46) by passing to the limit £ — oo,

[ £vidda= [ VVif-9Vig] .
Rd R4
The verification of V.3 can be performed in analogy to d = 2. O

Example 4 Q) = {z € R : 7; > 0}, d € N. In this case we consider for f € L'(Q)
the Poisson equation

_AV = f*, inRY, (52)
where for (z1,...,74) € R?,
flxy, ... z4q) , 1 >0
(1, xa) = f(—z1,29,...,24) , 1 <0 .
0 , else

Then we set V[f] := Vga[f*] | 2, where Viga[.] is the solution operator of (52)
as discussed in the previous examples. The verification of V.1, V.2, V.3 is
straight-forward. O

For A > 0, the equation

MO =n—-p-C
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with n = g(a[®] + @) and p = ¢(B[®] — ®) has no solution with n and p in
L) if g > 0 on R (ie. if h = —oc). In that case it is essential to introduce

a confinement by an external potential W, see [BDM99], i.e. one has to replace
(19) - (24) by

MO = n[®] —p[®] - C(z), =z€Q, (53)
n[® = g(a[®]+ W + ), (54)
p[®] = g(B[]+W — @), (55)
/Q n[®] dz = /Q g(afd] +®—W)dz = N, (56)
[rotds = [ ge@1-0-w)a - P (57)

with W — oo as |z| — oo.

Remark 6. One may ask about the physical interpretation of W, in particular
whether W can be viewed as electrostatic potential. The problem with two species
of particles with opposite sign charges is that an external electrostatic potential
cannot be confining for both species, except if W = |z|*> (by rescaling), but it is
then not possible to have a charge density C' unless it is concentrated at the origin,
see [BDM99]. The physical problem is then the question of the free expansion of
two species of particles with opposite charges but same total charge, which has
already been studied (for the whole space case) in [BDM99]. We shall therefore
keep in mind that if one only wishes to consider electrostatic models of W, then

for h = —oo, the only realistic cases correspond to W = |z|*> when  is a cone
and C =0, or either N =0 or P =0 and W confining.

We proceed as in the previous sections to analyze (19)-(22), (56), (57) by
means of the functional F), formally defined as

1
E\(n,p) = E*(n,p) + 1 E®(n,p),

E%(n,p) == / H(n) dz + / H(p) dx—i—/(n-i—p)W dr,
Q Q Q
1
Bn.p) =5 [ VVIn=p=CJF dz, (58)
Q
where (n,p) € C,i.e.n,p € L} (Q) with ||n||,10) = N and ||p||11(@) = P. Asin the
previous sections we set the electrostatic energy E®(n,p) equal to oo whenever

n—p— C ¢ domy(V). The confining potential W of (58) is assumed to be
bounded below. Hence the last integral of E%(n,p) has a well-defined value in
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R U {oo}. A bit more delicate is the integrability of H(n), H(p). In contrast to
the situation for bounded domains, the convexity of H is not sufficient to assign
to each of the first two integrals of E%(n,p) a value in RU {oco}. In fact, we have
to impose an additional assumption included in the following

Proposition 10. Let Q C R¢, d € N, be a nonvoid domain. Let N,P > 0 and
let W € L,.(Q) be bounded below. Furthermore, assume A.2 - A.5, V.1 - V.3
and

A.6 There are p,v € R with ny := g(u — W), pp := glv — W) € L'(Q),

/nNdaczN, /ppdsz,
Q Q

and H™ (ny), H (pp) € L'(R).
Then E\ s bounded below on C.
Proof. We exploit the convexity of H. We have for each n € L!(Q) with
Jondz=N,

(H(n)+nW)— (H(ny) +nyW)) = H(n) — H(ny) + W (n — ny)
> H'(ny) (n — ny) + W (n —ny)
= (h(ny) + W) (n —ny) > p(n—ny),

because h(ny) = h(g(p—W)) = p— W whenever ny > 0 and h(ny) (n —ny) =
h(ny)n > (p—W)n=(u— W) (n—ny) whenever ny = 0. Hence,

/Q (H(n)+nw> dz — /Q (H(nN)—l—nNW> dz
E/Q,u(n—nN)dx:,u (/Qndx—/QnNdx> — (M= M) =0,

and the inequality

/Q (H(p) + pW> d — /Q (H(pp) + pPW) >0

with p € L} (Q) with [, p dz = P follows analogously. Due to the assumuption
H (ny),H (pp) € L*(Q2) and due to the assumed boundedness of W from below
we deduce that [,(H(ny) + nyW) dz, [(H(pp) + ppW) dz have values in
R U {o0}. O

Remark 7. a) Since g is strictly increasing there is at most one pair (u,v) € R?
satisfying A.6.
b) If N =0 and if g > 0 on R (i.e. if and only if h = —o0), then there is no
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p € R with [, g(p— W) de =N =0. Hence, if one wishes to consider the case
N =0 with h = —o0, then one has to modify the functional Ex by cancelling (or
setting to zero, respectively) all terms which involve n. We leave the details of
the corresponding analysis to the reader.

¢) Proposition 10 does not exclude Ey = oo on C.

Now let us turn our attention to the existence of minimizers of Ej in C. As
an example, we state the following result in case of h = +o0o for which a purely
variational argument provides an immediate answer.

Theorem 11. Let Q C R?, d € N, be a nonvoid domain. Let N,P > 0 and let
W e L} _(Q). Furthermore, assume A.2 - A.6, V.1 - V.3 and

loc
1. C e LY(9).
2. W is bounded below. liminfycq, 100 W () = 00.
3. h=cc.
4. B*+ Eyq # o0 onC.

5. E%ny,pp) < 0o (that is, H(ny) + H(pp) + (ny +pp)W € L'(Q)), where
ny,pp are as in A.6.

Then E\ has a unique minimizer (ng,po) in C and the triple (®o,no,po) =
(=A""Vo, ng, o) with Vo = Vng — po — C] is a solution (the unique “equilibrium
solution”) of (53)-(57).

Remark 8. a) Assumption 4. E\ % oo on C implies in case of 2 =R!, Q = R?
or in case of 2 C RY, d € N, with meas(Q2) < oo global charge neutrality N — P =
Jo, C which is not the case for @ =R¢, d > 3

b) By straight-forward modifications one can also include N = 0,P >0 or N >
0,P = 0.

Proof. E) is bounded below by Proposition 10. Furthermore, E) # oo on C.
Hence infe E\ > —o0o. We apply a standard minimization argument. Since E) is
strictly convex, E has at most one minimizer. This minizer is shown to exist by
taking the limit of a minimizing sequence (ng, px)ren- The limit (ng, po) of this
sequence belongs to C because of the weak-L' compactness of any minimizing
sequence according to the Dunford-Pettis criterion: there is no concentration
because H is superlinear at co (h = o0) and no vanishing (because of the growth
of W at 00) in the language of concentration-compactness theory.

As shown in the proof of Proposition 10, we have H(n)+ H(p) + (n+p)W >
H(ny) + H(pp) + (ny + pp)W € L(Q) for all (n,p) € C. Hence the functional
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E$ is lower semicontinuous with respect to weak convergence in L'(Q) and we
have

/QH(nO) da:—i—/H(pO) d:c-l—/W(no—i-po) de

<hm1nf/an d$+/Hpk dx+/Wnk+pk . (59)

Furthermore, since (VVi)ren, Vi = V[ny — pr — C], is bounded in L2(Q : R?),
we have - maybe after extracting a subsequence but without changing notations
-foralli=1,...,d,

O;Vy — Z;, weakly in L?(Q) as k — oo,

hence
/(212 A+ Z3) dx < hmlnf/ (VVi|? dx. (60)
0

Since C' € L'(2) we have ng—pr,—C — ng—py—C weakly in L' (Q) as k — oco. We
deduce from V.3, Vi — Vi = V[ng — py — C] in the sense of distributions. Hence
Zi = a«LVb, 1 = 1,. .. ,d and we deduce E)\(no,po) < hmlnfk_,oo E)\(nk,pk) =
infc E from (59) and (60).

Now we shall derive the associated variational inequalities. With the aid of
V.2 we deduce from standard arguments,

h(ng) + W + X" "Vo=a on {ng >0}, hp)+W —=X""Vy=08 on {p, >0},

for some o, 3 € R. In case of h > —oo the function H is differentiable on each
compact subset of [0,00) and in this case we obtain by standard arguments

h+W+AXVy>a on{ng=0}, A+W-X1'V;>8 on {p, =0},

and we conclude ng = g (@ — W — A7'V,), po = g (B8 — W + X711}),

i.e. (—A\"'Vp, ng,po) is a solution of (53)-(57). It remains to consider the case
h = —oo. It sufficies to prove: ng > 0 and po > 0 almost everywhere on
Q2. This is shown in an indirect way. If ng = 0 on a subset €y of 0 with
meas(§2p) > 0, then there is a compact subset Ky of g with meas(Ky) > 0 as
well and one can take a test function ¢ € L*(€2) which is compactly supported
in Q, ran(¢) = {co, —c1} (where co,c; are positive real numbers), ¢(z) = ¢, if
and only if z € Ky, ¢~ (—c1) C {e < ng < &'} (where ¢ € (0,1) is apropriately
chosen), and [, ¢ dz = 0. We observe: (ng + 06, py) € C for all sufficiently small
d. Since (ng, po) minimizes Ey in C one has for all sufficiently small § € (0, 00),

Ex(no + 9,p0) — Ex(no,p0) > 0,

while it is not difficult to deduce from h = —oo via V.2 that lims_,o(E)(ng +
3, p0) — Ex(no,p0))/0 = —oo. Hence ng > 0 almost everywhere on §2. py > 0
almost everywhere on €2 follows in analogy. O
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Remark 9. a) Propositon 11 highlights the role of the confining potential W
which ensures weak compactness of minimizing sequences of Ey.

b) One may ask whether each solution (g, ng, o) of (19)-(22), (56), (57) is ac-
tually a minimizer of Ey in C. The discussion of this (very natural) question,
however, requires rather technical additional assumptions (and is therefore omit-
ted here): In contrast to the situation for bounded domains there is no a priori
estimate which ensures Ey(ng,pg) < 00.

The introduction of the confining potential W is inevitable whenever h = —oo.
Let us turn our attention to a discussion of (19)-(24) (i.e. the model equations
without W) in the case h > —oo now.

In this situation it is possible to build solutions with compact support as
follows (we recall: without any external confinement potential !).

Take a ® € C?(Q) with compact support in © and consider ny = g(a + ®)
and py = g(8 — @) for o and (3 such that h — a > 0 > 3 — h. The density n,
(respectively p,) is supported in the set corresponding to ® > h — « (respectively
® < 3 — h). We may then define

C=—AAD + gla+®) —g(f— D),

and compute N and P corresponding to «,  and ®. Then the triple (®, ny, p,) is
certainly a solution of (19)-(24). In particular, we observe that global neutrality
holds due to the fact that ® has a compact support. N # 0 (respectively P # 0)
holds if and only if esssup,® > h — a (respectively essinfo® < § — h).

We note that this construction actually does not depend on whether € is
bounded or not, but only on the condition supp(®) CC Q. The condition that
® has a compact support can be replaced by the condition that ® is equal to
a constant ®,, outside a compact subset of 2, with h — a > &, > G — h.
In unbounded domains, it is actually sufficient to assume that & = &, in a
neighborhood of 02 and

f—h< liminf ®(z) < limsup @(z) <h—a.

z[—00, 2€Q |z| =00, zEQ

If there exists a solution ® with & — &, compactly supported in ) for a
constant @, € (6 — h, h — ), then the global neutrality condition

N—P—/C’da:zO (61)
Q

holds, but this is not necessarily the case if €2 is unbounded. Consider for instance
a radial potential ® which is asymptotically periodic, oscillating between two
values in (8 — h,h — @), with C' = —A® for |z| large enough (case h > —00): C
is clearly not in L'(Q).
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The global electroneutrality does not either hold in the presence of an external
potential W. We can for instance (see [Dol91]) consider in Q = R? (d > 3) the
equation

et‘I)fW(:c) —®-—W(x)

e
- P
fQ e W(z) dr fQ e 2-W(z) dg

AP =N

with limy; 4 ®(z) = 0, W(z) = |z|?, C = 0. If N # P, the global electroneu-
trality condition (61) is not satisfied. This example is easy to generalize to any
potential W such that liminfj,_ o |2|* 2W (z) = +00 and eV € L'(R%) and
C € L}Y(R?) (with compact support for example). More striking is the fact that
we can state an existence result without global electronuetrality even in the case
without confining potential (W = 0) provided d > 3 (and h > —00).
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