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Abstract. We study the transitions between the ground and excited Wannier states induced by a weak ac
field. Because the upper Wannier states are several order of magnitude less stable than the ground states,
these transitions decrease the global stability of the system characterized by the rate of probability leakage
or decay rate. Using nonhermitian resonant perturbation theory we obtain an analytical expression for this
induced decay rate. The analytical results are compared with exact numerical calculations of the system

decay rate.

PACS. : 42.50.Hz, 03.65.-w, 73.20.Dx

1 Introduction

In our preceding papers [1] (see also [2]) we have studied
the spectral properties of the Wannier-Stark system

Hy =p*/2+ cosz + Fx . (1)

In this paper we discuss the transitions in the system (1)
induced by the time-periodic perturbation

H = Hy + Fz cos(wt) . (2)

Here we address this problem in relation to the experi-
ments with cold atoms in an accelerated standing wave
[3]. However, the results obtained have a general validity
and can be applied, for example, to biased semiconductor
superlattices [4] as well.

The “visiting card” of the problem under study is the
transition scheme depicted in Fig. 1. This scheme shows
the possible transitions between the ground and excited
Wannier-Stark states induced by the periodic driving. By
scanning the frequency w of the driving force one sequen-
tially activates these transitions and the upper levels be-
come populated. Because the upper levels are typically
very unstable, the system rapidly decays there, which is
reflected in the depletion rate in the experiments with
cold atoms or in the response to optical excitation in
the experiments with semiconductor superlattices. On the
formal level the experimentally measured quantities are
directly related to the rate T'(w) of probability leakage
P(t) = exp[-T'(w)t]:

rw) =50, Q

which is our main object of study. As follows from the
transition scheme, the function (3) should exhibit a num-
ber of equidistant peaks with spacing given by the Bloch
frequency wp = 27 F/h.

Recently we have suggested an exact numerical method
for calculating I'(w) [5]. In the present paper we study the
function (3) analytically. Although the general structure
of T'(w) is obvious, little is known about its more spe-
cific details such as number of visible lines, their relative
intensities, etc. The reason for this was that — to give a re-
liable prediction — one has to find the metastable Wannier-
Stark states, which was a challenging problem until quite
recently [6]. In what follows we derive an analytical ex-
pression for T'(w) and describe a method for calculating
the relative intensities and shapes of the lines.

2 A two-state system

It is instructive to discuss the dynamics of the transitions
in a two-state system constructed from any of the ground
¥} () and excited @) () Wannier-Stark states (see Fig. 1).
When the frequency of the periodic driving is close to the
resonant frequency between two Wannier levels the system
Hamiltonian can be approximated by a 2 x 2 matrix of the
form

, gl’ 0 Vl W Vl,l

HY = ( 1 l) + F,, cos(wt) ( Ll TLo (4)
ABVR R I

</ 0 & V;),l Vo,o
where Vil[; = (Wé|m|y7};) are the transition matrix ele-
ments. In Eq. (4), &, = E, + hwpl —il,/2 and we can
set I'ny = 0 because the decay rate of the ground state is
negligible in comparison with the decay rate I'y of the up-
per state. Within this approximation the total probability

leakage of the system is given by the equation
P I
dt  h
where P (t) is the population of the upper state.

Pl (t) ’ (5)
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Using the rotating wave approximation the Hamilto-
nian (4) takes the form

L &l F Vet /2
Hpjyp= l,lllfiwt ? 1’01 : (6)
F,Vyie /2 &

Thus the (complex) quasienergies are

Ao (L) —il1 /2

Er = 2

(7)

£2/(Bon (1)~ iR /2 + F2VR (D)

where Ag (L) = — Ey + hwpL — hw is the detuning
and L =1' — 1 is the “distance” between the states. In
Eq. (7) we use the notation

Vo) =Vai Vg, L=1-1, (8)
and, for the moment we assume that the matrix elements
Vol1 and V1 o are real. (The validity of this approxima-
tion will be discussed later on in Sec. 4.) Two limiting
cases should be distinguished — the case of weak damping
In < F,|Vp1(L)|, and the opposite case of strong damp-

ing I > F,|Vo,1(L)|- In the former case P;(t) shows de-
caying Rabi oscillations [see Fig. 2(a)]

Py (t) = exp (—%t) sin? (%};(L)Q , 9

for P(0) = 0. (For the sake of simplicity Eq. (9) is dis-
played for zero detuning.) In the latter case we have an
“overdamped” Rabi oscillation [see Fig. 2(b)] and asymp-
totically

FEVea (L)
A5 (L) + (1 /2)?
Substituting Eq. (10) into Eq. (5) we obtain

I(w) = dnP _ F2VZ(L)Ii/h
R R TN AR EYPIE

Thus for a near resonant driving frequency (Ag,1(L) = 0)
the overall decay rate of the system is proportional to the
square of the driving force amplitude F,, and follows a
Lorentzian as a function of the detuning [8]. The over-
damped regime is always realized for F, — 0 and was
actually observed in the experiment [3]. In what follows
we restrict ourselves exclusively to this case.

To conclude this section we note that the result (11)
can be directly obtained from Eq. (7) as

I'w) =ImE), (12)

Py(t) = P), t>1. (10)

(11)

where £_ is the more stable [minus sign in Eq. (7)] quasi-
energy. Equation (12) has a simple physical interpretation.
Indeed, an arbitrary initial state of the system can be rep-
resented as a sum over the quasienergy states. However,
asymptotically only the most stable quasienergy state sur-
vives. Thus for ¢ — oo the total decay rate of the system
is given by the imaginary part of this quasienergy.

3 Transition matrix elements: Theory

To go further we need information about the transition
matrix elements
Valy = (L]l 5) (13)

In this section we describe the method for calculating
them. One should recall from the very beginning that the
¥! (z) in Eq. (13) are resonance states and, therefore, we
distinguish between the left (¥!| and right [ ) eigenfunc-
tions.

To calculate the matrix elements (13) we employ the
relation between the Wannier-Stark states ¥! (z) and the
Wannier-Bloch states ¢% () [6]

1/2 .
@) = [ dke k(). (14)

—1/2

The latter states are Bloch waves

Vh() = Mok o) = 5 Sk (19

with k being the quasimomentum. Numerically one finds
the expansion coefficients c®(n) in Eq. (15) as the right
(left) eigenvectors of some nonunitary matrix B (see Eq. (33)
in Ref. [1]).
Using Eq. (14) and Eq. (15) we obtain the intermediate
relation
1/2 ) ) d
oW, = 2mlWl +i / dke ?mtheihe — gk . (16)
“1/2 dk
Then substituting Eqgs. (14)-(16) into Eq. (13) we have

Y etk kg D

, dke {bal 3 95) -
(17)

It is shown in Ref. [1,6] that the function ¢* (z) with an

arbitrary value of the quasimomentum k can be generated
from ¢% (x) by the transformation

k) = W(D)[g0) , (k] = (W 1), (18)

VI = 2mlba porp +i /

where

W(t) = exp @%) (19)

(p+ Ft')? , _Ft
xexp{ h/o[ 5 +cosz|dt p, k= -

(the hat over the exponent denotes time ordering). Sub-
stituting Eq. (18) into Eq. (17) the transition matrix ele-
ments are found as the Fourier image

1/2 ) ,
Vit = 2ntbovs + [ e Y0 (20)

of the periodic function

(k)

Ya,ﬂ( ) <¢k | + cos $|¢ﬁ) (21)
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A few remarks will be helpful concerning the numerical
method of calculating the transition matrix elements (20).
The numerical routine is organized as follows. First we
find the right and left eigenvectors of the matrix B (see
Eq. (36) in Ref. [1])

Bc? = exp(—i&aTp/h)c? , B = exp(—i&,Tp/h)c? .
(22)
Then the vectors ¢ are normalized as ¢ — ¢2/(c2|c?).
This procedure is somewhat delicate because the normal-
ization constant (c2|c%) exponentially decreases when the
dimension N of the matrix B is increased. On the other
hand, the accuracy of the eigenvalues £, increases when
N — o00. Thus one should keep a compromise and take
the numerical parameter N such as to get good accuracy
for £, but not to loose the accuracy for the normalized
eigenvectors c9.
After the vectors c), are made orthogonal, (c3,|c}) =
da,8, they are evolved according to Eq. (18) (more pre-
cisely, according to its matrix counterpart) and the pe-
riodic function (21) is computed. Finally, the transition
matrix elements (20) are found by a discrete Fourier trans-
formation with typical step over Ak = 2711,

4 Transition matrix elements: Numerical
example

In this section we calculate the transition matrix elements
between the I-th ground Wannier-Stark state and I'-th
first excited Wannier-Stark state. In our numerical exam-
ple we fix the static field to the moderate value F' = 0.04
and change the value of the scaled Planck constant in the
interval 1 < A < 2.5. The value of the scaled Planck con-
stant [entering the momentum operator in the Hamilto-
nian (1)] obviously defines the positions and the number
of stable resonances supported by each of the potential
wells. In the experiment with cold atoms 4 is inverse pro-
portional to the amplitude of the optical potential and can
be varied by changing the intensity of the laser [2,5].

We begin with small values of A. For A < 1 both
Wannier-Stark states are essentially localized within a sin-
gle potential well and can be approximated by the eigen-
functions of a harmonic oscillator. Then only “vertical”
transitions | = I’ (see Fig. 1) between the ground and first
excited Wannier ladders are possible. By increasing i we
move the Wannier levels towards the top of the potential
barrier (for i > 1.6 the upper Wannier level is already
above the potential barrier). Then the localization length
of the Wannier states grows and more than one matrix
element may differ from zero. Simultaneously with the in-
crease of the localization length the Wannier states loosg
their stability. As a consequence the matrix elements Voléilﬁ
become complex and Vll:dl £ (Vol”f)* [9].

Figure 3 shows the absolute values of the coefficients
(8) for i =1, 1.5, 2, and 2.5. We recall that, according to
the results of Sec. 2, these coeflicients define the relative
intensities of the lines in the total decay rate T'(w). For
the chosen values of the scaled Plank constant the width

of the ground Wannier resonances are I, = 2.31-1071%,
1.06 - 1079, 3.22-107%, and 6.08 - 1075, respectively. The
upper resonances have the widths I1 = 1.90 - 10~°, 1.35 -
1072, 5.24 - 1072, and 1.14 - 10~!. (These widths should
be compared with the Bloch energy hiwp = 27F =~ 0.25.
Since I''/hwp < 1, the resonances are well separated.)
As expected, the number of lines is seen to increase with
h. A new result is the asymmetry of the coefficients with
respect to L. It appears that the transitions “down the
ladder” are enhanced in comparison with the transitions
“up the ladder”. At the same time, for the exponentially
weak far transitions (|L| > 1) the situation is reversed
[see Fig. 4(a)].

Along with the transitions between the Wannier states
belonging to different ladders the periodic driving causes
transitions within one ladder. The right panel (b) in Fig. 4
shows the absolute value of the transition matrix elements
Voo(L) = Vol’é as the functions of the distance L =1 —1'
for h = 2. It is seen that these “horizontal” transition
matrix elements are symmetric with respect to L and de-
crease exponentially for large |L|:

|Va,a(L)| ~ exp(—|L|/dq) - (23)
The effect of the “horizontal” transitions becomes very
important when the driving frequency w coincides with
the Bloch frequency wp (more generally, for w/wp = r/q,
where r and ¢ are coprime integers). Then the quasi-
energy states are delocalized functions and the quasienergy
spectrum has a band structure. The formation of the quasi-
energy band was studied in Ref. [7] by using a first order
perturbation theory.

5 Lineshapes of the decay spectra

Knowing the coefficients (8) we can find the the decay
spectra T'(w). In fact, according to Eq. (12) the induced
decay rate I'(w) is given by the imaginary part of the most
stable quasienergy. Since we consider the case F,, |V 1 (L)|<
I, we can apply a perturbation approach to calculate the
quasienergies. In zeroth order the most stable quasienergy
coincides with the energy of the ground Wannier states
taken modulo Aw. The first order gives correction to the
real part of the quasienergy and correction to the imagi-
nary part appears only in second order. Using the rotating
wave approximation this correction is

FoVi(L)
() =Tm (; By — Eo + hwpl — hw —il1/2 |

(24)
Obviously, Eq. (24) generalizes Eq. (11) for the case of a
many level system. The key difference, however, is that the
coefficients Vi, (L) are complex now (see inset in Fig. 5).
Thus the shape of the individual lines may differ from a
Lorentz shape. This means that we meet a kind of Fano
resonance, where the shape of the line is asymmetric. Us-
ing the notation from Fano theory [10], Eq. (24) can be



4 M. Gliick, M. Hankel, A. R. Kolovsky and H. J. Korsch: Induced transitions between Wannier ladders

presented in the form

T(w)=F2> A(L)
L

qr + €L
1+e2 -~ (25)
In Eq. (25) A(L) = 2sin ¢(L)|%%1|/F1, gL = 2A0,1(L)/F1,
and the asymmetry part is given by g1, = cot ¢(L), where
¢(L) is the phase of the coefficient Vi, (L). We note that
the asymmetry of the lines was recently observed in an
experiment with semiconductor superlattices [11].

The solid line in Fig. 5 shows the function (24) con-
structed for A = 2. This function exhibits all features of
the decay spectra discussed above. Namely: the lines have
the same width I7 and are separated by the Bloch fre-
quency wpg; the position of the lines is defined by the reso-
nant condition w = (Ey — Eg)/h —wpL (L is integer) and
their relative intensities are given by the absolute values
of the coefficients Vi (L) [compare with Fig. 3(c)]; the
lines are asymmetric, which is especially well seen for the
transitions L = 0 and L > 2.

The dots in Fig. 5 show the results of an ezact nu-
merical calculation of the decay rate performed for some
(rational) values of w/wp [5]. A good correspondence in-
dicates the validity of second order perturbation theory.
The discrepancy in the region of small driving frequency is
due to the rotating wave approximation, which obviously
fails for w — 0. As seen in Fig. 3 the envelope center for
the transition coefficients moves to the left when 7 is in-
creased. Thus the discrepancy discussed will be larger for
h > 2. In principle, the region of small driving frequency
requires a separate analysis.

In the rest of this section we discuss the effect of di-
rect transitions to the second excited Wannier ladder. In
second order perturbation theory we can take these tran-
sition into account by adding to the sum (24) the terms
FfV;fQ(L)/(Ez—E0+thL—hw—iO.5F2), where V&Z(L) =
VQl,’éIVbl:él. For the considered case h = 2, F' = 0.04 the
coefficients Vi, (L) and Vi?y(L) are compared in the left
column of Fig. 6. It is seen that the main lines for 0 < 2
transitions [Fig. 6(c)] are ten times smaller than those for
0 + 1 [Fig. 6(a)]. Thus the effect of higher transitions
can be neglected. We note, however, that this is not al-
ways the case. In the next section we consider a situation
when the direct transitions to the second excited Wannier
ladder cannot be ignored.

6 Decay rate for F, ~ w?

In Sec. 5 we have considered the case where the amplitude
F,, of the driving force is kept fixed when the frequency w
is varied. In this section we study the case F, ~ w?, which
was actually realized in the experiment [3]. Indeed, in the
experiment cited the authors measured the decay rate of
the system

= $?/2 + cos[z — e cos(wt)] + Fz . (26)

The Hamiltonian (26) is related to the Hamiltonian (1) by
a Kramers-Henneberger transformation, where e = F,, /w?.

Assuming € < 1 (which was the case in Ref. [3]) we ap-
proximate the time-periodic potential cos[z — € cos(wt)] by
cos z+e€ cos(wt) sin z. Then the Hamiltonian (26) takes the
form

H = Hy + ecos(wt) sinz . (27)

Obviously, the decay rate of the system (27) is given by
Eq. (24) where instead of the coefficients (8) one substi-
tutes the coefficients

wh

Wer (L) = Woi Wiy, Wiy = (Fo|sinz|¥h) . (28)

Using the operator identity

115 5 .

7 [Ho, [Ho,w]] =sinz+ F . (29)
we obtain the following relation between the coefficients
(8) and (28)

(30)

where hwo 1(L) = &' — &} is the energy difference be-
tween the considered Wannier-Stark levels. Thus, all we
have to do is to multiply each term in sum (24) by a fac-
tor wg 1 (L). The rescaling procedure (30) suppresses the
transition “down the ladder” (L < 0) and enhances the
transition “up the ladder” (L > 0).

The coefficients Wg (L) and W§ ,(L) are shown in the
right column of Fig. 6. Unlike the case F, = constant
(left column in Fig. 6), in the presently considered case
€ = constant the direct transitions to the second ex-
cited Wannier ladder can not be ignored. The analysis
of the function I'(w) confirms this conclusion. The solid
and dashed lines in Fig.7 show the decay rates I'(w) cal-
culated with and without taking into account the higher
transitions. It is seen that the solid line reproduces the ex-
act numerical result (dots) much better than the dashed
line.

7 Conclusion

We have applied a nonhermitian resonant perturbation
theory to calculate the induced decay rate I'(w) for a
driven Wannier-Stark system (1)-(2). According to this
theory the relative intensities of the peaks of I'(w) are
given by the the product of the absolute values of the
“up” and “down” transition matrix elements, which can
be calculated by a method developed in the present pa-
per. We would like to stress that the complex phase of
this product (which is zero in a hermitian approach) also
has a physical meaning and defines the shape of individual
lines of I'(w). The effect of the phases becomes even more
important, when (along with the transition 0 <> 1) transi-
tions to higher excited states are induced. In this case the
function T'(w) can show an interference pattern.

To avoid any misunderstanding it should be noted that
in this present paper we actually ignored the “horizon-
tal” transitions between the Wannier states belonging to
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the same ladder. This approximation is valid provided the
commensurability condition

— = -, r,q=integer, (31)

is avoided. In this sense the presented results are comple-
mentary to to the results of Refs. [5,7], where the com-
mensurate case was studied in detail.
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cos(x)+Fx
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Fig. 1. Scheme of transitions in the system (1) induced by
the periodic driving. The positions of the ground (E}) and the
first excited (Ei) Wannier levels are shown for F = 0.04 and
h = 1.5.

0.6

(@)

P.()

Fig. 2. Dynamics of the population of the upper level in the
two-level system (4) in the case of decaying Rabi oscillations
(a) and in the overdamped case (b). The parameters are chosen
to correspond to the “vertical” transition (L = 0) in the system
(1) for F = 0.04, h = 1.5, F, = 0.04 (a), and F,, = 0.004 (b).
The solid lines are the case of zero detuning, the dashed lines
correspond to Ag,1(0) = F,|Vo,1| (a) and Ag,1(0) = I (b), the
dotted line shows the asymptotic solution (10)- (11).
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Fig. 3. The absolute values |Vi;(L)| of the expansion coeffi-
cients (8) for F = 0.04 and & = 1 (a), 1.5 (b), 2 (c), and 2.5
(d). These quantities define the relative intensities of the lines
of the function I'(w).
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Fig. 5. Comparison of the second order approximation (24)
(solid line) with the exact numerical calculation of the system
decay rate (dots) for h = 2, F,, = 0.02. The inset shows the
expansion coefficients (8) in the angle plane.
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Fig. 4. The absolute values of the matrix elements Vol,’i' (a) and
Vol,’é' (b) as the functions of L =1 —1' for i = 2 in logarithmic
scale.
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Fig. 6. The absolute values of the coefficients Vg 1(L) (a),
Wia (L) (b), Voa(L) (c), and W o(L) (d).
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Fig. 7. The decay rate of the system (30) for h = 2, F' = 0.04,
and ¢ = 0.02. Dots are the exact result, the solid and dashed
lines are calculated by using second order perturbation theory
with and without taking into account the direct transitions to
the second excited Wannier ladder.



