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Abstract. We discuss the basic properties of momentum distributions in quantum
mechanics for elementary systems as well as their classical analogue. Semiclassical
approximations can show a quantitative connection between the classical and quantum
case. We believe, that such distributions provide a useful tool to improve the
understanding of elementary quantum mechanics. Important differences between
distributions in coordinate and momentum space are pointed out. Elementary
examples (free and uniformly accelerating particle, harmonic oscillator and square
well potential) are discussed.

1. Introduction

It is widely accepted that the Fourier transform of a time signal, i.e. its frequency
spectrum, provides useful complementary information about the nature of the signal.
In elementary quantum mechanics, however, one observes a preferential treatment of
the wavefunction in coordinate (¢) space (the ‘coordinate representation’), where-
as the corresponding Fourier transform to momentum (p) space (the ‘momentum
representation’) is typically addressed only quite generally in the textbooks of quantum
mechanics. Illustrating examples are, as a rule, omitted.

There are only two cases, where an explicite discussion of the momentum
representation is presented: (a) The spreading of a Gaussian wave packet for the free
particle, where it is shown that both representations are Gaussians, with width Agq
and Ap, respectively, satisfying ApAq = i/2. (b) The ubiquitous harmonic oscillator,
which is, however, symmetric in coordinates and momenta, and therefore we observe
the same behavior of the wavefunctions in coordinate and momentum space.

As a consequence, many students have the impression that the structural behavior
of the wavefunctions in both representations are similar or even equivalent. This is,
however, clearly not the case, as demonstrated below.

Such a preference of a one-sided picture centered on the coordinate distibutions is
even more surprising in view of the unevitably discussed uncertainty relation

ApAg > h/2 (1.1)
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between the widths of both distributions which is, of course, a direct consequence of the

Fourier transform.

It is the aim of the present paper to advocate the “thinking in p-space” [1] and

to facilitate the use of the momentum representation in teaching elementary quantum

mechanics by presenting a detailed discussion of some special cases allowing a closed

form solution.

In addition to its conceptual importance, and to the momentum representation also

has some advantages:

(1)

In contrast to more abstract representations, the momentum representation yields
the probability distribution of the momentum (or, equivalently, the velocity),
which is a quantity clearly important also for a classical description of many
quantum processes. One can find many approximate theoretical studies of quantum
processes, using, e.g., an initial quantum momentum distribution combined with a
classical treatment of the dynamics (see, e.g., [2] and references therein). Another
example is the attachment of Rydberg electrons, where the cross sections can be
approximately determined from the free electron one and the velocity distribution
of the Rydberg electron [3]. Moreover, the outcome of some processes directly
monitors the quantum momentum distribution of the initial quantum state, as
for example the collision induced excitation of diatomic molecules under certain
conditions [4, 5, 6].

In scattering processes the distribution of momenta (or velocities) are directly
measured experimentally in atomic or nuclear scattering experiments. In numerical
simulations, the momentum space picture of the dynamics provides a more
‘condensed’ view of the scattering event (see, e.g., [7] for an example in one-
dimensional scattering).

There are cases, where a treatment in momentum space is much more convenient
than in coordinate space. As an example we note the motion of a wave packet
affected by a linear force. An elementary example is discussed in section 3.1 below
(for a more elaborate analysis see [8]; see also the recent work on the chaotic
quantum dynamics in dc and ac Stark systems [9, 10, 11] and references given
there).

Moreover, one of the most powerful techniques for solving the time dependent
Schrédinger equation is the so-called split-operator method [12]. This method,
which is routinely applied in numerous recent numerical studies of quantum
dynamics, splits the Hamiltonian into a kinetic and potential energy part and
switches (by means of a fast Fourier transform) periodically between coordi-
nate representation (where potential operator is diagonal) and the momentum
representation (where the kinetic energy is diagonal). This technique automatically
provides a picture of the time dynamics in both, coordinate and momentum, space.

As a last point, we mention the recent example of an analysis of chaotic
billiard eigenfunctions in momentum space [13], showing the advantages of such
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a representation in this case.

In section 2 we derive the classical and semiclassical formulas for momentum space
wavefunctions. We also discuss general properties of the momentum space represen-
tation. As instructive examples, we present a detailed discussion of very elementary
special cases allowing a closed form solution in momentum space: Free and uniformly
accelerating wave packets (section 3.1), the harmonic oscillator (section 3.2) and the
square well (section 3.3). In a subsequent paper [14] we discuss more elaborated
applications, namely the anharmonic Morse oscillator and the Coulomb potential as
an example in three dimensions.

2. The momentum representation

Here we consider a one dimensional system with the Hamiltonian

H(p,q) = om T V(g)- (2.1)

2.1. Quantum mechanics

The wavefunction ¢(g) of system (2.1) in the coordinate representation of an eigenstate
is given by a square-integrable solution of the Schrédinger equation

2m
$10) + =53 (Fu = V(@) () = 0, (22)
which specifies the energy eigenvalues E,, n =0, 1, ... (E, < E,1). For convenience,

we restrict ourselves to potentials with a discrete spectrum. Equation (2.2) can be
directly obtained from (2.1) by inserting the coordinate representation of the momentum
operator p = —ihd/dgq.

The basic properties of the wavefunctions ¢,(¢) in the coordinate representation
are

— ¢n(q) can be chosen to be real.

— If the potential is symmetric, V(—q) = V(q), the wavefunctions have even or odd
parity for even or odd values of n, respectively:

b2 (—q) = ¢20(q), Pov+1(—q) = —d2v11(q); v=0,1,....

— ¢n(q) has n zeros.

— For potentials with a single minimum, the zeros are localized in the classically
allowed region V(q) < E,,.

The momentum representation of the wavefunction

+o00
b(p) = / e 9/g(g) dg, (2.3)

\/ﬁ
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is a projection on plane waves, i.e. the eigenstates of the momentum operator, and the
Schrédinger equation (2.2) is transformed into an integral equation

1 too
)+ —— [ V-9 =0, (2.4
n - om Y T®
with
I VI
V(p — pl) = m/ e_l(P—P Ja/ V(Q) dq . (25)

It is important to note, that the transformation between the coordinate and the
momentum representation is simply a Fourier transform. The basic properties of
wavefunctions of the eigenstates ¢, (p) in the momentum representation follow directly
from those of the coordinate representation:

— Yn(—p) = ¥*(p) because ¢(q) is real. This implies that the momentum probability
distributions are always symmetric: |¢n(—p)‘2 = |1, (p)|2

— For coordinate wavefunctions with even or odd symmetry, e.g. ¢(—q) = £¢(q),
we have in addition ¥(—p) = +¢(p). In combination with the general symmetry
relation above, this implies that either v(p) is purely real or purely imaginary.

— There is no general rule for the number of zeros of ¢, (p), which can vary between
zero and infinity, as demonstrated by the examples below.

2.2. Classical mechanics

It is illustrative to compare the quantum distributions with the corresponding purely
classical ones. The probability wg(q)dg to find the particle with energy F in the interval
l[q, ¢ + dg] is proportional to the time d¢, that the particle spends in this interval,
i.e. wg(q)dg = 2dt/T, where T is the period of oscillation and the factor 2 takes care of
the fact that each value of ¢ appears twice during one period with positive and negative
momentum p. (g, E) = £/2m(E — V (g)):

1 1 2m
’u}E(Q) = V:ZL2 T\q\,, = T m . (26)

The period T can be obtained from

_ —om gmax dq
regi=m | vy =

min

where gumin and ¢nay are the classical turning points ( p(¢min, £) = P(¢max, £) = 0). The
classical momentum distribution is obtained in a similar manner:

wg(p) = Z T;ﬂu = Z j_v ; (2.8)

v=1,2 v=1,2 T
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where the derivative of V is taken at the roots g, of the equation F = H(p,q,) at a
given value of p.
Alternatively, one can derive the probability distributions from the general formula

-1

OH
witw) =N [ adsta - oE -G =N T 29
where the sum is taken over all solutions of H(p,,q) = E, i.e. the two values

p+(q,E) = £4/2m(E —V(q)) for the Hamiltonian (2.1). The normalization factor
is easily evaluated as

-1
:/dq'|q'|;1 =/dt=T. (2.10)

With 0H/0p = p/m we recover the distribution given in (2.6). In the same way we
re-derive (2.8):

O0H

Op

N7t z/dp'dq'5(E—H(p',q')) = /dq'

-1

wi(p) = N/dp' dg' 6(p—p)S(E—H(p,¢)) =N ‘%—Z

-1

dv
V[

Y

(2.11)

where the summation runs over all (in the present case two) solutions of H(p,q,) = E.
The momentum space probability distribution can also be obtained directly from the
position space distribution by

wi(p) = / 5(p — p(a, E)we(a)da, (2.12)

which is the classical equivalent to the Fourier transformation (2.3) in quantum
mechanics.

As an illustration, figure 1 shows the energy shell H(p,q) = p?/2m + V(q) and
the contributing coordinate or momentum values, respectively, for the case of the Morse
potential discussed below. The distributions appear as the projections of the energy shell
onto the coordinate or momentum axis, weighted by the inverse derivative. Note that
at the maximum allowed values of the coordinates of momenta, i.e. at the boundaries
of the classically allowed region, the distributions diverge.

2.3. Semiclassics

In the semiclassical approximation the quantum wavefunction can be approximated by a
superposition of classical contributions v with amplitudes A,, where A2 is the classical
probability, and phases are given by the classical action integral S,. Quite generally
this approximation is expected to be valid if A is small compared to the classical action
S; in many cases, however, one observes surprisingly good results, even for S/ of the
order of unity. For the position space wavefunction this leads to the well-known WKB
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Figure 1. Classical energy shell H(p,q) = E and momenta p+ contributing to the
position space density wg(q) (left) and coordinates g+ contributing to the momentum
distribution wg(p) (right). The areas AS(q) or AS(p) determine semiclassically
the interference oscillations in the distributions in position or momentum space,
respectively.

wavefunction. In the present case of the Hamiltonian (2.1) with a single minimum
potential, the two equal amplitudes are (compare (2.6) and (2.9))

1 2m
T\| E— V(q)

We choose the left turning point ¢,,;, as a phase reference point. There are two paths C,

-1/2
wE(Q)

Ai(q) = Aa(q) = 9

(2.13)

leading from g,;, to the coordinate point ¢: A direct path C; connecting (p = 0, Gmin)
and (p,,q) and a path Cy which connects (p = 0, gmin) With (p_, g) after a reflection at
the right turning point gmax, which is a prolongation of C; (see figure 1). Consequently
we have two actions

51(Q)=/ p(t]',E)dQ’=/q p(¢d,E)d¢ and S2(Q):/ p(¢,E)dd =S - Sy,

C1 dmin Ca
(2.14)
where
S = $oid. B)dg (2.15)
is the action for a full period.
For the semiclassical wavefunction in position space we use the ansatz
bu(q) ~ AL(q) 1@/ L A_(g)é [Sz(q)/h_”/z] : (2.16)

where the additional phase —7 /2 results from a phase change by reflection at the classical
turning point gnq,. Inserting (2.13) we obtain

¢5(q) = /2wp(q) exp {i (%7(1@ - %) } cos (%éq) - %) (2.17)
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with

AS(q) = S2(q) — Si(g) = S — 2S1(g)- (2.18)
The absolute value is

|6(q)|* = 2wr(g) cos® [%;f) + %] : (2.19)

This is, of course, only valid in the classically allowed region. The classically forbidden
region can be treated semiclassically by complex valued classical trajectories, which will
not be considered here, as well as the taming of the singularities at the turning points.

In (2.16) we have only summed over two classical paths from gmi, to g. It is clear,
however, that there is an infinite number of such paths, which are simply the paths
C; and Cy plus a number of full cycles. All these contributions interfere destructively,
unless the WKB quantisation formula

S = f p(q, By) dg = 20h(n +1/2) | (2.20)
is satisfied. Using (2.18) we finally obtain

\¢E(Q)|2 = 2wg(q) cos’ [S+(Q)h - 7T/4] . (2.21)

The action difference determines the interference oscillations of the wavefunctions and
the phase varies between 0 and (n+1/2)7 and the position wavefunction has n zeros, all
in the region between the classical turning points, in agreement with the exact quantum
result.

The semiclassical momentum space wave functions can be obtained in the same
way. However, the two amplitudes are different and the absolute value of the probability
distribution is

[We(@)* = A% (p) + A (p) + 24 () A-(p) cos [AS(p) /R + 7/2] (2.22)

with amplitudes (2.8)

dv |72

Fr (2.23)

A,(p) = ‘T

v

where the derivative in the amplitude is taken at the two points ¢+ (¢ < ¢y) on
the energy shell H(p,q) = E. AS(p) is the difference between the actions along
the two paths C;, Cy from p = 0 to gy, as illustrated in figure 1. Defining ¢+ (p, F)
(¢-(p, E) < q+(p, E)) as the two branches of the coordinate ¢ as a function of the
momentum and the two action integrals

Si(p) = /0 ’ q. (p', E)dp’ (2.24)
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the phase difference can be expressed as
AS(p) = S (p) — S_(p) — S/2. (2.25)

Using again the WKB quantisation formula (2.20), the semiclassical momentum space
wave functions are finally given as

1 (p)* & A% (p) + A% (p) + 2(—1)" A4 (p)A—(p) cos [(S+(p) — S-(p))/h]  (2.26)

(note that one of the paths again needs a phase correction because of an additional
reflection at the turning point). Averaging over the oscillations, one recovers the classical
momentum distribution (2.8)

w(p) = A% (p) + A2 (p). (2.27)

From (2.26) we see that at p = 0 the interference is always constructive for even values
of n and destructive for odd ones. This is due to the fact that in such a situation the
action difference is exactly equal to nh.

3. Elementary examples

3.1. Free and uniformly accelerating wave packets

As an introductory application, we will consider some well-known examples of free wave
packets and wave packets affected by a constant force. Let us start with a Gaussian
packet in coordinate space, i.e. a plane wave exp(ipog/h) with momentum py and a
Gaussian modulation of the amplitude centered at ¢o. The wave function in coordinate
space is

¢(q) = (%) " exp { - w + ihpo (q - %)} (3.1)

with mean value § = ¢o and width Ag = (/h/2s (the phase term ipygo/2 has been
added for convenience). The Fourier transform (2.3) gives the momentum wave function

Y(p) = (%)1/‘* exp{ - % = %(p = %)qo} (3.2)

with p = py and width Ap = /hs/2. The symmetric structure of this minimum
uncertainty wave packet (ApAq = f/2) is modified, when the wave packet evolves in
time ¢. This is most easily carried out in momentum space, where the Hamiltonian
H = p?/2m is diagonal:

2

¥(p,t) = exp { — ip—t} (p). (3.3)

h2m
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Apparently, this time dependent phase term does not change the momentum distribution
|1(p)|?, contrary to the coordinate distribution, whose width increases in time (this can
be easily worked out by carrying out the Fourier transform of (3.3)).

Also in the case of an homogeneous field

V(g)=Fq with (F>0) (3.4)

the analysis is simplified in the momentum representation. We will confine ourselves
to the construction of a solution of the time independent Schrédinger equation for an
energy E. The experienced reader will immediately write down the Fourier transform
(2.5) for the linear potential (3.4)

/ F oo —i(p—p’ : ! [
V(p—p)=%/ e P4/hg dg = ihF §'(p — p') (3.5)

and use this to bring the integral equation (2.4) to the simple form
2

ZI((;’)) - hiF (;’—m _ E) . (3.6)

One can, however, arrive at the same result by writing the coordinate operator ¢ in the

Schrodinger equation in the momentum representation

~2 2

N D . p .. .d

H=-—+F — — —ihF —. 3.7
2m+ a 2m dp (3.7)

Integration of (3.6) yields

$(p) = exp {h—F (Z - Ep) } | (3.8)

The Fourier transform to coordinate space is an Airy function. Let us furthermore
note, that the wave function in momentum space (3.8) fully agrees with its semiclassical
analog: The classical action (2.24) is

S(p) = - /Op q(p', E) dp'

= _F! / p(E —p?/2m)dp’ = F~! (ﬁ - Ep) (3.9)

0 6m
(there is only a contribution from a single classical trajectory) and the classical
amplitude is proportional to |dV/dg|~'/2, i.e. constant. Therefore the semiclassical
momentum wave function exactly agrees with the quantum one, which is, of course,
not the case in the coordiante representation, where the primitive semiclassical
approximation considered here breaks down in the vicinity of the classical turning point.
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3.2. Harmonic oscillator

For the harmonic oscillator in natural units (length measured in units of y/h/mw) the
Hamiltonian is

1, 1
H(p.q)= 50"+ 54 (3.10)

with the energy eigenvalues F,, = n + 1/2. The eigenfunctions are
_ n -1/2 —q2/2
¢u(q) = [V2'nl] " e™T 2 Hy(q) (3.11)

in position space (H, is the Hermite polynomial of order n) and

Yu(p) = i*[Vr2enl] 2 e P2 H,, (p) (3.12)

in momentum space; i.e., they are identical up to the phase factor i". This is a
consequence of the symmetry of the harmonic oscillator Hamiltonian in ¢ and p.

The same is true, of course, for the classical and semiclassical wavefunctions in
coordinate and momentum space, which are well-known: From (2.23) we immediately
find (with pg = V2E)

As(p) = A-(p) = 2mq|” = — —= = sw(p) (3.13)

and

2
Si(p)=:l:{§\/ QE—pZ-l—%arcsinI%}. (3.14)

(2.26) finally yields the momentum distributions

cos Sy n even

(3.15)
sin S_ n odd,

T (p)” = w(p) (1 + (—1)" cos 28;) = 2w(p) {

where the semiclassically quantised energy (2.20) E, = n + 1/2 exactly coincide with
the quantum one.

3.3. Square-well potential

For the square-well potential

Vig) = {0 ol <a , (3.16)

oo gl >a

the momentum distributions are obtained immediately by working out the elementary
Fourier integrals (2.3) for the position wavefunctions ¢,,(q) = cos(k,q)/v/2a (n even) or
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Figure 2. Momentum wave function for the square well with a = 1 and n = 16.

én(q) = sin(k,q)/v/2a (n odd) for |¢| < a and k, = (n+ 1)7/(2a), n =0, 1, ... . The
result is (compare also [1])

a (sin|(n+1)7/2—ap/h Lsin[(n+1)7/2 +ap/h

) — o [(n+ D/2 = ap/R) | sinl(n+ D/2 4 ap/R] o
Amh (n+1)7/2 —ap/h (n+1)7m/2+4 ap/h

with ¢ = 1 or ¢ = —i for n even or odd, respectively. As an example, figure 2 shows

the momentum wavefunction for n = 16 for p > 0. We observe a spike at the position
of the classical momentum

p = +tpa = £v/2mE, = thk, = thr(n +1)/(2a), (3.18)

i.e. at p & +26.7 for the case shown in figure 2. Furthermore, we clearly observe
an infinite number of zeros in the momentum distribution, whereas there are n = 16
zeros in the position wavefunction. However, 8 of these momentum zeros are inside
the classically allowed region —py < p < +pg- In the limit 7 — 0 the momentum
distribution approaches d-functions at £p., i.e. the classical distribution.

4. Summary

In the present article we have presented some (known) results for quantum momentum
distributions for simple systems as well as their classical and semiclassical counterparts.
Here we confined ourselves to very elementary, however instructive examples. In a
subsequent paper [14] we will illustrate the properties of the quantum momentum
distributions by a detailed discussion two important examples, an anharmonic one—
dimensional potential (the Morse oscillator) and the three-dimensional Coulomb
potential, where the distributions can be evaluated in closed form.
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