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Abstract. The lifetime of a Bloch particle in a homogeneous field is calculated numerically as a function
of the field amplitude. A simple model explaining the characteristic features of the field dependence of the
lifetime is introduced. The theoretical results are compared with the experimental data of Ref. [1] obtained
for cold sodium atoms in an accelerated optical lattice.
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In this Letter we address the question of the lifetime
of Wannier states which, by definition, are the metastable
states of a system with Hamiltonian

H=p)24+V(z)+Fz, V@+2n)=V(z). (1)

(We use a scaling which leaves only two independent pa-
rameters — the scaled static force F' and the scaled Planck
constant /' entering the momentum operator.) For a long
time this problem was of considerable theoretical interest
in the field of solid state physics [2-4]. Recently it has
acquired a new impact due to the experiments with cold
neutral atoms in an accelerated standing laser wave [1].
For the first time the tunneling rate was directly mea-
sured, thus suggesting a unique opportunity for testing a
theory.

We briefly recall the main theoretical predictions. The
common approach to the problem, known as Landau—
Zener theory [2], predicts an 1/F dependence for the tun-
neling rate

[W(F) ~ Fexp(—ba/F) . (2)

In Eq. (2) the index n refers to the Wannier-Stark states
originating from the n-th Bloch band and the coefficient b,
is proportional to the square of the energy gap between
n-th and (n + 1)-th bands. We note that Eq. (2) coin-
cides with an estimate for “incoherent” tunneling through
N ~ 1/F barriers separating the bounded motion of a
classical particle in any of the potential wells from the re-
gion of unbounded motion. However, as mentioned several
times in the literature, in the considered case of a periodic
potential the tunneling is not “incoherent”. Thus, in its
best, Eq. (2) can capture only “an average” dependence
on F and large fluctuations of I, are expected when the
amplitude of a static force tends to zero (N — oo) [3].
Although this prediction is out of doubt, the particular
dependence of I,(F) [especially for the important case
V(z) = cosz] has not been studied in any detail.

In this paper we calculate the lifetime of the Wannier
states in the potential V' (z) = cosz. We restrict ourselves
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Fig. 1. Schematic drawing of the Wannier-Stark ladder of the
resonances. The width of the levels is “proportional” to the
resonance width I', defining the lifetime of the states.

to the case of relatively large values of the scaled Planck
constant, where each well of the periodic potential can
support no more than one stable state (which essentially
simplifies the analysis). In particular we shall be interested
in the behavior of the function I'y(F) for ' = 1.6711 used
in the laboratory experiment with cold sodium atoms [5].
We explain the peculiarities of IH(F) observed and con-
tinue this function to the region of smaller F' unavailable
within the present day experimental facilities.

To calculate the lifetime we used the approach devel-
oped in our recent papers [6,7]. Using this approach one
finds the complex energy spectrum of the Wannier states
(forming so-called Wannier-Stark ladder of resonances, see
Fig. 1) by diagonalizing the unitary matrix U of the sys-
tem evolution operator over the Bloch period T = h'/F
with the nonhermitian resonance-like boundary condition.
(We note that all resonances belonging to a particular lad-
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Fig. 2. (a) The width of the first three most stable Wannier
resonances as a function of the static field amplitude. [Dotted
lines are the approximation of I'p1(F') by the model (3).] (b)
Positions of the ground (solid line) and first excited (dotted
line) Wannier resonances reduced to the fundamental energy
interval AE = 27F. The scaled Planck constant is A’ = 1.671.

der correspond to the same eigenvalue of the evolution
operator over a Bloch period.) This method proved to be
very efficient: it detects not only the states associated with
classically bounded motion, but also the metastable states
with the energies above the potential barrier.

The results of the numerical calculation are presented
in Fig. 2. The dependence of the resonance widths I3, (in-
verse lifetime) on F' is shown in Fig. 2(a) for the first
three most stable states. (Note that only the ground state
is associated with classically bounded motion.) In addi-
tion, Fig. 2(b) shows the positions of the first two Wan-
nier levels reduced to the fundamental energy interval
—7nF < E, < wF. The following conclusions can be drawn
from the figure. (i) Equation (2) captures correctly the av-
erage decrease of the tunneling rate as F' tends to zero.
(ii) Tunneling is enhanced when the different Wannier lad-
ders cross. (iii) The crossings of the levels greatly affect
the decay rate of more stable state and almost does not
affect less stable state. (iv) Along with the level cross-
ings there are also quasicrossings (see discontinuity of E;

around 1/F = 4). In this case the Wannier states change
their stability, i.e. the second excited state [not shown in
Fig. 2(b)] becomes more stable than the first one.

We shall show now that the effect of the enhanced tun-
neling due to the level crossings can be well mimicked by a
simple two-state model. In this model we assign zero width
Iy = 0 to the ground level, a finite width I = I (F) =
a1 F exp(—b1/F) to the next level [see Eq. (2)], and ex-
plicitly introduce a coupling between the states. Then the
ground Wannier resonance is given by the largest (by ab-
solute value) eigenvalue A\g = exp(—i[FEy — i[/2]/F) of
the 2 x 2 matrix

U=wU, (3)

o = G €xP (—% [En(F) _ l@]) —

W = exp {—ie(F) (g (1)) } . e(F) = aexp(~b/F)
) (5)
In Eq. (4) E,(F) ~ E% + 7F (n = 0,1) are the level
positions, and the coefficients a and b in Eq. (5) are the
adjusted parameters. Because of the coupling, the ground
level now gains a finite width Iy = IH(F) which depends
on the relative position of the levels inside the funda-
mental energy interval. As an example, the dotted line
in Fig. 2(a) shows the obtained approximate dependence
Io(F). A good agreement with the exact result is seen.
(We also note that the approximation can be improved by
using a three-level model [7].)
Furthermore the model (3) yields an analytical expres-
sion for I'x(F). In fact, in the considered case of a 2 x 2
matrix U one easily solves the eigenvalue problem, which

gives
Ro + A Yo+ A1)’ i
Ao = COS€ (L) + |cos®e (%) - 5\0/_\] )
(6)

2
In Eq. (6) we use the short notation A, = exp(—i[E, —
il,/2]/F) and omit the argument F of these functions
and the function €(F). Because of € < 1 we can simplify

Eq. (6) to
S 16 7 B

Then, bearing in mind that I, = —2FRel[ln A,], we obtain
the equation for the resonance width I [8]

Iy 9 5\0‘}‘5\1
— =€“Re | = = . 8
F° e|:)‘0_)\1:| ®)

Finally, considering the nearest points of local maximum
I"%® and minimum ™" (which obviously correspond
to the level crossing arg[ln A\g] = arg[ln ;] and the largest
distance between the Wannier levels arg[ln Ag] = arg[ln \;]
+, respectively, see Fig. 2), we obtain a relation which
does not contain the adjusted parameters

[maz oF 2
0 _ ~ (= . 9)
Iy I (F)
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Fig. 3. The fluctuation AIL(F) of the decay rate of the
ground Wannier states as a function of F. Solid line is the
exact result, dotted line is the approximation by Eq. (7) with
€(F) = aexp(—b/F), a = 1, b = 0.253. The dotted straight
line corresponds to Eq. (9) where It /F is obtained by fitting
the middle curve in Fig. 2(a) by a straight line.
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Fig. 4. Lifetime of the ground Wannier state. Solid line is the
theoretical result of Fig. 2(a), circles are the experimental data
of Ref. [1]. The insert blows up the interval 4000m/s®> < a <
10000m/s> considered in the cited experiment.

Equation (9) has a simple physical meaning: the charac-
teristic amplitude for fluctuation of I, (F') is defined by
the average tunneling rate I, 41 (F) of the next excited
state (see Fig. 3). A justification of this statement in the
case of smaller 7', where a potential well supports many
narrow resonances, will be the subject of a separate paper
[7].

In this paragraph we compare the numerical data pre-
sented with the experimental data of Ref. [1]. In the cited
experiment the sodium atoms in the optical lattice of a
A = 589nm laser were subject to the inertial force due to
acceleration of the standing wave. The acceleration was
varied in the interval 3000m/s? < a < 10000m/s? which
corresponds to the scaled static force 0.113 < F' < 0.373.

The solid line in Fig. 4 reproduces the theoretical curve
of Fig. 2(a) plotted in the initial units. The circles are the
measured tunneling rate. It is seen that the experimen-
tal data follows the theoretical prediction. (According to
Ref. [1] we attribute the deviation to ten-percent uncer-
tainty in the depth of the potential.) In particular we note
a drop of the curve at a = 5000m/s? which, as it was ex-
plained above, is due to the crossing of the ground and
first excited Wannier levels in the neighboring wells.

To conclude, we have numerically determined the life-
time of a Bloch particle in the cosine potential subject to
a homogeneous static field. It was confirmed that the life-
time as a function of the static field amplitude follows in
average the Landau-Zener formula. However, sharp peaks
are superimposed on this smooth dependence. These peaks
of enhanced tunneling are due to the crossing of the Wan-
nier ladders. The effect of the level crossing is shown to be
well captured by a simple two-level model introduced in
the paper. We also would like to note that our approach
of calculating the tunneling rate uses the Wannier reso-
nances and does not require information about the dis-
persion relation for the Bloch bands. This differs it from
the complementary “Bloch -band” approach of the recent
paper [9].
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