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Abstract. The paper studies the effect of a weak ac field on the Wannier states, which are known to be
the metastable states of a quantum particle in a periodic potential subject to a static field. Provided
that the photon energy exactly matches the spacing of the Wannier-Stark ladder the system complex
quasienergy spectrum is obtained. It is shown, in particular, that a weak ac field can increase the lifetime
of the Wannier states by several orders of magnitude. The analytical results of a perturbation theoretical
analysis are compared against the exact numerical calculation of the system spectrum.
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1 Introduction

The term Wannier states is currently used in the liter-
ature to denote the metastable states (resonances) of a
Bloch particle in a homogeneous field (a model of crystal
a electron subject to a static electric force):

ﬁW=ﬁ0+Fw7 (1)

Hy=p*/2+V(z), V(@+2m)=V(z), (2

(To be concrete, we choose V(x) = cosz in what fol-
lows. Then the only parameter of the system (2) is the
dimensionless Planck constant in the momentum opera-
tor.) These resonances form a set of equally spaced levels
Ey,; = Eo + 2nF1 known as the Wannier-Stark ladder
of resonances. Thus, in contrast with the band spectrum
E, (k) of the Bloch Hamiltonian (2), the spectrum of the
system (1) is discrete [1].

An interesting interplay between the band and discrete
spectrum appears if there is a weak resonant (hw = 27 F)
ac field in addition to the dc field:

H=Hy +F,z cos(wt) , 3)

In this case the system (quasi-)energy spectrum again has
a band structure, where the band width is proportional to
the amplitude F,, of the ac field [2]. We note, however, that
this fundamental result was obtained on the basis of the
tight-binding model and its validity for the initial system
(3) has not been proved. The aim of the present paper is
to study the effect of the resonant periodic driving on the
spectrum of the Wannier states beyond the tight-binding
approximation.

It should be noted from the very beginning that the
properties of the system (3) crucially depend on the sys-
tem parameters. At least two limiting cases can be dis-
tinguished. These are the case of a small (scaled) Planck
constant and a large amplitude of the driving force, which
we refer to as the semiclassical region, and the opposite
case of relatively large i (A > 1) and a weak driving force,
which we refer to as the deep quantum region. The semi-
classical region was studied in some detail in the papers
[3-5]. In this paper we are concerned with the deep quan-
tum region. There are two special reasons for our interest
in this case. First, as mentioned above, there is a body of
theoretical results obtained for the tight-binding model,
which is known to be a reasonable approximation of the
initial system exactly in the deep quantum region. Second,
this region is easily accessible by the experiment with cold
neutral atoms in an accelerated standing wave [6], which
suggest an almost perfect laboratory realization of the
one-dimensional system (1). Anticipating further exper-
imental study of the system (3), it is important to know
what is missed in the tight-binding model and which are
the exact conditions for its validity.

The structure of the paper is the following. Section 2
is devoted to the Wannier-Stark resonances (no ac field).
Although the existence of these resonances is obvious from
the physical point of view, the mathematical formalization
of this intuitive result was a subtle problem for a long time.
Recently we have shown that the Wannier resonances can
be rigorously introduced as the complex poles of some
effective scattering matrix [4]. This “scattering matrix”
approach sets the basis for our further analysis and we
briefly recall it in Sec. 2. The known results for the effect
of an ac field obtained on the basis of the tight-binding
model are presented in Sec. 3. The original part of the
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paper are sections 4-7. In Sec. 4 we develop a first-order
perturbation theory for the Wannier states affected by a
weak time-periodic force. This theory predicts the band
structure E, (k) ~ Eo+ AE, cos(2rk) for the system qua-
sienergy spectrum, which is in qualitative agreement with
the tight-binding model. However, the band width AE,
has a different dependence on the system parameters and,
as shown in Sec. 5, the result of the tight-binding model
can be reproduced only in the limit F — 0, F, — 0. In
the second part of the paper (Secs. 6-7) we study the in-
fluence of an ac field on the decay rate of the Wannier
states — a problem which cannot be studied by using the
tight-binding model in principle. The results of a numer-
ical analysis of this problem reported in Sec. 6 indicate a
drastic change in the decay rate. In particular, it is found
that a weak periodic driving can increase the lifetime of
the Wannier states by several orders of magnitude. An
explanation for this surprising result is given in Sec. 7,
where we approach the problem analytically by introduc-
ing a simple two-state model.

2 Wannier states

We recall some of the results of our previous papers [4,
5], where the Wannier resonances are defined as the poles
of an effective scattering matrix constructed on the basis
of the system evolution operator. Using the momentum
representation for the Wannier-Bloch states

o0

bap(@) =€ 3" e P (aln), (aln) = (2m) 126

n=-—oo

(4)

the equation for the poles E, of the scattering matrix has
the form

U](Alﬁ)c(a’k) = ei%EQTBc(aak) , (5)
lim [c*P| =0, F>0. (6)
n—oo

In Eq. (5) Ux) is the k-specific matrix of the system evo-
lution operator Uw over the Bloch period T = i/ F,

(Ué‘l,“))nl o= (n'] exp(—ikw)ﬁw exp(ikz)n) , (7)

=N . . T 5— Ft)2
Uw = e *exp {—3/ [u + cosx] dt» , (8)
R Jo 2

and Eq. (6) is the resonance-like boundary condition (zero
amplitude of the incoming wave) which ensures that the

spectrum E, is discrete (and complex). The matrices U$)
are unitarily equivalent to each other, and therefore the
complex bands of the metastable Wannier-Bloch states
are degenerate, i.e., the energies F, do not depend on the
quasimomentum k [7]. For the purpose of future use we
also display the equation for the continuous evolution of
the Wannier-Bloch states

9)

Yo k(z,t) = 6_%E°‘t¢a,k+Ft/h($‘) ;

-10
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Fig. 1. Positions (a) and widths (b) of the first two Wan-
nier resonances as a function of the static field amplitude. The
scaled Planck constant i = 2.

where, by definition, ¥q k+1(2) = Yo,k ().

As an example, Fig. 1 shows the positions of the first
two Wannier-Bloch bands (note, that Re[E,] = EZe¢ is
defined modulo 27 F) and their decay rates I',/h = 2Im
[E4]/h as a function of F for h = 2. (We shall use this
value of the scaled Planck constant in all our numerical
illustrations.) It is seen that, in agreement with Landau-
Zener theory [8], the decay rate decreases in average as
an exponent of 1/F for F' — 0. The fluctuations of the
decay rate are due to the band crossings and were studied
in detail in Ref. [9].

To avoid a misunderstanding it should be noted that
we distinguish Wannier-Bloch and Wannier-Stark states.
The latter are related to the Wannier-Bloch states by the
Fourier transformation

— 1/2 2wlk
Vo) dke™ ™ g 1 () (10)

—1/2

and (unlike the Wannier-Bloch states) are essentially lo-
calized within one I-th potential well. It is easy to prove
the following relation between the expansion coefficient
c%a’k) of the Wannier-Bloch state and the Fourier image
of the Wannier-Stark state:

C(na’k) = @a,O(n + k) ) Wa,O(k) = / dmeikzwa,o(x) .
- (11)

[Here we set [ = 0. This does not cause a loss of generality,
since the functions (10) possess the translational property
Uyit+1(x) = Po,(z — 2m).] The asymptotic behavior of
W,,0(k) for large negative k coincides (up to a phase shift)
with the asymptotic Fourier-image of the Airy function

_ Bk ELk
W, o(k) ~ exp (z o R ) .

(12)



M. Gliick, A. R. Kolovsky[*] and H. J. Korsch: Perturbation theory for Wannier resonance states affected by ac field 3

Because E, is complex, the function (12) diverges expo-
nentially for k¥ — —oc. The divergence of ¥, o(k) [and,

according to Eq. (11), the expansion coefficients c%a’k)]

brings about the problem of normalization of the meta-
stable Wannier states. The common approach normalizing
a metastable state is by complex scaling of the coordinate
[12]. For the problem considered an appropriate scaling is

r—>x—id, 6>I,/2F. (13)
The complex translation of the coordinate is equivalent to
the multiplication of the Fourier-image by factor exp(dk).
Then the Wannier states ¥, ;(x —id) are square integrable
functions.

3 Tight-binding model

In this section we study the effect of a periodic pertur-
bation by using the tight-binding model, which is known
to be a reasonable approximation of the Hamiltonian (1)
in the case of small tunneling rate (i.e., small resonance
width I, <« 1). The analysis mainly follows the paper
[10].

In the notation used the tight-binding counterpart of
the Hamiltonian (2) has the form

Ho= S (D +1/+ i+ na),  (4)
1

In Eq. (14) |} is the set of the localized states associated
with the [-th cell of the periodic potential. The eigenfunc-
tion of the system (14) are Bloch-like functions

) =D €™k |I) (15)
l

corresponding to the energies E(k) = Agcos(2nk). The
influence of the static force is mimicked by the term

F 7, |I)2wl(l]. Then, as it is easy to show [see Eq. (19) be-
low], the tight-binding counterpart of the Wannier-Bloch
state (4) is

- Ao i2nlk
[¢r) = exp [Z27rF sm(27rk)] ;e [Iy.  (16)

The functions (16) are the eigenfunction of the system evo-
lution operator over the Bloch period and they form the
degenerate Wannier-Bloch band with the energy £ = 0.
The continuous time evolution of the function (16) is given
by Eq. (9) and corresponds (since E = 0) to the substitu-
tion k - k+ Ft/hin Eq. (16). At last, the Wannier-Stark
states are given by the transformation (10) and can be
explicitly written in terms of Bessel functions:

&) = ; Im—1 (%) ) .

Now we discuss the effect of the periodic perturbation
F,, cos(wt) >, |1)2xl(l|. In this case the notion of energy

(17)

should be substituted by the notion of quasienergy. The
key point is, however, that the system already has an in-
trinsic time-period Tg = fi/F. Thus the notion of quasi-
energy can be introduced only in the case of commensurate
periods [11]

¢gIg=rT,, T,=27/w, (18)
(r, q are coprime integers). In what follows we restrict
ourselves to the simplest case T, = Tp (hw = 27F). Using
the general solution of the Schrédinger equation for the
perturbed tight-binding model

[ (t)) = ;exp [i27rlk(t) + i% /0 t dat' cos(27rk(t'))] 0y,

(19)
k(t)=k+ Ft/h — (F,/w)sin(wt) ,

one obtains the following expression for the quasienergy
spectrum

27F,

E(k) = Aoy (W) cos(2mk) . (20)

Equation (20) shows that the resonant periodic driving
removes the degeneracy of the Wannier-Bloch band and
it gains a finite width proportional (for 27F,, /hw < 1) to
the amplitude of the driving force.

4 First order correction

As stated in Sec. 2, one obtains the spectrum of the system
(1) by solving the eigenvalue problem

waa,k(m) = wleTr ¢a,k(w) ) (21)
where Uy = Uw (Ts,0) is the evolution operator (8). We
recall that the spectrum E, depends on the type of the
boundary condition — a real continuous spectrum corre-
sponds to a hermitian boundary condition and a nonher-
mitian boundary condition leads to a complex discrete
spectrum. Here we are interested in the case of the non-
hermitian boundary condition (6). However, the type of
the boundary condition will be actually irrelevant in all
intermediate equations of this section. The difference ap-
pears only in the final equation, where one should substi-
tute the proper eigenfunctions depending on the boundary
condition.

Now we find the correction to the spectrum E, due
to the resonant (hw = 27 F) time-periodic perturbation.
Using the Kramers-Henneberger transformation we reduce
the Hamiltonian (3) to the form

~ PP F,
Hz;-l—cos[a:—ecos(wt)]-{-Fa:, e=—, (22
w
which we approximate for € € 1 as

~

H=Hy+ e sin x cos(wt) . (23)
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(We would like to stress that the perturbation parameter
ise = F,/w? and not z = 27 F,, /hw as it could be expected
on the basis of the tight-binding model.) Calculating the
effect of the perturbation by using the interaction repre-
sentation of the Schrédinger equation, the time evolution
operator takes the form

U=0UwUa, (24)

where the operator U 4 reads
~ ie T ~
Up = exp _ﬁ/ Uy (¢, 0) cos(wt) sin z U (t, 0)dt
0
(25)

with the continuous-time system evolution operator [com-
pare with Eq. (8)]

2

~ ) . i LT (p— Ft)?
UW(t,O):e_’F”/hexp{—%/ [u-l-cosx]dt}.
0

(26)

According to the usual perturbation theory, the first
order correction is given by the diagonal elements of the
operator (24), which directly yields

exp[—iAE, T /h) = (% 1 (2) Untai(z)) . (27)

[In Eq. (27) and below the angle brackets denote an inte-
gral over z, i.e., (...) =lim;_,o + f_LI/jQ ...dz.] Expand-
ing the operator exponent (25) in a series over € and keep-
ing only the linear term, we obtain

AE,(k)/F = e (4% 1 (2) Apo i ()

where A is the hermitian operator

(28)

~ 1 [Ts ~ ~
A= / cos(wt) T (¢,0) sinz O (£,0)de . (29)
0

Substituting Eq. (29) into Eq. (28) and taking into ac-
count that U (t,0)va,k () = exp(—=iEat/h)Ya ki ri/n(x)
we obtain
1 [Te
AE, (k) = €7 dt cos(wt){sin x|¢a,k+%(x)|2) .

B Jo
(30)
Finally, using the the fact that |¢ x(x)| is periodic both
in z and k and an even function of k, we come to the result

AE, (k) = el, cos(2rk) , (31)
where
1/2 1 ™
I, = / dk cos(27rk)—/ dzsin x|k (z)>  (32)
—1/2 2 )

is the amplitude of the first Fourier harmonic of the Bloch
oscillations. It follows from Eq. (31) that a weak peri-
odic driving removes the degeneracy of the Wannier-Bloch
bands which gain a finite width AE, = 2¢l,. We draw
attention to the fact that the width of the quasienergy
Wannier-Bloch band depends on F' both through the per-
turbation parameter ¢ = F,/w? = F,(h/2nF)? and the
integral (32). We study this dependence in the next sec-
tion.

(b)

SK)IF

0 0.5
k

Fig. 2. (a) The integral S(k) = (27r)_1f_7r7r de sin z |1, ()|
for F = 0.04, F = 0.02, and F = 0.01. The figure illus-
trates the convergence of S(k)/F for F — 0. (b) The integral
Ck) = f_’rﬂ dz cos x|t (z)|* for the same values of F, which

illustrates the convergence of C(k) to the potential energy of
the ground Bloch band (depicted by dashed line).

5 Width of the quasienergy band

In this section we show that in the limit F — 0 Eq. (31)
reduces to the result of the tight-binding model. In fact,
for F <« 1 one can neglect the decay of the Wannier-
Bloch states and, after taking into account the shift in
the positions for minima of the potential wells, they can
be well approximated by the Bloch functions [7]

[Vak (@) & |pa,k(z + F)| .

Expanding (33) in F’ we obtain an estimate for the integral
over z in Eq. (32)

(33)

KO

% dz sin z|q, k()|

2

S(k)

-

F [T . d
~ g/_ﬂdwsmxawa,k(ww
F (7 2
=5 dz cos z|pa i (z)|° = —FC(k) , (34)

where C(k) is the mean potential energy of the Bloch
states. To illustrate the validity of the approximation (33)
we compare in Fig. 2(b) the mean potential energy C (k) of
the ground Bloch state with that of Wannier-Bloch states
for F = 0.04, 0.02, and 0.01. A good convergence is no-
ticed. The left panel in Fig. 2 shows the function S(k)
calculated for the same values of static field amplitude. It
is seen that Eq. (34) captures correctly the functional de-
pendence of the function S(k) on both F' and k. Bearing
in mind that the amplitude of the potential energy vari-
ation is proportional to the width A, of the Bloch band,
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Fig. 3. The real part of the first two (quasi-)energy Wannier-
Bloch bands for e = 0 (a), e = 0.2 (b), e = 0.4 (c), and e = 1
(d). The value of the static force F' = 0.08, i = 2.

Fig. 4. The width of the Wannier-Bloch bands as a function
of the perturbation parameter e for F' = 0.08 (solid line), F' =
0.04 (dashed line), and F = 0.02 (dotted line).

we finally obtain

AE, (k) ~ eAyF cos(2rk) . (35)
(We keep the sign of A,, which is negative for the ground
Bloch band, positive for first excited, and so on.) The
dispersion relation (35) coincides with the dispersion rela-
tion (20) in the case F,/hw < 1. We note, however, that
the validity condition of Eq. (35) is € € 1 and F < 1,
which is not the same but stronger than the condition
eF ~ F,/hw < 1.

To check the analytical result (35) we calculated nu-
merically the complex spectrum of the system. As an ex-
ample, Fig. 3 shows the real part of the first two qua-

sienergy Wannier-Bloch bands for F' = 0.08 and differ-
ent values of the perturbation parameter €. The width of
the bands as a function of € are given by the solid lines
in Fig. 4. (In addition, the dashed and dotted lines in
Fig. 4 show the width of the bands for F = 0.04 and
F = 0.02.) It is seen from the figures that, in agreement
with Eq. (35), the dispersion relation for the ground band
is well approximated by a cosine function and the band
width grows (approximately) linear with e. For the first
excited band, which is quite unstable, the approximation
(33) is not valid and one observes a deviation from the
dependence (35).

6 Correction to the imaginary part

Because the Wannier-Bloch states are metastable states,
any perturbation should also influence the imaginary part
of the energy. In our numerical study of the problem we
have found a dramatic change in the imaginary part of the
energy (which defines the decay rate of the states) due to
a weak periodic driving. Some of the numerical results are
presented below.

Figure 5 shows the decay rate of the ground state as
a function of the quasimomentum k for the parameters of
Fig. 3. It is seen that even for the small value of € = 0.2
there is an essential deviation from “cosine dependence”,
which could be naively expected basing on the results of
the previous section. By further increasing e the deviation
from the cosine dependence increases and leads to a more
complicated structure of Iy(k) [see Fig. 5(c,d)]. By com-
paring Fig. 5 with Fig. 3 one concludes that this structure
is related to the crossing of the ground Wannier band with
the first excited band.

12 12
@) (b)
o8 8
[
)
©
L 4 4

0 Q
-0.5 0 0.5 -0.5 0 0.5
12 12
(c) (d)
o8 8
[
=
o
-4 4
Q
-0.5 0 0.5 -0.5 0 0.5
k k

Fig. 5. The decay rate of the ground Wannier-Bloch states
as a function of the quasimomentum k for the case of Fig. 3.
In this and the following figures we normalize the decay rate
I, (k)/h against the decay rate I, /R at € = 0.
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Igg(ro(k )/F'Q)

10 |

10

Fig. 6. The decay rate of the ground Wannier-Bloch band at
k* = 0 (upper family of curves) and k* = +1/2 (lower curves)
for the parameters of Fig. 4.

It is also seen in Fig. 5 that the periodic perturba-
tion can both increase and decrease the decay rate of the
Wannier states. The regions of the enhanced and sup-
pressed tunneling depend on the phase difference between
the phase of the field and the phasAe of E\he Bloch oscilla-
tions. For the chosen Hamiltonian H = Hw + F,,x cos(wt)
these are (at least for small €) the middle and the edges of

the Brillouin zone, respectively. (For H=Hy-F,x cos(wt)

the situation is reversed.) The e-dependence of the decay
rates I'p(k = 0) and Io(k = £1/2) is shown in Fig. 6
for F = 0.08 (solid line), F = 0.04 (dashed line), and
F = 0.02 (dotted line). A highly nontrivial dependence
is noticed. In particular, we would like to draw attention
to the points of nonanalyticity, where the decay rate is
suppressed by more than a factor of 103! This tremendous
decrease of decay at the edges of the Brillouin zone has
consequences in the global increase of the stability of the
ground state. As an example, Fig. 7 shows the survival
probability

P(t) = /_ 11//22 exp [@] dk

of the ground Wannier state for = 0.04 and € = 0 (a),
e = 0.2 (b), and € = 0.54 (¢). It is seen that the decay
rate slows down when e approaches the nonanalytic point
€cr =~ 0.55. To conclude this section, we note that the
periodic perturbation essentially affects only the ground,
relatively stable, band. The lifetime of the unstable excited
states remains practically unchanged.

7 Two-state model

The numerical results of the previous section shows a com-
plicated behavior of the decay rate as the amplitude of the

driving force is increased. Unfortunately, this observed e-
dependence of I', (k) cannot be described in terms of the
first-order perturbation theory used in Sec. 4 to find the
correction to the real part of the energy. The reason for
this can be understood by considering the complex energy
in the polar coordinate

_ ETBY _ o | pre Lo
)\a—exp(z 5 )-exp( F[Ea z2]>.
(36

Then Eq. (28) gives the tangent correction to the energy
and, thus, artificially increases |\,| or even moves A, out
of the unit circle. Because of this we employ here a differ-
ent method, which was used earlier in Ref. [9] to find the
fluctuation of decay rate when the static field amplitude
is varied. We describe this approach in the following using
€ = 0 for the moment.

The main idea behind our approach is that a channel
for decaying of the a-th Wannier-Bloch state is its cou-
pling to the next (a + 1)-th state. Thus, being interested
in the decay rate only of the ground state, we can approx-
imate the system by a two-state model. In this model we
assign zero width to the ground resonance, a finite width
to the 1-st resonance, and explicitly introduce a coupling
between these states. Then the ground Wannier resonance
is given by the largest eigenvalue of the following 2 x 2 ma-
trix

Uy =UW > Ija,ﬁ = (sa,ﬁ;‘a )

- exp{—ia(F) ((1) (1))} :

In Eqgs. (36)—(38) the resonances positions Eff¢, Ef* and
the resonance width I'y are assumed to be known (for ex-
ample, from a semiclassical analysis) and a(F) ~

exp(—const/F) < 1. Because of the coupling, the ground
resonance now gains a finite width I'y which depends on

(37)

(38)

0

10
()
107 (b) ]
(@)
107 * * * *
0 1 2 4 5

tx 10%

Fig. 7. The decay of the ground Wannier-Bloch band for dif-
ferent values of the perturbation parameter ¢ =0 (a), e = 0.2,
and € = 0.54 X ecr, (F =0.04, i = 2).
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the relative position of the resonances within the funda-
mental energy interval. As shown in Ref. [9], this model
reproduces the numerically observed dependence I, =
I'o(F) with high accuracy. Moreover, the model allows us
to obtain an analytical expression for the decay rate of the
ground Wannier state. In fact, in the considered case of a
2 x 2 matrix U one easily solves the eigenvalue problem,

which gives
T 7 \2
cos®a (AO ; Al) - /_\05\]
(39)

o+ A
/\0=cosa( ot 1)+
2
In Eq. (39) we use the short notation (36) and the bar
denotes the “zero” approximation for the resonances. Be-
cause a < 1 we can simplify Eq. (39) to

- €2 5\0 + 5\1
=X |1—-=|—— .
0T [ 2 (Ao M )]
Then, bearing in mind that I, = —2F Re[ln \,], we ob-
tain for the resonance width Iy the equation

Iy 9 5\0+5\1
— =a“Re | = = .
F° e|:)\0_)\1:|

1/2

(40)

(41)

In Eq. (41), the function a(F) ~ exp(—const/F) [with
const being an adjusted parameter] gives “an average”
decrease of the decay rate Iy ~ Fexp(—2const/F) as
F — 0, and the terms in the square brackets is responsible
for the fluctuation of the decay rate due to level crossings
(see Fig. 1).

Now we shall adopt this model to analyze the currently
considered case of a time-periodic perturbation (e # 0).
Our starting point is the equation

U=0UwUa ~Uw(l —icd) ~ Uy exp(—ied), (42)
where the hermitian operator A is given by Eq. (29).
We note that here we use a representation which pre-
serves unitarity of the evolution operator and, thus, en-
sures |Aq| < 1. (It should be remembered, however, that
Eq. (42) is valid only for € <« 1.) It follows from Eq. (42)
that to include the effect of the ac field in the model (37),
the matrix Uy should be multiplied by the operator ex-
ponent

UM = Uy exp [—ie cos(2rk)A] . (43)

For the moment, A is an arbitrary symmetric 2 x 2 matrix

[ Co b
a=(in)
and the prefactor cos(27k) mimics the cosine dependence

of the operator A on the quasimomentum. Then, using the
approximate relation

exp | —ie | p 1
. 0b . C()O
o [ie(08) e [ (200

(44)

)] , €K1, (45)

we can present Eq. (43) in the form
UW =UW, U,p=0apra, (46)
where

. Fa
Ao = exp (—% |:E56 + Cu€ COS(27Tk‘) — 17]> s (47)

Iy =0, and

W = exp {—i[a + be cos(2rk)] <(1] (1)) } . 4®)

Equations (46)—(48) have the same structure as Egs. (36)—
(38) and, therefore, the solution (41) can be directly used,
namely

Iy (k)
F

(49)

= [a + becos(27k)] Re [/_\0 + /_\1] .

Ao — M

The roles played by the two factors on the right hand side
of Eq. (49) are similar to those in Eq. (41) — the first
factor gives a smooth “average” dependence of the decay
rate (now on the quasimomentum k), and the term in
the square brackets takes into account the effect of level
(band) crossings.

Equation (49) contains a number of still undefined pa-
rameters. Among them, Ef**, Efe I, and a refer to the
unperturbed case € = 0, and the coefficients ¢, ¢; are easy
to identify with the integrals (32). Thus we are left with
only one adjustable parameter b. Based on the numerical
result (see Fig. 5) we conclude that b is positive. Moreover,
one can see that Eq. (49) correctly captures the decrease
of the decay rate at the edges of the Brillouin zone leading
to a non-analytical behavior of Ip(k = £1/2) at € = ecp.
Using the numerically known value €., we estimate the
parameter b as b = a/e.,.

As an example, Fig. 8 compares the function Ip(k)
calculated on the basis of Eq. (49) (solid line) with the
exact result (dotted line) for F' = 0.04 and € = 0.2 (a), e =
0.5 (b). The procedure of adjusting the free parameters
was organized as follows. The values Ef* = —0.60557F,
ERe = —1.72027F, and I} = 1.3098F were taken from
the data of Fig. 1. Then we adjusted the parameter a to
a = 0.0096 to get the correct value Iy = 8.0449 - 1075F.
The coefficients ¢ = —0.43, ¢; = 2.3 were calculated by
using Eq. (32). Alternatively, these values can be extracted
from the numerical data of Fig. 4. The value €., = 0.55
is taken from Fig. 6, which gives b = 0.0171. It is seen
in Fig. 8 that there is a good qualitative agreement with
the exact result even for a large e = 0.5. For a small € the
agreement becomes quantitative. In this case of a very
small € one can neglect the e-,k-dependence of the second
factor in Eq. (49) and it takes the form

F(}Eok) _ [

2
1+ — cos(27rk)] , €L €. (50)

CC’I"

This formula actually gives the correction to the imaginary
part of the energy up to the second order in e.
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Fig. 8. Comparison of the ground state decay rate calculated
on the basis of two-state model against the exact result for
€e=02(a)and e=0.5 (F=0.04, h = 2).

8 Conclusion

We have studied the effect of a weak resonant ac field on
the spectrum of the Wannier states. In the paper we re-
strict ourselves to the case where the Bloch period of the
particle in dc field exactly coincides with the driving pe-
riod. (In principle, the analysis can be extended to the case
of arbitrary rational ratio between the periods.) Below we
summarize the main results obtained.

To relate the dimensionless Hamiltonian (3) to some
physical system we shall consider it in context of the ex-
periment with cold atoms in an accelerated standing wave.
Then the system Hamiltonian has the form [6]

A2

T _ F
H= 2M+Vb oS <2kL [a: Uo? cos(wt)])+Fx . (51)

In the Hamiltonian (51), M is an atomic mass, V; the
amplitude of the optical potential (which is proportional
to the laser intensity), k;, the wave number of the laser
field, F' = Ma the inertial force due to the acceleration,
and F,, the amplitude of the periodic driving force with
frequency w. The condition T = T, implies

h _2m T

d_F - W ’ k‘L (52)

It is easy to show that the Hamiltonian (51) can be pre-
sented in the dimensionless form (22) where the values of
the scaled Planck constant A’ is given by

hl — theC 1/2 w — @
% ) Tec oM .

(53)

The deep quantum region of the system parameters we
were interested in corresponds to k' > 1.

In this paper we treated the driving force as a pertur-
bation where the perturbation parameter was

_2F kg

_ Fod wrec
T Mo?

= . 54

hw 7w (54)
It was shown that a perturbation (¢ < 1) removed the
degeneracy of the Wannier-Bloch bands and the system
quasienergy spectrum obeyed the equation

ER¢(k) = hw [EF® + €I, cos(2nk)] (55)

mod:fiw ~
In Eq. (55), EZ¢ is the position of the a-th Wannier res-
onance and I, is a constant which depends primarily on
the static field amplitude. In the limit of small F' the co-
efficient I, is proportional to F' and Eq. (55) reproduces
the result obtained earlier on the basis of the tight-binding
model.

The periodic driving also changes the decay rate of the
Wannier-Bloch states, which is defined by the imaginary
part of the quasienergy. In the case of only one (ground)
narrow resonance, the second order correction to the res-
onance width is given by the expression

2
Iy(k) = Iy [1 + ei cos(27rk)] ; (56)
Ccr

where Iy is the width of the unperturbed Wannier reso-
nance and €., is some characteristic value of the pertur-
bation. Equation (56) predicts a singularity in the life-
time of the Wannier states as € approaches e... In fact,
it is confirmed numerically that at € = €. the periodic
driving can increase the lifetime of the ground resonance
by several orders of magnitude. This coherent suppression
of Landau-Zener tunneling might find an application both
in the field of solid state physics and atomic optics.

References

[*] Also at L. V. Kirensky Institute of Physics, 660036 Kras-
noyarsk, Russia.

1. This statement has a limited validity and refers to the res-
onances, which actually are the peculiarities in the density
of states for a system with a continuous spectrum.

2. D. H. Dunlap and V. M. Kenkre, Phys. Rev. B 34, 3625
(1986); Nguyen Hong Shon and H. N. Nazareno, J. Phys.:
Condense Matter 4, L611 (1992); X.-G. Zhao, R. Jahnke,
and Q. Niu, Phys. Lett. A 202, 297 (1995); K. Drese and
M. Holthaus, Phys. Rev. Lett. 78, 2932 (1997).

3. M. Gliick, A. R. Kolovsky, and H. J. Korsch, Phys. Lett.
A 249, 483 (1998).

4. M. Glick, A. R. Kolovsky, and H. J. Korsch, Phys. Rev.
Lett. 82, 1534 (1999).

5. M. Gliick, A. R. Kolovsky, and H. J. Korsch, Phys. Rev.
E 60 (to appear).

6. M. Raizen, C. Solomon, and Qian Niu, Physics Today,
No. 7, p-30 (1997); B. P. Anderson and M. A. Kasevich,
Science 282, 1686 (1998).

7. M. Gliick, A. R. Kolovsky, H. J. Korsch, and N. Moiseyev,
EPJ D4, 239 (1998).



M. Gliick, A. R. Kolovsky[*] and H. J. Korsch: Perturbation theory for Wannier resonance states affected by ac field 9

8. G. Zener, Proc. R. Soc. London, Ser. A 137, 696 (1932);
L. D. Landau, Phys. Z. Sov. 1, 46 (1932).

9. M. Gliick, A. R. Kolovsky, H. J. Korsch (unpublished).

10. M. Holthaus, G. H. Ristov, and D. W. Hone, Europhys.
Lett., 32, 241 (1995).

11. This statement is valid both for the tight-binding model
and the initial system (3).

12. N. Moiseyev, Phys. Rep. 302, 211 (1998).



