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Abstract
The significance of the Wess—Zumino term in spin tunneling is explored, and a
formula is established for the splitting of energy levels of a particle with large
fermionic spin as an applied magnetic field is switched on.

The socalled Wess—Zumino term in an action integral has increasingly been
realised to be a quantity of considerable significance and with far-reaching physi-
cal consequences. The original work usually cited, ref.[[], is not very illuminating
in this respect. The truly deep content of the quantity has, however, been un-
covered particularly in ref.[P] in connection with the quantisation of the Skyrme
model (and the identification of the integer contained in the coefficient of the
Wess—Zumino term with the number of colours), and in ref.[ff], for instance, in
the very different area of macroscopic quantum tunneling. Here we consider the
latter case. We show why the term — which arises from the quasiclassical con-
sideration which here implies the use of the coherent state representation — is a
Wess—Zumino term, we explore some of its characteristics and establish a formula
for the level splitting of a particle with large spin S (integral or half-integral)
in an applied magnetic field. The fermionic suppression of the level splitting in
special cases has been established earlier (cf. refs.[§, [, fI]). Our aim here is to
extend to the half-integral case the formula obtained earlier for integral S by
path integral methods [ff] and from Schrodinger theory [, §] and in the presence
of an applied magnetic field. In many one-dimensional cases Schrodinger theory
is not only useful for comparison purposes, but is in particular simpler than the
path integral method for transitions at the level of excited states, as a comparison
shows (cf. e.g. [§] and [B, [T, []).

The consideration of spin systems is basically a discrete problem but in a qua-
siclassical treatment its mapping into a continuous system by first replacing spin
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operators S by classical vectors of length S has turned out to be an exceedingly
useful procedure for the construction of models. Thus the spin Hamiltonian with
two different anisotropy axes and without application of an external magnetic

field,

H=—k 5%+ k.S (1)

(ks, k. > 0) is related to the classical Hamiltonian (0 < 6 < 7,0 < ¢ < 2m)
H = —k,S5?sin* 0 cos® ¢ + k,S* cos* 0 (2)
with two degenerate minima at § = Z,¢ = 0,7. Quantum mechanically the

spin can tunnel between these minima. The quasiclassical formulation implies
the use of coherent (i.e. minimal uncertainty) states in the evaluation of the
path integral. We impose the condition that these states be single-valued under
the transformation ¢ — ¢ + 27 in order to force phase effects into the action
(thus leading to the Wess—Zumino term). The coherent states can be shown to
be only asymptotically (i.e. for S — oo0) orthogonal, and it is their overlap at
neighbouring Fuclidean time steps which gives rise to a phase, the Wess—Zumino
term in the Euclidean action Sg[B].

If we consider a single spin, the action is an integral over Euclidean time 7
(and one obtains a level splitting). If we consider a large number of individual
spins which align at low temperature, we can view the system as a single large
spin, and the action is in addition to the integral over 7 a sum over lattice sites
(with separation a) or an integral over a spatial coordinate = (resulting in energy
bands due to spatial translational invariance). In this case the Hamiltonian has
in addition a Heisenberg term, i.e.

7P % %
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H=— [—JZ Si Sip — KoY (ST + K.Y (57)° (3)

In either case the equivalent effective quasiclassical continuum action Sg in Eu-
clidean time obtained with the use of coherent states assumes the general form

H B g 1
Si=Swa+ [ drL, Swz=iv [ dri, L= M@ V) @)

where 1) = dip/dr, and the constant v, the effective mass M (1) and the periodic
potential V/(¢) are quantities with model dependent parameters. In the single
spin case referred to above t is simply the azimuthal angle ¢ with variation from
one potential minimum at 0 or 7 to the other at m or 0 respectively as T varies
from 0 to 3, and y = S (the polar angle 8 can conveniently be chosen to be
7). The Wess—Zumino action Swz does not only depend on the boundary values
#(0), ¢(3) but also on the path. The endpoint ¢(3) can be reached on the circle of
unit radius along the right hand semicircular arc a, in the positive direction of ey
or along the left hand arc a; in the opposite direction. This direction—-dependence
implies a handedness or chirality C'y in Swyz, i.e.
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which in the present case (without applied magnetic field) implies Cy = +1. The
effective mass M(¢) and potential V(¢) are found to be (with the conventions of

eq.(I) [B @, B)

M(g) = !

2k, (1 —|— = cos qb)

V(p) = —k,S% cos® ¢ (6)

The Euclidean time equation of motion can be shown to possess periodic instan-
ton solutions [[, [[0] which reduce in the limit kx — 0 to the periodic and vacuum
instanton solutions of sine-Gordon theory. It is only the vacuum configuration
which saturates the Bogomol'nyi inequality which can be constructed from the
expression of its (positive) energy. Since in most cases in the context of spin
tunneling the relevant pseudoparticle configurations are not the vacuum ones,
this inequality is not of primary importance here. In the second, multiple spin,
case referred to above the periodic instanton configurations appear as static (i.e.
T-independent) solutions of the 1-dimensional equation of motion. The transla-
tional invariance of the equation then implies the existence of a dynamical collec-
tive coordinate x(7). Reexpressing the effective action entirely in terms of this
collective coordinate, one again arrives at an expression like that of eq.(f]) with ¢
replaced by x [B]. In this case Swz = 1S7Cy where now S = Ns|x(8) — x(0)]/a,
N being the number of spins and s the spinvalue of one of them. It is the action
integral S of eq.(f]) which defines the basic model theory of the ferromagnetic

sample we consider.

That Swz is the action of a Wess—Zumino term as in field theory follows from
its properties and the fact that we can rewrite it in the defining form of ref. [f].
We first observe that as a total derivative it does not contribute to the equation
of motion. Clearly we can rewrite C'y as

_ 0 _ i)
Co=—r [ drld'5a 9= (7)

thus demonstrating its appearance as a Wess—Zumino term (the higher dimen-
sional form contains more factors like the 7—dependent one here). We observe
that without the Wess—Zumino term the Lagrangian density is separately invari-
ant under the global replacements 7 — —7 and ¥ — —, but with it only under
the combination of both. Thus the Wess—Zumino term restricts the symmetry of
the Lagrangian. As illustrated with the help of a simple model in ref. [P it is
precisely such a condition which gives rise to a Wess—Zumino term. The chirality
associated with this term leads to a gauge potential, A, which in the present case
is simply a unit vector e, around the unit circle S = @; U a, in the zy-plane,
travelling either in the clockwise sense or in the anticlockwise sense through an
angle 2m. Thus

/adrgé(r):/ae(b-dqsz/QA-dqsz/QA-c}sdr (8)

and
GSWZ(QTUQZ) =1, SWZ(Q]T U al) =uNm7



(N an integer), which is the condition corresponding to the Dirac charge quan-
tisation condition (and, in fact, in ref. [ff] the number of colours appears in the
coefficient of the Wess—Zumino term in a similar way). Thus also

eswz(ar) —Swz(a1)

=e
One should note, that even in the 2-dimensional case of the multi—spin case
above, the Wess-Zumino term is the same one-dimensional one as above. A
2-dimensional generalisation of the above, say to 7 and x, would not only be
zero (in view of the necessary ¢, in front, but in addition would not satisfy
such a symmetry requirement). Another way to see that the Wess—Zumino term
does not affect the mechanical energy is to write down the Hamiltonian. With

the definition py = %&) = M((/ﬁ)qb + 1S of the conjugate momentum (the
first part being the mechanical momentum), one finds immediately that in the
Hamiltonian H = py¢ — (L +15¢) the Wess—Zumino contribution drops out and

one obtains |
H = S M(@)# - V()

as expected. Expressed in terms of canonical variables the Hamiltonian, of course,
assumes the form as in gauge theory, i.e.

_(ps—18)*
=09 '

This also shows that the Wess—Zumino term does not affect the classical energy
of a pseudoparticle solution of the equations of motion.

The problem becomes more complicated if we also allow an externally applied
magnetic field B, e.g. perpendicular to the easy axis x, which can be taken into
account by adding to the Hamiltonian of eq.([l) the contribution —hgy, where
h = gugB. Then

H=—k,S? + k.S?— hS, (9)

In the corresponding quasiclassical continuum representation the new contribu-

tion implies that M and V (with ¢» — ¢) change to (cf. e.g. ref.[f])

. 1 -1
M($) = leZ + 2k, cos® ¢ + h;ff] ;
2
1
V(ig) = — [k‘rS(S + 1) cos® ¢+ h(S + 5) sin Qb] (10)

For integral values of S this case has been considered earlier in refs.[f], B, [J].
Our interest here concerns the general case of S integral or half-integral and
the establishment of a formula for the level splitting particularly in the latter
case. We therefore follow ref.[f§]. Instead of using the path integral method as
in refs. [f, [J], we consider the equivalent Schrodinger theory and proceed as in
refs.[[], §]. The procedure employed there exploits the known level splitting for
a periodic potential with identical barriers on either side of one of the wells of
the potential. The appropriate one-dimensional Schrodinger equation with mass
1 and potential V(¢) = 2h2, cos 2¢ with k2 assumed to be large (high barriers)
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leads to a splitting of the n—th asymptotically—single oscillator level given by the
eigenvalue difference (cf. [f, §] and references therein)

2(16hm)q°/2+1e‘4hm< 1 )
A go=ant1 = 1 — 11

This result has also been obtained by path integral methods [[1]. Identifying
parameters with the present case, one finds (cf.[§])

k h k
h2 = Z8(5 +1)(1 —a? - p=-= 12
Ak, (S5+1)(1 —d), a 2k, (S +3) k, (12)

The effect of the applied magnetic field and so h is to shift the minima of the
periodic potential slightly away from an integral value of m, and also to make
successive barriers of the potential asymmetric, i.e. the barrier on one side of
a minimum differs in size from that on the other side. Choosing the potential
minimum at ¢ = 7 — arcsina as our reference minimum as in refs. [§, [J], the
adjacent minima to the left and to the right are located angles

¢; = arcsina, ¢, = 27 + arcsina
implying arc lengths
a; = —m + 2arcsina, a, =7+ 2arcsina

respectively, so that the distance from the minimum to the left of the reference
minimum to that on the right is —27. Correspondingly the periodic instantons in
these barriers also differ (the explicit expressions are given in refs. [§, [J]). The
actions A;, of these instantons enter the argument of the exponential contained
in the level splitting whereas the factor in front is determined by the matching
of different branches of the wave function in domains of overlap. Our present
consideration differs from that in ref. [§ in that we now also wish to take into
account the Wess—Zumino term. Thus we have to add to the action of either peri-
odic instanton a contribution :SmCy. This means that the tunneling exponential,
which in the fieldless case (a = 0) is

€

S

must be replaced by half the sum of two exponentials with arguments —A, —
1S7Cy and —A; — 1S7C_ respectively, i.e.

16—27%(\/1—&2+aarcsina) e—i(7r+2arcsina)S'ea(5+%)%
2
+ ei(ﬂ—? arcsina)S.e—fl(S-l-%)%]
—E(\/l—a2+aarcsina) —i2S arcsina ia(S + %)W
=€ . e . COS S’JT—T (13)



The a—dependent parts of the phase appearing here are sometimes called “Aharonov—
Bohm” contributions [[J]. With the appropriate replacement in eq. ([J) the level
splitting in this general case becomes

90/2+1 5 . )
Aq0:2n+1 _ 2(16h71n) ‘6—7%(\/1—& +a arcsina)
(87)1/2[5(q0 — 1)]!

_— ia(S +
‘6—22Sarcsma cos (S’:’T _ W)‘ (14)

We take the modulus of the phase factor not only because the energy must be
positive, but also in view of the way the factor has to be handled in the path
integral method (cf. ref. [f]). For integral values of S this formula reduces to

2(16hy )0/ 28 (/T4 arcsina) a(S + §)m
Bt = Gy g =1 o7 ) W

This is the formula obtained in [§] in agreement with the results in [f]. For half-
integral values of S and applied field zero, i.e. @ = 0, the splitting vanishes — in
agreement with the socalled Kramer’s degeneracy. The really interesting case is
that of half-integral values of S and magnetic field unequal zero. In this case we
obtain

2 16hm %0/2+1 —22(\/1=a?+aarcsina S 3
Ago=ont1 = ( ) v (/1-att ) sinh (u) (16)

(8m) 72 [L(go — D] NG

which is a plausible result because it vanishes completely for vanishing magnetic
field. Comparing eq.([) with eq.([) we see that a very weak but nonzero
magnetic field for which the level splitting increases linearly with the magnetic
field is indicative of a macroscopic fermionic state. It would be interesting to see
this observed.
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