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Abstract

We construct a quantum mechanical model of the Calogero type
for the icosahedral group as the structural group. Exact solvability is
proved and the spectrum is derived explicitly.
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1 Introduction

We have emphasized in [[[] that the exactly solvable models known so far [
are characterized by a structural group, which is a Coxeter group. The crys-
tallographic property which turns a Coxeter group into a Weyl group [B] can
be abandoned. Doing this we neither have a simple Lie group at our disposal
to analyse the model, nor the symmetric spaces etc. To verify our conjecture
we consider the icosahedral group Hs [[] which is non-crystallographic.

The differential operator techniques to construct exactly solvable models
are explained in detail in [[[]. In the weight space of Hs which is a Euclidean
space R3, we introduce Cartesian coordinates and construct from them the
basis of invariants {/,,, n € {2,6,10}} (section 2). In section 3 we express
the Laplacian in R? in coordinates {I,}. In general the determinant of the
inverse Riemann tensor is a polynomial in these {[,} and factorizes in fur-
ther real polynomials (”prepotentials”) in the {/,}, one factor for each orbit
of the group H;. However, H; has only one orbit. The factorization is
therefore trivial. Thus we obtain one prepotential from the determinant, in
the Calogero case we have in addition an oscillator prepotential. We return
then to the most general Schrodinger operator. In section 4 we prove exact
solvability of this operator and calculate its spectrum. A discussion of the
problems arising in an attempt to define a Sutherland model can be found
in section 5.

2 The invariants of Hj.

The icosahedral group is generated by reflections sy, s3, s3 denoting reflections
along the simple weights

1
a; = (a, —5,6) (2.1)
1
Qy = (_av 57 b) (2 2)
1
0 = (3.b-a) 23)
where
1
a = cos% = 1(1 + \/g) (2.4)
2 1
b = cos— = =(—1+/5) (2.5)
5 4
A reflection s, along a weight vector « acts on a vector x according to
Sor =T — 2 (a,2) Q (2.6)
(a; @)



and leaves a hyperplane H,
(a,2) =0 (2.7)

pointwise fixed. Hj3 consists of 60 rotations and 60 reflections which are
generated from sy, s9, s3 using the relations

si=ss=s2=1 (2.8)
(5281)5 = (8382)3 = (8351)2 =1 (29)

Among these 60 reflections are the reflections sy, s5, sg along the roots ay, as, ag

a; = (1,0,0) (2.10)

as = (0,1,0) (2.11)

ag = (0,0,1) (2.12)
c.g.

S4 = 51592835951 (213)

Among the rotations of cyclicity 3 are the cyclic permutations

0 0 1

w=s535,=| 1 0 0 (2.14)
01 0

w = w! =w? (2.15)

Group actions on functions over the weight space are defined as usual

g€ Hs: T,f(z) = flg™ ') (2.16)

so that for a polynomial
T,p(z) = p(zx), allg € Hs (2.17)

defines invariance. We can produce invariant polynomials by averaging over
the group

1
=190 2 Lop(2) (2.18)
g€EH;

pinv(iﬂ)



This approach is simplified if the ansatz is already chosen invariant under
4,85, 86, w and w?. A possible (non unique) algebraic basis of invariant

polynomials is

L(z) = z}+ 224 2

Ie(x) = blzjzs + wyas + x3a])
—a(zizy + w325 + vz
—I—QLZ;%;L'%:E%

Lo(z) = —b(ziz; + zjz; + 2527)

8 2 8 2 8 2
_a(5’715’53 + zyxy + 51/’31’2)

—(b+2)(afa5 + 2521 + 523)

+(2 — a)(afzy + 2525 4 z527)

(
+6(a + b)(eiwsws + whwsey + afeie]
)

4 4 2

4.4 2
—5(a + b)(xjxyxs + xyx5e] + x3T 05

If we combine the transposition
Ty &> T3
with the sign change
V5 e —V5
then

Iy6 < 136, 110 < —l10.

At least a unique [ can be defined by requiring this ”symmetry”.

3 The Riemannian

We introduce the inverse Riemannian by

3

_ a1l 01,
1 _
Irt = Z 81;2 al’z

=1

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(3.1)



Each gg;'(z) is an invariant polynomial and can be expressed by the {I,}
(Chevalley’s theorem)

Grn = 2nl, (3.2)
9og = —V5Blho— Igl; (3.3)
gito = —hol2+16V5I21, — V516l (3.4)
Jiog0 = +16V5 ol I, — V5 IoIy — 9613

FASIZIE — IGIS (3.5)

The determinant is

detg™" = 400V/5I5, — 40012 1612 + 161215
+5760V/5 L1oI2 1, — 464751101213
+13824 17 — 116481513 + 5921515
—161213 (3.6)

and does not factorize in real polynomials of {7,}. But in original Cartesian
coordinates it factorizes [ff]

3 2
1
detg™? = 228 H z? H (51132 + bz, + axk> (3.7)
i=1 +
(4,7,k) cycl.
permutationsof(1,2,3)

= 2% H (a,z)? (3.8)

pos.weights o

We normalize the roots to length one.
As prepotentials we set

Py = e” (3.9)
Py =detg™! (3.10)
so that with
ng T log P; (3.11)
we get
r = (21,,614,101;0) (3.12)



P = (60, —2[22,40\/516[2 — 2\/5[51) (3'13)

The differential operator to start with is then

0 0
+90 Y ’“‘(“O)a_lk +n Y r,ﬁ”a—[k (3.14)
k k

with free coupling constants v9; € R.
The gauge transformation

3 2
eXDeX = — Z; o2 + W(z) (3.15)
is found from (see [I])

=50~ 5) g A(e) (3.10)

7

Since each factor (a,z)?® in (3.8) implies a second order pole (a,z)™? in
W (z), e X should possess a zero at H, because the potential is repulsive.

This implies due to (3.16)
1
H—5 <0 (3.17)
The potential W(z) is
&

W(z) = (’73—1)23‘7?

=1

Hei-p Y e @)

all pos. weights o

4 The polynomial eigenfunctions of D

From (3.1) to (3.5) it seems to us a complicated guessing procedure to con-
ceive a Lie algebraic approach to the eigenfunctions of D. We proceed rather
by a mixed technique. First we separate a "radial” variable R by

S = Il;? (4.2)
T — [10[2_5 (43)



so that D separates in a "radial” equation

g 0 d J  eng
— By s®(R) (4.4)

and an "angular” equation

A(S, Tpni(S,T) = enrpni(S,T) (4.5)

where

AST) = 9 9\ [ 365+ S+ V5T,
T \asToT —16/55% + 60ST + T + /55,

—16/582 + 60ST +T + /58
49653 + 10072 — 4852 — 164/55T + S + /5T

)

v [(1805 + 2)% + (3007 — 40v/55 + 2\/5)8%} (4.6)

Slegfe

The eigenfunctions of the Schrodinger operator (3.15) have the form
e XO(R)P(S,T) (4.7)

We shall see at the end that the last two factors in (4.7) can be written as
one polynomial in {/,}.

First we analyse the angular equation (4.5). We define a space of real
polynomials V(3N € Z)

W = span{S”lT”1 ;deg(S™T™?)

2
= 3™ +ng < N} (4.8)

We call a polynomial in S, T' "homogeneous of degree r” if all of its monomials
have

deg(S™MT™) =r (4.9)
Then A can be expanded (finitely)
A=A L AW L AP 4 (4.10)
so that

deg(Ap,,) = m — (4.11)

w3



if p,, 1s homogeneous of degree m. A term such as

0 d

— ST — 4.12

8TS aT (412)
is typical for A, We diagonalize A on VN/VN_% first.

Let € € VN/VN_% be expanded

[5 -]
£= ) a, TN g+ (4.13)
n=0
where
N=2gmod 1 (4.14)
The eigenvalue equation
AO¢ = ¢ (4.15)

leads to the recursion relation

AN —n — q)(5N —n — g+ 8 — 15y )y,
+96(N —2(n+qg—1))(N —2n — 2¢+ )a,—1 = €a, (4.16)

The eigenvalues are therefore
eng = 45N —k —q)(5N —k —q+8 — 157)

0<k< g—q] (4.17)

Due to (3.17) the eigenvalues are positive and (for fixed N only) nondegen-
erate. The corresponding eigenvector £y has expansion coefficients

a, = On<k
o = 1
T 96(N —2 2)(N —2 1
o = I (N-2m+ )+ (N =2Am+9)+1)
€Nk — ENm
m=k+1
(n>k)
The full eigenfunction py i € Vi is split in two pieces
pNE = ENg + PNk (4.19)

Enk € VN/Vi_1, P € Viy_i

8



Similarly we decompose A

A=A04A (4.20)
Then it follows
’rLo(N) N n
PNk = Z {(6N,k — A(O))_IA ENk (4.21)
n=1

Since each power of
(eny — AO)TTA
lowers the degree by % at least, we have
no(N)=3N (4.22)
However, one or more terms in (4.21) may be infinite if
ent g = en g for some N' < N (4.23)

Then the eigenvector of the larger N must be skipped. In general, from a
sequence of degenerate eigenvalues

€Nk = EN/ B = ENV R = ...
N <N <N'< .. (4.24)

only the lowest N contributes an eigenfunction. As a consequence, the
Schrodinger operator (3.15), (3.16) is selfadjont in a space smaller than an
L?-space.

Finally we turn our attention to the radial equation (4.6). The index
equation is

—4a® + (607, — 32)a + engp =0 (4.25)
implying
2as = (1571 — 8) + [(157 — 8) + enal? (4.26)
Inserting (4.17) into (4.26) we obtain

= N —h—a (4.27)
55 = 8) — (5N — k—q) |

Regular solutions correspond to ay. It follows

E 1
O(R) = RPN *1 (BN —k — q — %,9 — 157 + 2(5N — k — q); 5703)
(4.28)



Due to the factor

(0-3)R polynomial factor (4.29)

o=

eX=¢e"
and the asymptotic behaviour
VP ez oR polynomial factor (4.30)
the hypergeometric series must terminate

E = EM,NJC = 2")/0(M —|— 5N — k — q)
(M € Zs) (4.31)

Thus the regular eigenfunctions of D are polynomials in R, TS which in-
serting (4.1) - (4.3) turn into polynomials in I, Is, I10.

5 Problems with an H; Sutherland model

We define trigonometric invariants for Hs by sums over invariant subsets of

the root set R (remember the normalization of all roots is (a, a) =|| « ||*= 1)
1 oy
Fi(e) = o5 > e (R = 30) (5.1)
a€R
1 .
Foe(z) = — Z 5(%5)75@2(“*5’“3) (5.2)
¢ {a,8}€RXR
1 (o z
F3,£1£2£3($) = Ng 6 Z 5(a,ﬁ)7§15(5N)7§25(%0)753e (atBt.c) (53)

{o,8v}eRXRXR

etc. We leave it unproven whether n-tupels of roots with fixed angles between
them constitute one or more than one orbit. All invariants are normalized
so that

F1(0) = F5£(0) = F g0, (0) = .. = 1 (5.4)
Instead of cosines of angles we can characterize such n-tupels by lengths

latB|® = 2(1+¢) (5.5)
Ha‘|‘5‘|"YH2 = 34+2(&+&+E) (5.6)

The angles assume only finitely many values

1
€ € {+1,+5,%a,+b,0} (5.7)

10



where ¢ = —1 can be eliminiated because it is trivial.
Denote, say

Fi(x) 1+ éi(x) (5.8)
Fyo(x) = 1+ ¢a(x) (5.9)
Fso00(z) = 14 ¢3(x) (5.10)

then the ¢; can be expanded into a power series in the polynomial invariants

I.(z), n €{2,6,10}

b= Y d) I IT5 (5.11)
' Mm (2k + 61 + 10m)! '

kil meZ>

k+14+m>0

These series are entire analytic and invertible in a neighborhood of zero. The
inverse functions have branch cuts. In the Appendix we give the coefficients
V) for 2k + 61 4 10m < 20.
The invariants
¢17 ¢27 ¢3
can be used as coordinates for the Riemann tensor. From

- Ior Oy
Gy = Z 91; O, (5.12)

we obtain e.g.

1
Gl =——=) ENF 5.13
11 (#R)2 Eg: ez ( )
1
Gl = Ne, o6, F 5.14
12 Iy &2;3(51 + &) Ney o6 P06 (5.14)
etc. Between Fj and the F; ¢ there are two relations
by 1 =Hh (5.15)
N,
2= Lt p 5.16
1 E‘E: (#R)Q 2,¢ ( )
Since (5.12) involves
Fou— Fo oy Fop — Fo b (5.17)

and in (5.15) we recognize the combinations
Foo+ Fo_o, Fop+ Iy (5.18)
there are not enough polynomial relations to express 7' as a polynomial in

the {¢;}. The expansion is infinite.

11
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6 Appendix

In order to enable the reader to test the result of section 5 we give the

expansion coefficients of Fy, Fy 0, F3000 (B1])-(F-3), and G} to the order 20.

(11) 13T

Gyl = E e 6.1
11 :
Hm (2k + 61 + 10m)! (6.1)
klmeLy
k+l4+m>0
k. l,m 4 d(2) d®) e(11)
—1 —2
1,0,0 =1 =2 -1 6
1 4 9 =72
270’0 51 153 2 257
. D
e e S
T L e T
%00 5@ 5% 5 11%05
0,0,1 | =2v5 | 26 | 10v5 | L5
—49 3073 189903
e
5,0,0 192 192 -25 320
0 2 0 261 —6111 —36 —56943
(i) 17280 12;%0 5 160
10 45 432 8631
1’ 07 1 1280\/5 1280\/g 5 \/g 160 5
3 1 0 1 —5887 3204 —216207
() 160 5 80
6 0 0 449 20621 324 —628299
i) 5120 5120 5 640
1 2 0 —2639 61789 364 2012283
o T et e
2,01 | —ginv5 | TEnvo | BBV | B5
4 1 0 =91 1183 —12376 4420143
— i 10075 3 JOS65T
7,0,0 3072 1536 —169 64
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29 8291 1152 302091
0.1 1| —ggvh | iy | S5 | T VD
220 | e -
37 07 1 7680 ) ~ 7680 \/5 5 \/5 9560 \/5
5 1 0 —283 —1247717 45088 —106849329
27 7680 7680 5 2560
300 581 83269 2209 =21I8 17T
) 7680 7680 5 2560
0 3 0 —3281 —2492863 9384 1119815109
R N M 1 R
17 17 1 40960 5 40960 5 5 \/5 51200 \/g
3.2.0 —198033 32342721 —28764 26545100517
S0 | e | caen | s S
47071 _81920 5 81920 \/g 5 \/5 102400 \/g
6.1.0 29223 53514249 —156978 30155348493
L0 | s | e ;
I L e
9 — 168967249
002 | s | s ik T
e et
211 —ppeVS | —q VD | Z20LIVE | T D
R o O S TR
5,01 | pisgVs | —Rpevs | 30504V | -2 VS
77 17 0 49152 24576 105516 4096
10.0.0 11553 2496411 15129 —5248288143
> 163840 81920 5 40960
Table 1: Coeflicients of the functions Fiy, I, F500,0 and Gl_ll.
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