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1. Introduction

Chains of random matrices describe in the double scaling limit N — oo two-
dimensional gravity ﬁ(ﬁhpled to matter which in turn is represented by rational con-
formal field theories A connection of the one-mafrix models with the theor)g oé
Korteweg-de Vries equations was first established in H. In the series of papers
the identification of the matter fields with the critical Ising model, Lee-Yang edge
singularity, and the tricritical Ising model was achieved by comparison of the critical
exponents ﬁeldﬂ dEmensmns A systematic and constructive approach to arbitrar y
matrix models was made possible by shifting the interest to representﬁions of
a Heisenberg algebra in terms of Gelfand-Dikii quasi-differential operators H. This
is a special aspect of Korteweg-de Vries equation theory. All this progress in matrix
model research was obtained by applicatio the technique of orthogonal polynomi-
als which was developed a long time ago L4, More details of the history of matrix
models can be found in review articles éeag. ).

After the completion of the work interest concentrated on the verification
of the universality classes [p,q] where p and q are coprime, in different realizations.
From the one-matrix models the sequence of classes [2{ +1,2], 1 > 1 Wasa)btained and
only tdﬁ EE Two lX and some three-matrix models were studied in H,in appendix
C of and . But the universality classes explicitly constructed were not
many : [4,3], [5, 4] and [8,3]. The claim that_all [p,q] classes appear in two-matrix
models was put forward (see the abstract of E) This assertion is easily verified by
the construction proposed by us.

Our perturbative approach is not based on an investigation of the Heisenberg al-
gebra. On the contrary we construct the representations of this algebra by a pertur-
bative solution of the Schwinger-Dyson equations (synonymous: recursion relations).
Generally high orders of perturbation theory are needed and a systematic treatment
of this expansion is therfore crucial.

The Schwinger-Dyson equations (section 2) involve two multiplication operators
B; and B; and two differentiation operators A; and A;. We postulate that B; and
B; tend to differential operators in the scaling domain

By — a™? f: a_mQ(”), Q(O)

n=0

Q (1)

By a3 apt), po

n=0

If Li(Lz) is the degree of the potential V;(V2) in the two-matrix model action, then
necessarily

P (2)

1<, < (3)

All {QM?Y, {P™} are differential operators of order
ordQ(”):ordQ—l—n:l2+n (4)
ord P =ordP+n=1[04+n (5)



We shall always assume [y > [,. v is the “string susceptibility exponent” and is
negative,

=t (6)

and N tends to infinity.
If the ansatz ([), (B) is satisfied we speak of a “singularity of type (/1,/2)” in the
action of the model. We can choose this singularity “maximal” by setting

ll — Ll,lg — L2 (7)

We are convinced that all types of singularities that exist can be found if we let L,
L, run over all naturals.
After solution of the Schwinger-Dyson equations the commutator

[B1, Ai] = [By, Bi] = [Ag, By (8)

is diagonal. Setting it equal the unit operator gives one nonlinear differential equation.
The perturbative expansion starts from a linear system of equations for the deviations
of By , By from their limiting difference operator. This linear sys tem has corank l5—2.
It uses two functions uy; , v_y as basis functions. Use of biorthogonal systems of
polynomials introduces a gauge degree of freedom that affects the whole perturbation
theory. The “susceptibility function” u is gauge invariant

u=1uy +v_q 4+ a Puv_y (9)

(this form for w is valid in our preferred normalization, see section 3). The nonva-
nishing corank [y — 2 permits the introduction of I3 — 2 new gauge invariant basis
functions {w;}25%. Higher order perturbation theory gives one nonlinear differential
equation for each one, and these equations are ident ical to those obtained from the
commutator (8) if we postulate that it be diagonal.

After we study several examples in detail we can summarize our results as follows.
There are two series of singularity types :

(A) I does not divide I; (remember [; > [3). Then only theéeading orders in

(M),(@) are relevant and in the sense of quasi-differential operators

(-)"P=QY" (10)

The susceptibility exponent is
T +_c12— 1 ()

where the universality class is
[P, ql = [lh, 2] (12)

(B) Iy divides [y, but Iy # 2. Then
()P =Q"/" (13)

and

[By, By] = =W+ [P O] + higher order terms (14)



where

P (_)11 pn _ Z QM—mQ(l)Q(m—l) (M — l_l) (15)

1<m<M
We show that -
P =cly, ) Q% (16)
with L
c(ly, 1) = (e _[ 1= h) (17)
2
and correspondingly that
-2
= 18
Ll (18)
with
[p,q] = [l +1,15] (19)

Some comments are in order in this context. First there is no universality class
for singularities (2m,2). We will later in (section 5) give an argument why this is so.
Next a universality class with

p=ng+1,nelN (20)

can be realized by a singularity either in (A) or in (B). Finally universality classes
where p and ¢ have a common divisor but this divisor is not ¢ itself, are contained in
(A). The symmetric case [y = [ belongs to series (B).

We study the double scaling limit with N — oo and only one coupling tuned to
a critical value. Nevertheless the complete set of nonlinear differential equations for
u and {w;} is derived. Only the “integration constants” are ze ro and x is the single
variable in the equations that is kept.

In order to make this work self-contained we introduce matrix models and discuss
their analysis by the orthogonal polynomial method in section 2. Two elementary and
easily proved propositions which are not new but play a crucial role in the perturbative
a pproach are given the form of “Lemmas”. In section 3 we develop the perturbative
analysis of the Dyson-Schwinger equations systematically, the decisive observation
being that the corank of the linear approximation is [; — 2. This method is complet e
in the sense that any singularity (/1,/3) can be treated with it. In the subsequent two
sections we study examples from the series (A) : (4,3) , (5,4) and (6,4); and from
the series (B) : (3,3) and (6,3). The two examples (4,3) and (5,4) (where [; and
[y are coprime) serve only the purpose to prove that our method reproduces exactly
the known results. Moreover we show in section 5 that singularities (2m,2) do not
fulfill the commutator equation. Expectation values, in p articular their role in tests
of gauge invariance, are studied in section 6.

2. The orthogonal polynomial approach to matrix models

Matrix models based on N x N hermitean or unitary or other matrices as dynam-
ical variables have a history of about twenty years. It has turned out that a class of
“solvable” matrix models exist which are built on a finite number r of such matrices

{M} (21)
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which are bilinearly coupled to a chain. In the case of hermitean matrix models (to
which we shall restrict our attention) this means an action

r r—1
S(MO, MO,y — Tr{z RUCISS caM(“)M(““)} (22)
a=1

a=1

where each V,, is a polynomial of degree L, (only L, > 3 is of interest)

Lo ()
Va(e) = 3 Fat (23)
k=1

The action is stable if and only if

(o)

1. 1s positive, all o

{ L, is even, all «
g

In the stable case the partition function of the model is

7 = /HdM(a)e‘S (25)
dM® = T[d(ReM) T] d(imM{;") (26)

i<g k<l
If the action is symmetric under
M) o pri=e) (27)

we call the model “Z,-symmetric”, otherwise “asymmetric”. A model may have a
Z,-symmetric critical point which can be approached in an asymmetric fashion such
as an Ising model with external field H at the critical point.

When we claim that such matrix models (P]) are “solvable”, we mean solvability in
the scaling domain of a critical point which implies the existence of a full asymptotic
series

(0) ~ 3 a (2 (29)

with ™ — 0 in the scaling domain, z a scale invariant variable and computability of
all w,, by analytic methods, for any “observable” ). These observables include ther-
modynamic objects such as log Z or correlation functions of the “Mehta-accessible”
class (see section 6). Our aim is to develop an algorithm so far, that for a given action
all singularities can be extracted, the universality class can be described for each case
and non-leading orders in the scaling behaviour can be calculated to any precision
desired.

The full richness of structure develops only in asymmetric two-matrix and many-
matrix models, which have not been studied carefully before. The symmetric models
can often be obtained thereafter by a reduction of degrees of freedom. In any case



we apply the method of orthogonal polynomials (by Bessis and Mehta, EE) By a
theorem of Mehta the action (PJ) can be expressed in terms of eigenvalues

DENRN of M) (29)

r

N r—1
S =3 [2 Va(A) = 32 e Ay (30)
=1 a=1

a=1

The partition function goes into

7 = C(N) [ TLdp(A“) AN AND) exp[-S({A}) (31)
a=1
where the measure is v
dp(A@)y = TT dA, (32)

and

A =TI =) (33)
i<
is the Vandermonde determinant. For the solvability it is crucial that both A(\)

appear in the numerator.
The biorthogonal polynomials

{1 (A), I (1) 7 o (34)
are defined by )
degll,, = degll,, =m (35)

and
r _ r r—1
/ [T AL AL AT ) exp{= 3 Va(A™) + 37 cad N} =5, (36)
a=1 a=1 a=1

through the Schmidt orthogonalization procedure. But this procedure determines

only 2m + 1 of the 2m + 2 coefficients in 1I,,, ﬁm In fact we have the
First Lemma:
Let

IL,(A) = s,A™+00\") (37)
a(p) = Sup™ +0(u™") (38)

then the orthogonalization procedure determines only
SmSm (39)

but not s,, and s,, separately. O



This leads to the following corollary: We can of course require that
Sm = 8m >0 (40)

as in the Zy-symmetric case, but expectation values of observables ought to depend
only on s,,8,, and not on such arbitrary definitions. They do, as we shall see, but in
a nontrivial fashion (related with the gauge invariance of Yang-Mills theory observ-

able\iv)é follow the usual line and introduce differentiation matrices
U, = 3 (Al (41)
M, = (A, (42)
and r multiplication matrices B '
ML, = (Bl () (13)
pll = 3 (B )amlla(p) (44)

n

(Bz, Bs, ..., B,_1 are not given here)
so that
[B1, A] =[A,,B] =1 (45)

By arguments typical for the derivation of Dyson-Schwinger equations one can derive
a set of “equations of motion”

Ai+aB, = Vi(B)
coz—lBoz—l + cozBoz—i—l = Vloz(Boz)a 2 <a<r-— 1

Ar + cr—lBr—l = V/T’(BT’)' (46)

If these equations are satisfied then
[BhAl] = 01[32, B1]
i = co[Bap1, Ba] = -+
= ¢1[B;, B.i] =[A, B (47)

can be shown to hold easily. Moreover the following restrictions on the domain of
Ay, A,, B,, where these matrices have nonzero entries, can be shown to be consistent
with the Dyson-Schwinger equations:

r

(A)mn = 0 except for _H(La_l) <n-m< -1 (48)
a=1
(Ar)mn = 0 except for I1<n—-m< H(Loz —1) (49)
a=1
(Ba)mn = 0 except for _H(Lﬁ—l)ﬁn—mg H(Lﬁ—l) (50)
B>a B<a
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Our strategy is to solve the Dyson-Schwinger equations ([if]) perturbatively under the
constraints ([[§)-(p0) and impose the commutator equations ([7]) at the end. This
approach is considerably simplified by the following
Second Lemma:
If () and (f§)-(p0) hold, then the commutators ([[7) are diagonal.

To prove this lemma we remind the reader that the chain (7)) of equations follows
from (f). On the other hand from (fg)- (B{) one can conclude that

[B1, A4] is a lower left triangular matrix and

[A,, B,] is an upper right triangular matrix.
Equality of both commutators proves that they are diagonal.

Then we can express the equation ([5) by

(B1A1)nn = CI(BZBl)nn =
= n+ const. indep. of n (51)

3. The perturbative expansion in the double scaling domain

Those coupling constants that appear as expansion coefficients in the potentials
V. (), (B) are fixed to critical values. The corresponding critical action is then
multiplied with

— 52
p (52)
and tuned as
N — o0, ¢g—g.. (53)
The matrix labels n, m become continuous variables in this limit
n
N - ¢
0 < £€<1 (for the labels of the eigenvalues). (54)
With the help of the string susceptibility exponent v (0 < —y < %) one defines
1
ﬁ == GZ_W (55)
¢ = T -da) (56)
g
g = g.(1—a*z) (57)
2 = (g — 9N ; (58)

z is the single scale invariant variable, later we will introduce the “integration con-
stants” h, that play a similar role, and ~ is as in ([[1)), ([§).

For the two-matrix models, be they symmetric or not, we proceed as follows: We
set

(B nntk = 1r(n) (59)
(B2)n,ntk sk(n) (60)



and define

rn—5) = pitau(a) (61)

spn— %) = op +a Pog(a). (62)

The translation of the arguments of 7, s, symmetrizes the support of the matrices
By, By around the diagonal and saves labour (and terms) in the perturbative expan-
sions. For the coefficients {py, 0.} we make the ansatz

DT (O (63)

z

Z onz* = l(1 —z)ll (64)

A

which is in agreement with the support conditions (f)-(F0) if we set Iy = Ly, Iy = Lo
so that the singularity is maximal. Moreover we set

c =1 (65)

in ([f]). The normalizations (f3))-(FJ) can be changed; these renormalizations will be
discussed at the end of this section.
Inserting (3)-(F7) into the Dyson-Schwinger equations ([ff]) gives critical coupling
constants
g’ = g (66)

g’ = g (67)

which can be presented in the explicit form

= (1), 2, () ()

T 2 lim_—mll) lggj'_—l)
N f1'>‘m>m’>k< )( )( k ) -

The Dyson-Schwinger equations can then be given as two systems of equations for

the {vi(z)} and {u_p(z)}

vele) = Sulfucm(@)] g™}, 0<k<h—1 (69)
us(e) = Repllon(@)] {g™M)), 0<k<l—1. (70)

We first observe that there exist no equations for v_;(z) and u(z), so that all
{vi(x),u_r(x)} are expressed in terms of these functions and their derivatives (plus



the {wg(x)}). Second we look at the linear approximation to (£9), ([[0)

lr—1

or(z) = 3 QP = 0 (71)
m=—1
{1—1
um(z)— 3 O o = 0 (72)
k=—1

and find that its corank is [ — 2 (remember [; < [;). The general form of the matrix

Q) g

i la(n — 2)
Qi) — (_pkm —1)(=1)" Wﬂ( : ) 73
b = (=1) n:kgn“(n YD kbt 2) (73)

Obviously Q&l’lr‘)) depends on only k + m. Due to the nonvanishing corank (I3 > 2)
we need [, — 2 additional functions {wy} which in the perturbative expansion of the
Schwinger-Dyson equations appear each at order a=*7. Explicitly this expansion looks
as

u
UO vlll
(%] _21
Vg — 5 t +a " SWw, + a2 53 1
. v_1 U1
v?,
V-1 wo
wh
+ ™SO wuy | 4+ 0™ (74)
wiv_q
and correspondingly
Uo
U_1
U_g = R ( t ) + (75)
U1
U—ly41

The matrices S, R have rational numbers as entries.
On the other hand the Dyson-Schwinger equations imply that these new basis
functions satisfy (to leading order) nonlinear differential equations

Ds({wg};ur,v_1) =0, 1 <s< iy —2. (76)

The introduction of the {w;} is not unambiguous, e.g. one can add to w, any linear
combination of the functions appearing in the same column in ([[4) as wy itself or any
higher order function such as a=7.w/. The set of all possible choices can be reduced
by the requirement of gauge invariance (section 6) .
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Since we have recursion relations for s, 3, (B7), (BY)

Sm_ ri(m) (77)
Sm+1
S = s(mt1) (78)
Sm+1

the First Lemma implies that all observables may depend only on
ri(n = 3)soi(n+3) =1+ a™(w(z) + voi(2) + a M (z)oo(z)  (79)

and other gauge invariant functions. Thus we are led to define as in (f)

u(z) = ui(z) + v_q(2) + a2 ur(z)v_i(2). (80)
We emphasize that ([9), (B() depend on our normalization (B3)), (B4)
pPrL=0_1= 1 (81)

and must be changed if we renormalize these quantities (see below). Thus we conclude
that also the functions {wk}lf_Q must be introduced in such a way that the free energy,

all expectation values, the leading orders of the differential operators in () and the
equations ([[@) depend only on u and {wy}.
Now we rescale N such that

a V= Aa™". (82)

It is obvious from (B1)), (69) and ([4), ([3), (B0) that to all functions ug, vg, u, wy and

their derivatives can be ascribed a dimension (or “degree”, “grade”) under (B3)

dim{ug, vg,u} = 2 (all k) (83)
dim{wy} = k+2 (84)

dim{%} -1 (85)

Let us consider ¢; as a free parameter in the Dyson-Schwinger equations but maintain
the normalizations (£3)), (64). Then the critical coupling constants ([§) are replaced
by

91(:1712) N 0191(:1’[2) (86)

but the perturbative solution of the Dyson-Schwinger equations is otherwise un-
changed. The asymptotic expressions ([l), (B) for By, By remain the same and the
commutator equation is now

. (e 1 (case A)
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Using the concept of dimension in the above mentioned sense and the dimensional
homogeneity of the differential equations ([(f)), (B7), we can show that ¢; can be tuned
to one by an appropriate rescaling.

We can do more. Renormalizing (f3)), (p4) by replacing the r.h.s. by

la
diz <1 — l) resp. dgl(l — z)ll (88)
z

z

and keeping ¢; as in (), we obtain a new gauge invariant function for which (),
(BO) is a special case

u(z) = dauy(z) + dyv_1(z) + a " uy (z)v_1(z). (89)

This eliminates one degree of freedom in the renormalization. The remaining degree
of freedom can be eliminated by a rescaling just as ¢;. Thus we have shown that
no relevant free parameters are left over in the characterization of the universality
classes.

In case (A) the commutator

[P,Ql= S {r., 0%}, 0=
(P=PO Q=0 (90)

does not vanish identically and can therefore be set equal to 1. Now the second
Lemma asserts that

re=0, se{l,2,...,1,—2} (91)

whereas

20 = 1 (92)
holds by fiat. The equations (P])) are integrable to

/rsdwzhs, s€e41,2,..., 1, —2}. (93)

The “constants of integration” h; play the role of external scaling fields. Equation
(BF) can be integrated to

2/7“0 dr = . (94)

The differential equatioﬂns determine u and all w; as functions of z and h,. This is
the standard approach .
On the other hand we have in all cases studied that

Ds(wg,u) = /rs dz = 0. (95)

Since we have tuned only one coupling constant g, the integration constants are
automatically zero. Of course we can also introduce effective actions, e.g.

=0

w2720
Sr=Tr{Q = + ¥ £,Q% (96)
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for case (A), where

to~x, ts~hs (s>1) (97)

Thus the known picture (as presented in ﬁ, say) is completely reproduced by our
perturbative approach.

4. Examples from the series (A)

In this and the subsequent section we study the differential operator limits of B;
and B;. For this purpose we need to know the numbers

P, = Zk:knpk (98)
S, =S Koy (99)
and the functions
Up = k'uy (100)
k
Vi, = kv (101)
k
From (B3),(FA) results
Po =0, n<l (102)
P, = I (103)
Py = (1- %W2 +1)! (104)
and
S, = 0, n<lh (105)
Y, = (=) (106)
Sa = ()= D) (107)

In terms of these quantities the asymptotic expansions of B; and B, are

aB =Y g (2)0 = 3 a7Q) (108)
r=0 n=0
a"'By =Y py(2)0° =Y a7 P (109)
s=0 n=0
where -
1 i "
(]r(«T) — _'[a—(r—ZQ)w Pr 4+ Za—(n+2—12)7 Un-l—r("r)] (110)
r! = 2nn!
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(n)
pele) = a8, 4 3 gt ) (1)

s! 2np!

For the series (A) only @ = Q® and P = P( ) are of interest.
In the case (I1,l3) = (4,3) which describes the critical Ising model, we have only
one function w = wy which we define by (exact to all orders)

Ug = Uy +v_1 +a Yw (112)
It turns out that this definition of w; can be chosen in all models (see, however,
([97)). We obtain from ([4)), ([[3)
Uy = 3wa "+ O(a_h)
Uy = 3u+0(a™)
U, = O(1)
Vo = (2 W+ 2u) a4 O(a)

—_ =
— =
ISV

e e N e N
—_ =
—_ =
S Ot

e . e S N e S

Vi = 4wa™ + O(a _2”) 117
Vi = 8u+0(a™) 118
Vi = 0(1) 119
This implies
3
Q = 83—|—§{u,@}—|—3w (120)
p - 84—|—2{u,@2}—|—2{w,8}—%u"—l—?uQ (121)

and
Di(w,u) = w4+ 6wu
— /rld;z: — by =0 (122)

These results are equivalent with those known f.
The case (I1,12) = (5,4) corresponds to the tricritical Ising model. We have two
functions wy, wy which we define by ([13) and
Uy = —Huy +v_y + 2w a7+ (Gfuf + U31 + wg)a_Q'V (123)
it follows then from ([4),([H)
Uy = (u"+ 6u’ + 4wy) a” "+ O(a_?”)
U, 4wy a”? 4+ O(a™)
Uy = 8u+0(a™")
Us = 0(1)
Vo = (=2w)—5uw)a™ 4+ O(a™")

I
—_ = =
N DN DN B
-1 O Ut W~

TN TN TN TN TN TN N N
—_
DO
o0

e N e e N e e S S

Vio= (=2u" —10u® — 5wy) a™* 4+ O(a™) 129
Vo = —10w;a™” + O(a™) 130
Vs = —=30u+0(a™") 131
Vi = 0O(1) 132
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The two differential operators come out as

Q = 0" + {2u, 0*} + {2w,, 0} + 4w, + 6u? (133)
5 5 5
—P=0"+ §{u, *} + §{w1,82} + §{w2 — 2u" + 2u®, 8} + Suw, (134)
After the substitutions |
u— ——u (135)
2
1
wy — Tk (136)
4wy + 2u? — v (137)

these differential operators and the diﬂereﬁtial equations (B7), (BF) can be shown to
be identical with those of Ginsparg et al. b.

Now we come to the case (I1,l3) = (6,4) which was not studied before. In this
case there is a common divisor of [y and /5 : 2. Once again we can define w; and w,

as in ([T),([23) but we prefer to define wy by
U_1 = —du; +v_1 + 2w a " + (%uf — %vzl — 3uyv_y + wy)a?? (138)

because this minimizes the terms in the differential equations that we have to give
explicitly. The differential operators are

Q= (@2 + 2u)2 + 2{wy,0} — 4w, (139)
P = (8°42u)’+3{wy, 9’} —3{ws, 8*} +{— 2w 4+ 6uw;, I} — 2w} + 6w; — 12uw, (140)
By explicit calculation we found that
P} (141)
Moreover we get the differential equations
hy = DQ(w17w27 U)
= —wg4) — Suw! — 12u'w] — 4u"wy — 24w, w, (142)
hl = Dl(wl, Wy, U)
= w4 Buw! + 4u'w, + 12w? — 10w w! — 5w, ? — 24uw?  (143)
r = /[2r0 + %ré’ + 2u'(Da(wq, wa, u) — hy)|dx
= Swyw) — Swiwh — 16w] — 2hqu (144)
To make 2rq integrable Weﬂhad to add the term 2u’( Dy — hz). But this is also necessary
in the (5,4) example (see ).

5. Examples from the series (B)

The simplest non trivial example is the symmetric case

(lla 12) = (37 3)
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There exists one function w; = w which we introduce by ([12). In this example we
obtain from perturbation theory

_ PW)::QUU::33+_3{U7@}4_3w (145)
1
= PO —QW =0"+2{u, 0%} + 2{w, 0} — Ju" + 2’ (146)
and
Dy(w,u) = w" + 6wu =0 (147)

PW and QW are separately not gauge invariant.
Thus we have reproduced the differential operators and equations ([20)-([23).
The commutator

Z:a—mp(n)7 Za—mwQ(m) ] — {_p(l) —QW, Q(O)} a4+ 0(a™?) (148)
gives an additionnal factor =" that enlarges the total power of a™ in [B,, By] to

343+1=7=4+3 (149)

as is necessary for the universality class [4, 3].
Now we turn to the rather complicated case

(lla 12) = (67 3)

Again we introduce w; = w by ([[1). The differential operators are

Q) = W+%ﬁ%m+ﬁw (150)
1 1 1

QW = —58“—th+7u4JV}—{m8}+éZ@f+1&£J+%mf—u2 (151)

PO = (Q)? (152)

1
PO = 2074 S{17uy + 110-1,0°} + T{w, 0"}

1
—F§{—ﬁ%(281uf—k161UZ1)%—43uf%—56u1v_1+—19v31,32}

+{5(83uf" + 47v™]) — 2(155uuf + 119ufv_y + 107usv”y + Tlo_jv”))
—5(15(uh)* + 22030l + 7(v,)?)

+26u + 42ufv_q + 24uv? | 4+ 8v°, + 30w? , 4}

11 1 1
+€w”// + Juw” — §w'(49u'1 + 310" ,) — Zw(15u’1’ +30"))

+18w(3u} + 4uyv_y + 202)) (153)
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Both P and Q) are gauge dependent. We consider the commutator

oo e 1

n

[ Z o~ plr Z a—va Z a—mﬁQ(m) ] —
|

1 _ oW — Q(l)Q(0)7 QO } a4+ O(a™?) (154)
The first differential operator in ([54) can be calculated and is

B>

(155)

—+ wl~

p _ (Q(O)Q(l) + Q(I)Q(O)) — 3(@(0))

The factor 3 can be eliminated by rescaling as was discussed in section 3. The
additional factor a7 changes the total power of a7 in [By, By] to

64+34+1=7+3 (156)

as is necessary for the universality class [7,3]. Thus this class has been proven to
arise.

We remember that one-matrix models lead to universality classes [2m + 1,2], and
we could imagine that such classes can also be produced from two-matrix models with
singularities

(l1,12) = (2m,2)

However , if we insert an ansatz for such singularity into the Dyson-Schwinger equa-
tions, the perturbative solution cannot be made to satisfy the commutator equation

[Ba, Bi] =1 (157)

at any order in a~" as we shall show in the sequel.

Of course a quadratic potential V5 can be eliminated from the partition function
by performing a Gaussian integral. In the Dyson-Schwinger equations this comes out
as follows. If

Al + CB2 = V/(Bl) (158)
ArteBr = ¢P+ 7B, ( 7&0) (159)

then B, can be eliminated by substituting ([59) into ([53)

C C
At —gAe = —g(a” —eBi) + V(B)
iy 92
— V(B (160)

Now A; is strictly lower and Aj strictly upper triangular and under transposition

B, — Bf (161)
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they exchange their role in ([[60). In the one-matrix model there is only one orthogonal
system {IL,,(A)} (section 2) implying that B is symmetric. In this case ([[60]) reduces
to

A+ AT =V'(B)) (162)
Via the antisymmetric matrix
1~
and the double scaling limit
B, — a¥Q (164)
C — a Bmp (165)

the universality class [2m + 1,2] is obtained.
Instead we solve the Dyson-Schwinger equations ([58), ([59) perturbatively as
they stand. First we set

L1:l1:4,m:2 (166)

Our algorithm simplifies by the equalities to all orders
uo(z) = wo(x) (167)
u_1(z) = v_q(x) (168)

Due to the fact that no functions {wy} are needed, we obtain only even powers in the
expansions ([), (B)

By — a7 Y a7t (169)

n=0
By — a™ Y a7 pn) (170)

n=0

We find
00 = § +2u (171)
0 = Loy Loy Lo La—oy (172)
120 Tate g 4 1!

PO = QW) (173)

2 1
P _ 586 + ﬁ{éﬂul + 1v_y, 0}
{123 4 30" ) + 1662 + 15ugo_y + 02, 0%}
1 1
+7 (5w 02 = S (15U + 9upely)
1

—|—§(—23u1u'1' + Sugv” | — Sv_qul + Tv_1v”))
1
—I—Z(27u:{’ + 67uiv_y + 3Tugv?, — 30%)) (174)
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An almost trivial observation is that all P*%, Q(?) are symmetric operators.

Consequently the commutator

[Za—ZnWP(Qn) 7 Za—QmwQ(Qm) ] —

n m

{ PR _ 0@ _ g@nO OO } a4+ 0(a™) =

5
S, 0" a4 O(a™ )

k=0

is antisymmetric

This symmetry argument is valid to any order (and for any m)
r(()Zn) =0, alln

and therefore the commutator relation cannot be satisfied.
Only as a side remark we add that the three differential equations

=T33 =I5’ =
have the unique solution
U1 = v
which implies
B, = B

6. Expectation values and gauge invariance

(175)

(176)

(177)

(178)

(179)

(180)

The basis functions {wy} have hitherto been introduced (see ([13), (123),([3g)) by
the requirement that the relevant objects, namely differential operators and equations
are gauge invariant. This fixes them only at low orders. Expectation values are a

simple device to extend this definition to higher orders.

For any two-matrix model we obtain for a finite N using (B1]), (B7),((]) and ([(7),

() that the partition function can be expressed as
-
= O(N N' 8080 H Tl N k— 1)8 1(N k))
k=1

so that the free energy is

F = logZ =log(C(N)N!)— Nlog(seo)
a?(1 - a?z)~? / dz(z — z)log(1 + a=?'u(z))
corrections fromaEuler’s summation formula.

_I_
_I_
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The latter corrections in ([[83) form an infinite series. The function u(z) increases for
x — oo and one can convince oneself that

aPu(a™?) = O(1) (183)

so that the perturbative expansion of the integral in ([82) fails at the lower end. The
corrections due to Euler’s summation formula contain terms

u™(a”?), n>0. (184)
Therefore we set
F(z)=F(0)+ (F(z)— F(0)) (185)

and expand only the difference perturbatively. A similar caveat must be applied to
the expectation values.
Expectation values

(G(MD) M@ (186)

with respect to the partition function (R3) or (BI) can apparently be obtained by
parametric differentiation, if G is a polynomial of the variables

Te(M®)y Te(M®Y Te(MO M), (187)

After reduction of the partition function by means of Mehta’s theorem, these variables
correspond to

Z/\?a Zﬂ?a Z/\i/iz’, (Ai = A, s = /\2(2))- (188)

First we show that the expectation value of the third variable with a reduced partition
function is not gauge invariant.
Let us denote the trace over the upper left N x N submatrix of an infinite (IN x IN)
matrix by Try. Then insertion of
> i

into (B1)) gives for fixed N
TI‘N(Bl Bg)

which can be evaluated to yield

Iy +1 I+ 1, —1)!
N LR u(mz — L =) +1
[y I1y)

= [ e { Dt + st} + 0l (139)

%
for any maximal singularity (I1,l). For (I1,l3) = (4,3) the integral is to leading order

(using still ([12))
1Huy(z) — 43v_y(2) — 17wy (x)a™” (190)
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which is not gauge invariant. Therefore only the first two expressions in ([8§) make
sense.
Expectation values of monomials can be reduced easily (see E)

(Tr (MY Te (M) = Ten(By)Ten(BY) + Ten( By BY) (191)
(Te(MOY* Te(M®)Y = Try(BI)Try(BE) + Try (Bl y B) (192)
where Il is the projection matrix
0,s ifr>Nand s >N

(I )rs = { 0 else. (193)

Of course for the simple cases of one variable ([[87) we have from ([91)), ([92)
(Te(MM)™) = Try(By)" (194)
(Tr(M®)?) = Try(B,)". (195)

Consider ([[99) with @ = 1. Then

TryB; = Npo—a™? /_2 dzug(z)
+  corrections from Euler’s summation formula. (196)

We recognize that instead of ([13) we better use

- —2
up(z) = ur+v_g+a Tw+a Tuv,

u+a Tw. (197)

The same argument can be applied to M)

TryBy = NO'O—CL_,V/ dzve(z)
+  corrections from Euler’s summation formula. (198)

so that vg must depend only on u and w;. Indeed we find for the maximal singularity
(4,3) from (IT0)

vo=u—wia”" — (5u” + u?)a™* + 2(Fw] + ww;)a™* 4+ O(a™) (199)
and for (3, 3)

vo=u—wia " —( Ly 4+ u2)a_2'y + Q(éw/{ + uwl)a_S'V + O(a_M). (200)

12
Finally we consider the cases a = 2 in ([94) and b = 2 in ([97).
To sum up the results we introduce abbreviations
bi@) = ul) (
ba(z) = wi(z) (
ga(z) = Hu'(z)+uP(z) (203
gs(x) = guwi(e) 4 u(x)w(z) (

8
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and

P, (2) = /_ én(z) de. (205)
We write for ([99), ([99)
“N + v + E cn®,(2)a™™ (206)

and obtain the coefficients in the following table

sing |a b |y v ¢ ¢ ¢ ¢
(4,3) | 1 3 0 -1 -1 0 0
2 5 -3 4 2 -1 -2

1[4 0 -1 1 1 -2
2 6 6 -4 -5 -10
(33) | 1 3 0 -1 -1 0 0
15 3 4 2 -1 2
13 0 -1 1 1 -2
15 -3 4 -2 -3 18

Table 1. Expansion coefficients for the ex-

pectation values of ([[94), ([97) for the sin-
gularities (4,3) and (3, 3).

The general expression for v; is

(—=1)* a[jz’ , respectively
M= ( ) (207)

(=1 (%))
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