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Abstract

For the case of the single-O(N)-vector linear sigma models the critical behaviour
following from any Aj singularity in the action is worked out in the double scal-
ing limit N — oo, f, — f£, 2 < r < k. After an exact elimination of Gaussian
degrees of freedom, the critical objects such as coupling constants, indices and
susceptibility matrix are derived for all Ay and spacetime dimensions 0 < D < 4.
There appear exceptional spacetime dimensions where the degree k£ of the singu-
larity Ay is more strongly constrained than by the renormalizability requirement.



1 Introduction

Matrix models can be reformulated as representing stochastic triangulated sur-
faces and are thus interpreted as quantum gravity theories. They are treated in
the "double scaling limit” N — o0, g — ¢. [[]-[f]. O(N) vector sigma models can
be understood in a similar manner as describing statistical ensembles of branched
polymers [H]-[l]. These models can also be submitted to a double scaling limit.
This is done with N-renormalization group techniques based on exact recursion
relations in N [fl]-[[0].

Instead we propose to start from saddle point integrals. Partition functions
are then to leading order represented in the form of generalized Airy functions
(D = 0, see (f6)) or as a partition function with a new field theoretic action
(D >0, see (PF)). We shall refer to the function (respectively: functional) in the
exponential as ”Airy action” (respectively: ”Airy field action”).

The saddle point integrals arise from singularities in the original action when
the limit N — oo is performed. Such singularities can be classified [], [J]
and form s-dimensional families. Fach familiy possesses s moduli as continuous
parameters. If s = 0, the families are discrete and are grouped by their symmetry
into A, D and E series. The A-series can be realized in single-vector sigma models
and is the object of our interest in this article. It has been shown [[J, [4] that D
and E series can be realized by two-vector sigma models. In the field theoretic
literature only A-series singularities have been identified before us (the triple
scaling cases (i) and (ii) in [[J] are separable as A; x A, respectively A; x A3).

By application of diffeomorphisms a singularity can be brought to canonical
form. This canonical form contains the full information defining a ”universality
class of multicritical behaviour” (Ag: k-critical). Our aim in this article is to
extract universal quantities such as critical indices and the universal part of the
beta functions for the whole A-series in dimensions 0 < D < 4. For D > 0 two
kinds of boundary conditions are considered: finite cube periodic boundary con-
ditions and infinite volume. The spacetime dimension D is interpolated whenever
possible. We obtain closed algebraic expressions in each case (no infinite sums or
integrals).

Our treatment of D > 2 field theories is restricted to "naive double scal-
ing”, i.e. renormalizations are neglected. These imply logarithmic modifications,
namely N? is multiplied with a polynomial in log N [§, B]. We expect that
these modifications can also be calculated explicitly (i.e. in terms of algebraic
expressions) for all cases A;. Some preliminary discussions are presented in [J
(e.g. introduction of counter terms). These logarithmic modifications are also of
interest for mathematics, they go beyond the concepts of Arnold’s school.

The authors of [[i], f] treated the cases Ay, k > 3, incorrectly. They eliminated
Gaussian degrees of freedom connected with nonvanishing eigenvalues of the Hes-
sian by orthogonal projection along the zero mode eigenvectors. The orthogonal
structure is produced by the Hessian itself, which looses its meaning at higher



orders of the Taylor expansion. In fact, it is not difficult to see that additional
"curvature terms” arise first at fourth order (K = 3). The correct method is
explained in the text. It is based on the "splitting lemma” ([[J], Theorem 4.5)
which is proved by the implicit function theorem. Gaussian degrees of freedom,
which each belong to an A; singularity, have to be integrated out before the
relevant singularity is isolated.

The Airy functions are central and unambiguously derived in our approach.
In the N-renormalization group approach a constrained Airy function depending
on only one variable is obtained by solving a differential equation. Namely, let

the sum in (Ff) run over 1 <n <k — 1 and set

C=—C, G2=CG="=C-1=0, e=+1

then the resulting function Y'({) satisfies

(- (2)) oo

In the same way one can derive a system of differential equations for the general
case [[[3, [4].

Asymptotic expansions for large ( play an important role in the N-renormalization
group approach [, [0, [[5]. For the singularity A, one can use the known ex-
pansions of the standard Airy functions Ai and Bi [[§]. For the generalized Airy
functions of the singularities A, k > 3, different orderings of the large arguments
{¢;} are possible, each one by repeated application of saddle point integrations
along a chain of reductions

Ak—>Ak_1—>"'—>A2—>A1

implying a different asymptotic expansion. Degenerate reduction chains with
intermediate singularities skipped can also occur.

In Section 2 the single-O(N)-vector sigma model is formulated and trans-
formed into an effective field theory of two scalar fields. The Hessian of this
effective field theory is the basis for the discussion of singularities. Its corank
must be one in order to admit singularities of type {A;}5°. It was shown in [[4]
that sigma models containing r O(N)-vectors can be formulated such that the
Hessian is of corank r.

The elimination of the Gaussian degrees of freedom which are all degrees
except one for {A;}5°, is a major algebraic issue. It is formulated and solved in
Section 3 for finite volume. Moreover we calculate critical coupling constants and
the position of the saddle point (rg or b(0)). Both these results can be carried
over to the infinite volume case (Section 4).

The deviations of the coupling constants from their critical value map to
lowest order linearly on the deformation space. This linear map is denoted as



7susceptibility matrix”. Its calculation is the major topic of Section 4. It can
also be inverted explicitly. The double scaling limit is defined as the combined
limit when N tends to infinity and the coupling constants approach their critical
values. In detail it involves the susceptibility matrix and the critical indices.
Both enter also the linear terms of the beta functions which can thus be given
explicitly for all {Ax}5°.

In Section 5 we study the case when the sigma model is carried by the whole
of D < 2 dimensional space time. The momenta form a continuous spectrum. A
momentum scale A which is tied to the renormalized mass of the theory separates
small momenta {|p| < A} from large momenta {|p| > A}. The latter belong to
Gaussian degrees of freedom that are integrated out, whereas the former are
additional deformation parameters which under double scaling induce the kinetic
energy term in the Airy field action. The critical indices are modified but the
susceptibility matrix remains unchanged as compared with Section 4.

If the sigma model is carried by infinite spacetime of dimensions 2 < D < 4,
the double scaling limit can be performed provided the field theory resulting from
the saddle point integral is renormalizable. Counter terms have to be introduced
(7, A] in the course of the limit and the quantity N'A is the ultraviolet cutoff. This
is studied in Section 6. If we use dimensional regularization for 2 < D < 4, all
critical objects can be shown to be analytic continuations of the corresponding
quantities for 0 < D < 2. However, for D = 2 we use a subtraction scheme
depending on a mass parameter yu? and all critical quantities are recalculated.

The type Ay of the singularity is restricted by renormalizability to

D+2
k<5

Surprisingly we observe that for "exceptional dimensions”
n
Dn ZQH, n e {3,4,5,}

k is further restricted by
k<

{ n —1,n odd,

n — 2,n even.

This result is a consequence of the analytic form found for the critical quantities.
In Section 7 we return to the unstable field theories resulting from saddle
point integrals. Though we make suggestions of how to ascribe a meaning to
them, their properties are unclear. Nevertheless, realistic systems of statistical
mechanics may be described by them and it would be wrong to neglect them.



2 The model

We study conventional sigma models with the action
S=[d [asasn-m§+w§) (1)

(S € Ry)
with the potential
[os) fr .
Ule)=> =o', (2)
r=2
We shall interpolate the dimension D. For the purpose of our investigation it is
not relevant whether the series (f]) is finite, analytic or formal.
By a standard functional Fourier transformation and performing some of the
functional integrations we can transform the action ([[) into an effective action

/ 4%z [U(o(2)) — ip(x)o()
—|—2Trlog[ A + 3% + 2ip] (3)

with partition function
7 = /DJDpeXp[—NSeg(J, p)]- (4)

This partition function is to be evaluated in the limit N — oo. Application of
singularity theory amounts to evaluation of (f) by saddle point integrals.

The system may either be considered on unbounded spacetime or on a cube
with volume V = L” and periodic boundary conditions. Fourier transforms are

defined by
= /dD:v e_ip“:a(;t) (5)

in either case, but the inverse transformations involve either integrations
[
2m)P

p from one
Brillouine zone

or summations

In explicit formulas we will always write integrals.
Let us assume that the saddle point of ({)

(00, po)



is constant over spacetime. The saddle point is then determined by

U'(0) = 1po (6)
d” 2 2y—1
7= [ Gt +m) (7)
where
m? = 3% + 2ipo (8)

is assumed positive. In order to render the integral ([]) convergent, we limit D to
0 < D < 2. Only in the sixth section we will abandon this constraint.
The fields ¢ and p fluctuate

o(z) = oo(1 + a(z)) (9)

p(x) = po(l + B(x)) (10)

and the n’th order term of S in the fluctuations is denoted Ség). Then

S5 = 5 ] st An)

( oU"(o0) ooTo ) ( (%(P) ) (11)
0070 —2r3%(p) B(p)
where the real quantity
o = —Zpo (12)

has been introduced and

dPq _
S(p) = [ o5+ m?)((a = p)? +m?)] . (13)
(27)
The n’th order term S(Eg) is in coordinate space integrals
n UnU(n)(U ) n
S(EH) = Onilo/dea(x)

— (2] (A + ) ()] (14

n

The Hessian ng) is diagonalized by

(50 ) = (Y e+ ("9 )i (15
where the two eigenvectors are orthogonal implying
a(p)b(p) = —1 (16)
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and have norms squared

Ni(p) = a(p)® +1
N_(p) = b(p)* + 1. (17)

Then the Hessian assumes the form

S = 3 [ G N )
FA-(p)N-(p)i(—=p)i(p)] (18)
with eigenvalues
Ai(p) = %{JSU"(JO) — 2r2%(p)
% (030" (0) + 2035(p))? + 0]} (19)

The p-dependence of Ni(p),a(p),b(p), A+ (p) originates from X(p). Since

X(p) = X(-p) (20)

all these quantities have the same symmetry. In the infinite volume case ¥(p)
depends only on p? and decreases monotonously from p? = 0 to p?> = oo where it
vanishes.

We will discuss only the case that the Hessian becomes singular at p = 0. In
this case we must have

2%(0)U"(09) +1 =0 (21)
implying
A_(0)=0 (22)
A4 (0) < 0. (23)
From ([g) follows moreover
A_(p) >0, p#0. (24)

3 The critical behaviour for fixed finite volume

The critical behaviour of a singularity of type Ay is produced by the limit N — oo
and is essentially independent of whether the volume is finite or infinite. Of course
the finite size leads to finite size corrections which we shall neglect here. If the



volume is finite, the momentum spectrum is discrete and the corank of the Hessian
is one. The possible singularities are of type Ax, k € IN. The fluctuations

£(p), all p
n(p), all p #0

are Gaussian and must be integrated out first. The saddle point around which
the Gaussian integration is performed is fixed by

Ot _ 0, all p (25)
9¢(p)
aSeff
—— =0, allp#0 26
9ii(p) 7 26)
so that its location depends on 7(0). Because of translational invariance these

conditions imply )
&(p) =n(p) =0, p#0. (27)

Inserting this into Sex gives a new action

gred(fO;UO) - Seff( 5

Iy

ﬁ) &(p)=1(p)=0 (28)
(p#0)

where we introduced the new variables

From (PF) remains

or explicitly
() Z Sred (&0, 70)- (31)

A splitting lemma [[[J] asserts that this elimination equation can be solved iter-
atively

o = Hm) = 3 autl (32)

and that H exists in a neighborhood of zero as a function. An explicit deter-
mination of the coefficients {a,} at the critical point (the {a,} are functions of
{f-} from (}) which assume critical values { f°}) is crucial for any further explicit
determination of critical quantities.



Inserting (B) into Siea (BY) gives the reduced action (neglecting a constant)
gn n
— o
o n

Swalm) = 3
Sred(H(n0)7770)- (33)

A singularity Ay arises if

gr+1 # 0. (34)

Now we start the explicit calculation of the critical quantities. Some techni-
calities are unavoidable in this context. The function X(p) ([J) can be expanded
in a power series of p* (convergence radius 4m?, only the first terms are needed)

5(p) = iww. (35)

Moreover, we use the standard integrals

D
Hn — / d p (p?_l_mQ)—n

(2m)7
= ey (36)
(n=3D)-
Then B, can be expressed in terms of TI,,45 by
5 _ (Ul 4 1) an

(2n+ 1)1

We can use II; and 11, to express all fractional powers of momentum dimensions,
e.g.

n+1
1

II,,.0 =
+2 T

On (38)
so that &, is a function of D only (or y = 1D)

2=
(A DI =)

Noting that oq = II; by ([]) and (Bf), we normalize the derivation of the
potential at the critical point by

(39)

H2
—Lo,. (40)

H?U(”)(Hl) = oI,

9



Then the following result can be derived

vir= Y ()40 ] o

partitions of n 7=1

(41)

nj!

(n >0,v; = —1 from (1))

where £ is the length of the partition and n; is the repetition number of

n=y_jn; (42)
7=1

(= in] (43)

This formula has been checked by computer up to n = 8. Inserting 4, (B9)
into ([]) gives the simple expression

Dnpz = (—1)7! (2_—”) (44)

L—p

In the case in which the volume is finite, the definitions (BY),(fi0]) and the
purely algebraic result (fI]) remain valid. But d,, (B9) obtains a finite size cor-
rection which is neglected in ([4)). We shall neglect such corrections also in the
sequel.

The next issue is to calculate the critical coupling constants { f¢} from all v,,.
For a singularity Ax we normalize the coupling constants to

Ap: f, =0for r > k. (45)
In analogy with ([0]) we define
H2
e pe = 0w, 4
lfr 2H2pr (ILL) ( 6)
Inverting the system of equations (n € {1,2,...,k —1})
é k
Onpr = (=1)" D01 = r)up () (47)
gives (r € {2,3,...,k})

POy = L=y (Q_M)H‘ (1)

L —p

10



In the same context we can calculate the critical value for

211
b(O) _ HQITO _ _a(o)—l

S (%) _1H1U’(H1) (49)

which gives

= I=#) l(k—ln! (?:Z)H”] (50)

(if r = 1 is inserted into (fg) we obtain p(lk)(,u) + (1 — p)).
At the critical point also gr+1 (B4) is fixed

- k
gl:-}-l — (_1)k+1 (pg )(lu))k-l_l 2 — M H% (51)
k+1 (E+1)! \1—p/), 2l

It is important to remark that the second condition (B4) is satisfied indeed by
(B1), sincefor 0 <pu<1(0< D < 2)

G:Z)H > (k- 1)! (52)
P (u) > 0 (53)
sign gip = (=1, (54)

4 Deformation of the singularity and the double
scaling limit for fixed finite volume

Singularities can be deformed [[[I], []. We assume that this is achieved for Ay by

fr:fyﬂc(1+®7‘) (55)

2<r<k

whereas the parameter m? is invariant. This is a nonstandard way of deforming:

the standard way would be to keep fr = ff fixed and let m? (or f;) vary. The
quantity m? is kept constant to simplify the following discussion and this is
achieved by compensation of the variation of ro and 8% in (g)

m?* = (3% — 2r. (56)

11



Invariance of m? implies that

oo = I, (m?) (57)
is not varied either, so that in

ro = —U'(09) (58)

the variation comes only from (BJ). We conclude that from the k quantities
{fi = %,fg, oy Jx} only £ — 1 are varied.

In any case the Hessian is diagonalized exactly and the fluctuations &, are
considered independent of the deformation.

Correspondingly the coupling constants {g,} in (B3) deviate from the critical
values,

k
T — 3 a0, + 0,(0) (59)
n r=2
(2<n<E).
The double scaling limit is obtained by coupling two processes
(1) N— o0
(2) ©,—0,Vr

in a particular way. In the momentum spectrum any neighboring eigenvalue p;
of p = 0 has a fixed distance O(L™") of p = 0 and therefore the deformation
parameters can be restricted to a neighborhood of zero so small that A_(p;) and
A—(0) have values in non-intersecting intervals on this neighborhood.

We study the singular partition function

Ling = / dijge N Srealo). (60)

Since g;,, 7# 0 we can approximate gi41 by gi,, over the whole deformation
neighorhood. We introduce a new variable y by requiring

y*™* = Nlgiplng™! (61)

=y (ngiﬂl)_kl? : (62)

Inserting (B2) into Srea(n0), we see that we have to perform the limit

12



G = lim N (Nlgil) ™ Y albe, (63)

(2<n<E).

Thus the double scaling limit is defined via the "susceptibility matrix” o(¥), and
k
each linear combination (oz(k)(ﬂ)n scales as N—on

W) —q = 4

These are the "critical indices”. The result of the double scaling limit is to leading
order

Zang = (N1gin]) ™ YilGarGoy Gt (65)

where Y, is the generalized Airy function,

k yk—l—l
}/5(§27C37"'7Ck) :/C(k) dyexp{_z_:gnyn_ek_l_l} (66)

€ = sign 97;4-1- (67)

The contour C'%) is the real axis if
e =41, k odd (68)

and a combination of complex contours, running from infinity to infinity along
which the integral converges exponentially, in all other cases. By a translation
y — y 4 a we can eliminate the term y* and produce a term y' obtaining the
standard form of a generalized Airy function.

The function Y, or any function of Y, such as ' = log Y, satisfy a renormal-
ization group equation

(N— - E B3.(0 ) F(CayCay i) = 0 (69)

where each (,, is considered as a function of N and {©,} which in the neighbor-
hood of the singularity is determined by (B3]). The beta functions {3,(0)} are
determined from (2 < n < k)

k
V%280 58 =0 (70)

For small {©,} this is satisfied if

B:(0) = 3 N0, + 02(0) (71)



N®) = oB)—Ldiag o*) k) (72)

The susceptibility matrix must therefore be invertible. We will verify this by
an explicit calculation. This calculation starts from the following observation.
We can use

up = UW(IL) = UML) (73)
as parameters of deformation instead of the {©,}. Then Sred depends on
gred(fo,no;m,u;),,...uk). (74)
From the constraint (B{) we obtain the elimination function
Eo = H(no; uz, us, ..., ug) (75)
and )
Sred(Mo; Uy Usy ooy Ug) = Sred(H (03 Uy Us,y ..oy Uk)y Noj Uze. UE). (76)

It follows from (B() that in

aSred . agred 8H agred
ou, 06 Ow, | ou, (77)

the first term vanishes. The variation of u,, enters the second term either directly
or via ro. However, it can be shown, that at the critical point and for constant
{a,} the derivative with respect to o vanishes. Thus only the direct dependence
is left and we obtain

19, _1( W\ 5 {
nou, [ b(0) ningN3. ..

partitions of n
of length £

(%@Wﬁﬁ (78)

where £ is the length and n; the repetition number of j (as in (f2),({3)). The
coefficients {a;} of the elimination function H (BJ) at the critical point can be
expressed as functions of D (or p) by

(n+0)!
(n+1)!

'E%&Jﬁﬁ% )

with £ and n; as in ({3), (). This formula has been verified for n < 8.

py1 = —b(0)""* Y7 (1+5(0))7

partitions of n

14



Next we reduce the susceptibility matrix

112 .
al®) = L (pP (1)) pF ()l (80)
211,

and find from inserting ([[9) into Sieq

ol =35 (17]). (s1)

Here S is a lower left triangular matrix

SE =0, r>n (82)

nr

and |
r—
Bsr =
(3 — 1) (83)

is an upper right triangular matrix. Moreover we have

1
n
and for all other elements n > r > 2
¢—-1)!
o = 1 - n 1) (n+ 14 b(0)2)¢
Smﬂ partitioé:ofn - 7“( n —+ {—1 TZ) n! ( + (0) )
| Vit )n]
' 85
JHl ((.7 +1)! (89)

with £ the length and n; the repetition number of j of the partition of n —r.
The representation (RI]) gives for the inverse

akh=t = ptgkt (86)
with
= (T0) (37)
and
Skh=t = _pp SR > rsn S G k)
(r>3>n)

— Z 1818908 gk g(k)

(r>51 3 45>m)
F... (r>n) (88)
Sk — 5y (89)

nn

Finally we obtain by inserting (B{),(BT), and (R) into ([[2)

p(t)
A = P () (B'50~diag oM 5B B) | (90)

rn
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5 The case of unbounded volume

In the case of unbounded volume the momentum spectrum is continuous. The
domain of small momenta

| <A (91)

is considered as an additional deformation. This leads to an additional term
in the generalized Airy function integral (the kinetic energy term) and modified
critical indices

ol = P (92)

(]

The generalized Airy function (p@) is replaced by a field theoretic partition func-
tion

Vo= [ Doesp {3 [dPeo()-A+ M)o()

k
=Y [ este = L [ oty | (93

The kinetic energy term has been normalized in (P3) instead of the (k + 1)-st
order term. The dimension D is still in the interval 0 < D < 2.

The reduced action Sieq depends only on {n(p)||p| < A} so that all other
degrees of freedom must be integrated out by performing a Gaussian saddle point
integration. As the first step we obtain the half-reduced action

Seal€(p) 1(P)) = Set(€, )] ci1nirmo - (94)

|p|>A
We are left with the issue to solve
5 .
——Srea = 0 for all |p| < A (95)
6¢(p)
for f( ). If A < m the trace terms
. dDQZ QZ - QZ—I—I)
Te[(—A /
H(-A 4 m?) 1 5 o (96)

(Gnt1 = q1)

reduce to the n-fold convolution product of B at argument zero times a constant
(see (B)), namely

Thus the elimination (Pj) differs from (B0)), (BI]) only by the replacement of £ ng?

by
(v % i22) (0). (98)

16



Its solution is

E(p) = 3 anfiZ(p) (99)
n=2
with {a,} as in (B2). Correspondingly the reduced action is
R e
Sred(n) = Z ;77* (0) (100)
n=2

with {g.} as in (B3)). The condition (B4]) for the appearance of a singularity Ay
remains unchanged.
Momenta and coordinates are scaled by [, [

p=N"p (101)

= Nt/ (102)
where A > 0 is necessary in order that in the limit N — oo the domain A is
mapped onto IRp. The fields are renormalized by

1

$(z') = CHN T p(z) (103)

so that the power of order k + 1 in (P3)) obtains a finite coefficient in the limit
N — oo. Both C®) and A are determined from the kinetic energy term.
We return to

% ZA (;lﬁfp A (P)N-(p)i(=p)i(p) (104)

and expand into deformation parameters {0, } and p

N0 = Jp{ie-wl

k
+ Z(r — 1)p£k)(ﬂ)®r} + higher order terms (105)
r=2

where ([9), (B2), (£6) have been used. This implies (see (F0))

12 1 172
(k) — (k) —L (9 ) — 1
0 = 0 | gpt5(2 — ) (106)
and [
E—1
A= . 1
2(k+1)—D(k—1) (107)
Positivity of A is satisfied as long as
E+1
D<D,=2——-. 1
< 1 (108)

17



This is trivially fulfilled for D < 2. From the second term in ([0F) we obtain the
double scaling limit

N~ (k) 1 M?
11 N —1 O, =—-(2—pyu)—. 109
i (Z( () ) oo (109)

Since this limiting procedure is independent of the other double scaling limits
described below (due to the invertibility of the susceptibility matrix) we can
ascribe to M? any value, in particular any positive value.

The susceptibility matrix o*) (F3)) enters all other double scaling limits as
usual. For all 3 < n <k we have

k
o= lim (Cm)-an&f) 3 albe, (110)
®r—0,allr r=2

where the critical indices are now

kE+1—n
(k) — 111
Ty ()
so that
xPp=0)=0cp (112)
(see (B9)). Moreover we find from ([TT])
W =2), (113)
If we identify
1
(o = 5M2 (114)

we can incorporate the limit ([09) into the set of limits ([10) as in the case n = 2.
Finally we note that (see (B1]), ([[03)))

Frpr = (C™) ™ gp, (115)
The partition function is written as function

Y¢(§27 (37 ) Ck)

of the double scale invariant quantities {(, }. Any function of Y} satisfies a renor-
malization group equation (f9) with beta functions obeying ([1]), where, however,

N = o B~ diagy B (116)

18



6 Dimensions D > 2

At D = 2 the integral II; (Bf]) exhibits a pole of first order whereas 11,,,n > 2,
are holomorphic

+O(1 - p). (117)

To obtain a regular expression in 2 < D < 4 we can simply analytically continue

II; in D:

i = [ gt [0+ = ) ()

is the convergent integral representation for this analytic continuation in 2 <

D < 4. We can thus renormalize the position of the saddle point oy — o
oy = 17" (119)

The purely formal subtraction formula

oy =00 — Ouo (120)
d°p 1
Ooo = /# 7 (divergent) (121)

suggest how to renormalize coupling constants and mass [[7]]. We set

U/(JO) = Zfrag_l
r=2

— 1ren _I_ Zf:en(o_gen)r—l (122)
r=2
where
ren - r—1 r—mn
R S (N (123)

and fr",2 < n <k, are assumed to be finite. This can be achieved when ([) is
valid by adjusting {f, |2 < r < k} correspondingly. We renormalize py by

,I'/pren — Zpo _ {en (124)

and

(m"™)2 = m? — 2f1°", (125)

Finally we skip the label "ren” (and ”an”) and end up with the rule: replace o
by 113" and obtain all critical quantities in the interval 2 < D < 4 by analytic
continuation. The consistency of this rule has still to be investigated.
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First we inspect from ([07) that the sign of the kinetic energy term remains
unchanged and C®) ([[08) stays real. There remains, however, a problem with
the sign of

1
A=W (126)

(([07), (1), (14)). We mentioned already that X is positive if D < D (k).
On the other hand the field theory (B3) is superrenormalizable for D < D (k)
and renormalizable for D = Do, (k). Thus D, (k) is an absolute limit which we
cannot overcome.

In the case D < D (k) we have to subtract some low order Green functions,
for D = Do, (k) we need a finite number of subtractions (counter terms) in the
action. The subtractions are by momentum cutoff

Ip'| < N*A, D < D(k). (127)

For D = Dy (k) the limit N — oo cannot be performed at all but N has to be
renormalized

N' = NF0=56-7, D < Do (k) (128)
Pl < (N)F1A (129)
and then the limit N — oo, D — D, is executed. In any way we conclude that:

1. the parameter A introduced in the scaling ([01]), ([03) transforms the N —
oo limit to the UV-cutoff removal limit;

2. the double scaling limit makes sense only if the necessary subtractions dic-
tated by standard renormalization theory are performed in the limiting
procedure.

New insights on the renormalization procedure in general cannot be expected.
For D = 2 we replace analytic regularization by subtraction of the pole term,

i.e. from ([I7) we derive

1 2
™ = ——log % (130)
Identifying oo, in ([20) with the pole term ([[I]) we can proceed exactly as
for D > 2 and renormalize coupling constants and mass. The calculation of the
critical quantities has to be redone in view of ([[30)) and we will outline the results.

For n > 2 we obtain
(mQ)l—n

I, = ——"——. 131
dr(n —1) (131)
Inserting this into an equivalent version of ([t]) we obtain
1
U1 = §m2(—47r)n_1 (132)
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and correspondingly from (f0), ([31])

B ILLZ n—2
vy = — | —log — . (133)
m

The critical coupling constants follow from ([32)

o1 47 2
fi= §m %]k n(exp,log a ) (134)

where

Jn(f;2) (135)
is the Taylor polynomial ("jet”) of degree n for the function f with variable z.
From ([34) we deduce

Jr— 1(eXp,log ) 1

b(0) = log (136)
and
91@4—1 _ (1 - ]k 1(6Xp, log ))k+1 (137)
E+1 8T (k+1)!

The coefficients {a, } of the elimination function H (B3) at the critical point are

obtained from ([[9) and ([[33)

an+1 = (_1)n+1

(138)

where K, are integers

Ke=(+0l Y T (1))% (139)

partitions of n  j= 1 ] + !
of length £

(n; is the repetition number of j in the partition). Instead of (B0) we reduce the
susceptibility matrix by

all) = (I1;b(0))"(47)" frall) (140)
and for the reduced matrix (BI])-(BJ) remain valid. Instead of (BJ) we find an

analogous formula with v; 4, replaced by (—1)/*! leading to

T (=1 K,
(k) — 1)) — n 5 (n+ —rt B0V

(141)
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Since the double scaling limit for D > 2 necessitates regularization in the UV
momentum domain, as dictated by the known renormalization theory, we refrain
from dealing with the case D =4 (k = 3) here. It has been argued that a double
scaling limit does not exist at D = 4 [[§, [[9). We emphasize that D = 4 is an
"exceptional dimension” in the sense described below (n = 2 in ([[44)), kpax = 0 in
([44)). This hints also to the nonexistence of the standard double scaling limit.

Now we return to the second condition (B4) in the case 2 < D < co. In fact
from (B1]) we can see that g;_ , vanishes if and only if

1. (3£) =0, which is fulfilled for
k—1

1—p
=" 2<n<k (142)
m= n — 17 SN
2. p(lk)(,u) = 0, which occurs only if &k is odd and
k+1
=" (143)

(that there are no other zeros of p(lk)(,u) in the interval 1 < p < 2 has been verified
by computer up to k& = 20).
Thus there exist exceptional dimensions

n

. n>3(ez) (144)

for which the type of the singularity Aj has k not constrained by the renormal-
izability limit (see ([09))

1
b < e = (145)
pw—1
but by the stronger bound
n—1, nodd
k< kmax = ’ ’ 14
- {n —2, nodd. (146)

In particular the physically very interesting case D = 3 is in this set of exceptional
dimensions with n = 3 and

Fmax = 2. (147)

7 Remark: The unstable cases
All actions (P3) for which

sign ., = +1, kodd (148)
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is not satisfied are unstable field theories if interpreted conventionally. However,
our derivation of these conditions from saddle point integrals implies that the
fields ¢ range over complex contours. For example, for & = 2, these are the
standard Airy function contours

C = Co=2(Cr+Cy)  (e=+1) (149)
1
C = ~Cy+5(Ci+Cy)  (e=-1) (150)

where C,, q € @), denotes the oriented ray along the argument
arg C, = 2mq (151)

from zero to infinity. Again from £ = 2, D = 0 we know that there exists a
domain of parameters

(CQ?CS?"'?Ck?Fk—I—I) (152)

where the partition function is positive and another one where it oscillates so that
both domains are separated by a hypersurface on which the partition function
vanishes. Whether in the domain of positivity the action defines a reasonable
renormalizable field theory is unknown.
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