$\label{eq:constraint} UMSETZUNGEN DER HETEROBIMETALLCLUSTER \\ [Cp^{R}Mo(CO)(\textbf{mh}^{2:2}\textbf{-}P_2)_2FeCp^{R'}]$

MIT ALKINEN

UND CYCLO-(PhAs)₆

Vom Fachbereich Chemie

der Universität Kaiserslautern

zur Erlangung des akademischen Grades

"Doktor der Naturwissenschaften"

genehmigte Dissertation

(D 386)

vorgelegt von

Dipl.-Chem. Jörg Meiers

Betreuer der Arbeit: Prof. Dr. O. J. Scherer

Tag der wissenschaftlichen Aussprache: 01.02.2001

Kaiserslautern 2001

Die vorliegende Arbeit wurde im Fachbereich Chemie der Universität Kaiserslautern im Arbeitskreis von Prof. Dr. O. J. Scherer in der Zeit von September 1998 bis Januar 2001 angefertigt.

Herrn Prof. Dr. O. J. Scherer danke ich recht herzlich für die mir gegebene Möglichkeit zur freien Gestaltung des Themas, für seine Begeisterungsfähigkeit, stete Diskussionsbereitschaft und wohlwollende Unterstützung.

Herrn Prof. Dr. H. Sitzmann danke ich für die spontane Bereitschaft zur Übernahme der Position von Prof. Dr. O. J. Scherer in der Prüfungskommission in schwieriger Zeit. Vom Fachbereich Chemie der Universität Kaiserslautern am 01.02.2001 als Dissertation angenommen.

Dekan:	Prof. DrIng. S. Ernst
Prüfungskommission:	
Vorsitzender:	Prof. Dr. HG. Kuball
1. Berichterstatter:	Prof. Dr. H. Sitzmann
2. Berichterstatter:	Prof. Dr. F. Preuß

Auszüge aus der vorliegenden Arbeit wurden in folgenden Artikeln veröffentlicht:

K. Mast, J. Meiers, O. J. Scherer, G. Wolmershäuser
"Mehrkernige Eisen/Tantal- und Tantal-Komplexe mit As_n-Liganden"
Z. Anorg. allg. Chem. 1999, 625, 70.

O. J. Scherer, J. Meiers, M. Regitz, M. A. Hofmann, K. Karaghiosoff und G. Wolmershäuser " $[Cp^{R}(OC)Mo(\mathbf{mh}^{2:2}-P_{2})_{2}FeCp^{R}$ '] als Edukt für heterobimetallische Zweikerncluster mit P₂und C_nR_nP_{4-n}-Liganden (n = 1,2)"

Z. Anorg. allg. Chem. 2001; in Vorbereitung.

Meinen Eltern gewidmet

Abkürzungsverzeichnis

Abb.	Abbildung
Ad	Adamanthylrest
amu	atomare Masseneinheit
ber.	berechnet
^t Bu	tert-Butylrest
Cent.	Centroid
Ср	η^5 -Cyclopentadienylligand
Cp*	η^5 -Pentamethylcyclopentadienylligand
Cp*'	η^5 -Ethyltetramethylcyclopentadienylligand
Cpʻ	η^5 -Mono- <i>tert</i> -butylcyclopentadienylligand
Cp''	η^5 -1.3-Di- <i>tert</i> -butylcyclopentadienylligand
Cp'''	η^5 -1.2.4-Tri- <i>tert</i> -butylcyclopentadienylligand
Cp ^R	zu spezifizierender η^5 -Cyclopentadienylligand
DMAD	Dimethylacetylendicarbonsäurediester
ΔT	Temperaturerhöhung
EI	Elektronenstoßionisation
GE(P)	Gerüstelektron(paar)
e	Elektron
Int.	Integral
IR	Infrarot
LM	Lösungsmittel
Me	Methylgruppe
NMR	Kernspinresonanz (Nuclear Magnetic Resonance)
PE	Petrolether
Ph	Phenylgruppe
ppm	parts per million
QT	Quelltemperatur
RT	Raumtemperatur
THF	Tetrahydrofuran, unkomplexiert bzw. als Lösungsmittel
thf	Tetrahydrofuran, komplexiert
VE	Valenzelektron
TMS	Trimethylsilylgruppe

Inhaltsverzeichnis

1	Bisheriger Kenntnisstand	1
1.1	Pentaphosphaferrocen	1
1.2	Reaktivität von [Cp*Fe(η ⁵ -P ₅)] (Ia)	2
1.3	Folgechemie der Komplexe IVa und IVb	4
1.4	Heteroliganden aus Phosphor und Arsen	6
2	Problemstellung	7
3	Eigene Ergebnisse	8
3.1	Reaktionen des Phosphaalkins (1) mit Komplexen des Typs [Cp ^R Mo(CO)(µ-h ^{2:2} -P ₂) ₂ FeCp ^R '] (2)	8
3.1.1	$\begin{array}{llllllllllllllllllllllllllllllllllll$	9 9 9 9 11 12 16 18
3.2	$\label{eq:constraint} \begin{array}{l} Reaktion \ des \ Diphenylacetylens \ (8) \ mit \ Komplexen \ des \ Typs \\ [Cp*Mo(CO)(\mu-{{\color{black}h}^{2:2}-P_2})_2FeCp^R] \ (2) \ \ldots \end{array}$	22
3.2.1	$\begin{array}{llllllllllllllllllllllllllllllllllll$	23 23 23 24 24 24 27 28 29

3.3	Reaktionen weiterer Alkine mit Komplexen des Typs $[Cp^{R}Mo(CO)(\mu-h^{2:2}-P_{2})_{2}FeCp^{R'}] (2) \dots$	35
3.3.1	Reaktion mit dem ringgespannten cyclo-Octin (9)	35
3.3.1.1	Charakterisierung von 10	36
	Eigenschaften	. 36
	NMR-Spektroskopie	. 36
	a. $^{1}_{21}$ H-NMR	. 36
	b. ³¹ P-NMR-Spektroskopie	. 37
	Massenspektrometrie	. 37
3.3.1.2	Strukturvorschlag für [Cp*'Mo(μ - $\eta^{4:2}$ -P ₂ C ₈ H ₁₂)(μ - $\eta^{2:2}$ -P ₂)FeCp*] (10)	38
3.3.2	Reaktion mit DMAD (11)	39
3.3.2.1	Charakterisierung von 12	39
	Eigenschaften	. 39
	IR-Spektroskopie	. 40
	NMR-Spektroskopie	. 40
	a. ¹ H-NMR	. 40
	b. ³¹ P-NMR-Spektroskopie	. 41
	Massenspektrometrie	. 41
3.3.2.2	Strukturvorschlag für	
	$[Cp*Mo(\mu-\eta^{4:2}-P_2C_4O_4Me_2)(\mu-\eta^{2:2}-P_2)FeCp*] (12) \dots$	41
3.3.3	Reaktion mit 1.7-Octadiin (13)	42
3.3.3.1	Charakterisierung von 14	42
	Eigenschaften	. 42
	NMR-Spektroskopie	. 43
	a. ¹ H-NMR	. 43
	b. ³¹ P-NMR-Spektroskopie	. 44
	c. ¹³ C-NMR-Spektroskopie	. 45
	Massenspektrometrie	. 46
3.3.1.2	Strukturvorschlag für [Cp*Mo(μ - $\eta^{4:2}$ -P ₂ C ₈ H ₁₀)(μ - $\eta^{2:2}$ -P ₂)FeCp*] (14)	46
3.4	Komplexierungsreaktionen	. 48
3.4.1	Komplexierung von $[Cp*Mo(mh^{4:2}-P_2C_2Ph_2)(mh^{2:2}-P_2)FeCp*]$ (7a) mit $[W(CO)_5thf]$ (15)	48
3.4.1.1	Charakterisierung der unbekannten Fraktion 16	49
	Eigenschaften	49
	IR-Spektroskopie	49
	NMR-Spektroskopie	. 49
	a. ¹ H-NMR	. 49
	b. ³¹ P-NMR-Spektroskopie	. 50
	Massenspektrometrie	. 51

3.4.1.2	$\label{eq:construction} \begin{array}{l} Strukturvorschlag für \\ [Cp*Mo(\mu_{3}-\eta^{4:2:1}-P_{2}C_{2}Ph_{2})\{W(CO)_{5}\}(\mu-\eta^{2:2}-P_{2})FeCp*] \ (\textbf{16}) \ \end{array}$	52
3.4.2	Komplexierung von [Cp*Mo($mh^{4:2}$ -P ₃ C ^t Bu)($mh^{2:2}$ -P ₂)FeCp*] (3a) mit [W(CO) ₅ thf] (15)	53
3.4.2.1	Charakterisierung der unbekannten Fraktion 18	53
	Eigenschaften	53
	IR-Spektroskopie	54
	NMR-Spektroskopie	54
	a. $^{1}_{21}$ H-NMR	54
	b. ³¹ P-NMR-Spektroskopie	55
	Massenspektrometrie	56
3.4.2.2	Strukturvorschlag für $[Cp*Mo(\mu_3-\eta^{4:2:1}-P_3C^tBu){W(CO)_5}(\mu-\eta^{2:2}-P_2)FeCp*]$ (18)	56
3.5	Syntheseoptimierung von [Cp ^{···} Mo(CO)(µ- h ^{2:2} -P ₂) ₂ FeCp*] (2e)	57
3.5.1	Charakterisierung von 21	58
	Eigenschaften	58
	Kristallisation	59
	IR-Spektroskopie	59
	NMR-Spektroskopie	59
	a. $^{1}\text{H-NMR}$	59
	b. ³¹ P-NMR-Spektroskopie	60
	Massenspektrometrie	60
	Kristallstrukturanalyse von	- 1
	$[\{Cp^{**}Mo(CO)(\mu-\eta^{5*}-P_3)\}\{Cp^{*}Fe(CO)\}\{Cp^{*}Fe(\mu_3-\eta^{***}-P_7Me)\}] (21)$	61
3.5.2	Exkurs: Bisher bekannte E7-Bausteine	65
3.5.3	Gezielte Synthese von	
	$[{Cp'''Mo(CO)(\mu-h^{3:1}-P_3)}{Cp*Fe(CO)}{Cp*Fe(\mu_3-h^{4:1:1}-P_7Me)}]$ (21)	68
3.6	Cyclo-(PhAs) ₆ (29) und (^t BuAs) ₄ (38) als Arsenquellen	69
3.6.1	Reaktion von cyclo-(PhAs) ₆ (29) mit [Cp*'Mo(CO)(μ- h ^{2:2} -P ₂) ₂ FeCp*] (2)	69
3.6.1.1	Charakterisierung von 30	70
	Eigenschaften	70
	Kristallisation	70
	NMR-Spektroskopie	71
	a. ¹ H-NMR	71
	b. ³¹ P-NMR-Spektroskopie	71
	Massenspektrometrie	12

	Kristallstrukturanalyse von $[Cp^* Mo(\mu-\eta^{5:5}-P_mAs_n)FeCp^*] (m = 5 - n; n = 1,2,3,4)$ (30)	74
3.6.1.2	Exkurs: Phosphole	77
3.6.2	Reaktion von cyclo-(PhAs) ₆ (29) mit [Cp"Fe(CO) ₂] ₂ (35)	80
3.6.2.1	Charakterisierung von 36	80
	Eigenschaften und Kristallisation	80
	IR-Spektroskopie	81
	¹ H-NMR-Spektroskopie	81
	Massenspektrometrie	81
	Kristallstrukturanalyse von [{Cp''Fe(CO) ₂ } ₂ (C ₆ H ₅) ₂ (μ - $\eta^{2:2}$ -As ₂)] (36)	83
3.6.3	Umsetzung von cyclo-(PhAs) ₆ (29) mit [Cp"Co(CO) ₂] (39)	86
3.6.3.1	Charakterisierung von 40	86
	Eigenschaften	86
	IR-Spektroskopie	87
	¹ H-NMR-Spektroskopie	87
	Massenspektrometrie	87
	Strukturvorschlag für [{Cp''Co} ₃ (μ_3 - $\eta^{3:3:3}$ -As ₃)] (40)	88
3.6.3.2	Charakterisierung von 41	88
	Eigenschaften	88
	¹ U NMP Spektroskopie	00
	Massensnektrometrie	00 89
	Strukturvorschlag für [{Cp''(CO)Co}Ph(η^2 -As ₃)] (41)	90
3.6.4	(^t BuAs) ₄ (38) als Arsenquelle: Syntheseoptimierung von [Cp*Fe(h ⁵ -As ₅)] (45)	91
3.6.5	Umsetzung von weißem Phosphor (48) mit (^t BuAs) ₄ (38)	93
3.6.6	Thermolyse von [Cp"Co(CO) ₂] (39) und [Cp*Fe(h ⁵ -As ₅)] (45) in Toluol	93
3.6.7	Thermolyse von [Cp''Co(CO) ₂] (39) und [Cp*Fe(h ⁵ -As ₅)] (45) in Dekalin	95
3.6.7.1	Charakterisierung von 47	95
	Eigenschaften	95
	IR-Spektroskopie	96
	¹ H-NMR-Spektroskopie	96
	Massenspektrometrie	96
	Strukturvorschlag	96

3.7	Weitere Umsetzungen	97
3.7.1	Thermolyse von[Cp*Mo(CO)(mh ^{2:2} -P ₂) ₂ FeCp*] (2a) in Acetonitril	97
3.7.2	Thermolyse von [Cp*Mo(CO)(mh ^{2:2} -P ₂) ₂ FeCp*] (2a) mit [Cp*'Fe(h ⁵ -P ₅)] (19a)	98
4	Experimenteller Teil	98
4.1	Analysenmethoden	98
4.2	Ausgangsverbindungen	99
4.3	Versuchsbeschreibungen	100
4.3.1	Synthese von $[Cp^{R}Mo(\mu - h^{4:2} - P_{3}CR'')(\mu - h^{2:2} - P_{2})FeCp^{R'}]$ (3a-e)	101
4.3.2	Synthese von $[Cp*Mo(\mu - h^{4:2} - P_2C_2Ph_2)(\mu - h^{2:2} - P_2)FeCp^R]$ (7a,b)	102
4.3.3	Synthese von $[Cp^* Mo(\mu - h^{4:2} - P_2C_8H_{12})(\mu - h^{2:2} - P_2)FeCp^*]$ (10)	103
4.3.4	Synthese von $[Cp*Mo(\mu - h^{4:2} - P_2C_4O_4Me_2)(\mu - h^{2:2} - P_2)FeCp*]$ (12)	104
4.3.5	Synthese von $[Cp*Mo(\mu - h^{4:2} - P_2C_8H_{10})(\mu - h^{2:2} - P_2)FeCp*]$ (14)	104
4.3.6	Synthese von $[Cp*Mo(\mu_3 - h^{4:2:1} - P_2C_2Ph_2) \{W(CO)_5\}(\mu - h^{2:2} - P_2)FeCp*]$ (16) und 17	105
4.3.7	Synthese von $[Cp*Mo(\mu_3 - h^{4:2:1} - P_3C^tBu) \{W(CO)_5\}(\mu - h^{2:2} - P_2)FeCp*]$ (18)	105
4.3.8	Synthese von [{Cp'''Mo(CO)(μ - $h^{3:1}$ -P ₃)}{Cp*Fe(CO)}{Cp*Fe(μ_3 - $h^{4:1:1}$ -P ₇ Me)}] (21)	106
4.3.9	Gezielte Synthese von [{Cp'''Mo(CO)(μ - $h^{3:1}$ -P ₃)}{Cp*Fe(CO)}{Cp*Fe(μ_3 - $h^{4:1:1}$ -P ₇ Me)}] (21)	107
4.3.10	Synthese von $[Cp^{R}Mo(\mu - h^{5:5} - P_{m}As_{n})FeCp^{*}] (m = 5 - n; n = 1,2,3,4)$ (30)	107
4.3.11	Synthese von [{Cp''Fe(CO) ₂ } ₂ (C ₆ H ₅) ₂ (μ - $h^{2:2}$ -As ₂)] (36)	108
4.3.12	Thermolyse von [Cp''Co(CO) ₂] (39) und cyclo-(PhAs) ₆ (29) in Dekalin	109
4.3.13	Optimierung der Synthese von [Cp*Fe(η ⁵ -As ₅)] (45)	110

4.3.14	Umsetzung von weißem Phosphor (48) mit (${}^{t}BuAs$) ₄ (38)	111
4.3.15	Thermolyse von $[Cp''Co(CO)_2]$ (39) und $[Cp^*Fe(\eta^5-As_5)]$ (45) in Toluol	112
4.3.16	Thermolyse von $[Cp''Co(CO)_2]$ (39) und $[Cp^*Fe(\eta^5-As_5)]$ (45) in Dekalin	112
4.3.17	Thermolyse von[Cp*Mo(CO)(μ - $\eta^{2:2}$ -P ₂) ₂ FeCp*] (2a) in Acetonitril	113
4.3.18	Thermolyse von $[Cp*Mo(CO)(\mu-\eta^{2:2}-P_2)_2FeCp*]$ (2a) mit $[Cp*Fe(\eta^5-P_5)]$ (19a)	113
5	Zusammenfassung	115
6	Literatur	121
7	Anhang	125
8	Dank	160

1 Bisheriger Kenntnisstand

1.1 Pentaphosphaferrocen

Die Synthese des Ferrocens 1951^[1,2] und dessen Strukturaufklärung durch *Wilkinson/ Woodward*^[3] ["Sandwich-Struktur"], sowie *Fischer et al.*^[4] ["Doppelkegel-Struktur"] 1952 stellen einen Meilenstein auf dem Gebiet der metallorganischen Chemie dar.

Abb. 1 : Ferrocen.

1987 gelang *T. Brück* ^[5] die Herstellung und Isolierung des dazu isovalenzelektronischen Pentaphosphaferrocens [Cp*Fe(η^5 -P₅)] (**Ia**) durch Thermolyse von [Cp*Fe(CO)₂]₂ mit weißem Phosphor.

Abb. 2: Synthese von $[(\eta^5-C_5Me_4R)Fe(\eta^5-P_5)]$ (**Ia**,**b**).

^[3] G. Wilkinson, M. Rosenblum, M. C. Whiting, R. B. Woodward, J. Am. Chem. Soc. 1952, 74, 2125.

^[1] T. J. Kealy, P. L. Pauson, *Nature* (London) **1951**, 168, 1039.

^[2] S. A. Miller, J. A. Tebboth, J. F. Tremaine, J. Chem. Soc. **1952**, 632.

^[4] E. O. Fischer, W. Pfab, Z. Naturforsch. **1952**, 7b, 377.

^[5] O. J. Scherer, T. Brück, Angew. Chem. 1987, 99, 59; Angew. Chem. Int. Ed. Engl. 1987, 26, 59.

Die Pentaarsaferrocene (**IIa**,**b**) wurden erstmals 1990 durch *C*. *Blath* ^[6] aus gelbem Arsen und $[Cp^*Fe(CO)_2]_2$ hergestellt. Auch bei $[Cp^*Fe(\eta^5-As_5)]$ (**IIb**) handelt es sich wie bei den Pentaphosphaferrocenen (**Ia**,**b**) um einen typischen nido-Cluster (n + 2 = 8 GEP) mit einem pentagonal-pyramidalen ME₅-Gerüst.

Abb. 3: Synthese von $[(\eta^5-C_5Me_4R)Fe(\eta^5-As_5)]$ (**IIa**,**b**).

1.2 Reaktivität von $[Cp*Fe(\mathbf{h}^5-P_5)]$ (Ia)

Bisher wurden insgesamt drei wichtige Reaktionsmuster aufgefunden:

- Reaktionen unter Erhalt des cyclo-P₅-Gerüstes

- Reaktionen unter Öffnung des cyclo-P₅-Gerüstes

Diese beiden Reaktionsvarianten stehen nicht im Mittelpunkt dieser Arbeit. Es sei an dieser Stelle auf die entsprechende Literatur verwiesen ^[7].

- Reaktionen unter Ringabbau

Bei dieser Reaktionsvariante dient der cyclo- P_5 -Ligand als Phosphorquelle zur Synthese neuer P_n -Gerüste. Unter den relativ drastischen Reaktionsbedingungen wird sehr häufig die Bildung zweier isolierter P_2 -Liganden beobachtet. Dies soll am Beispiel zweier prinzipiell möglicher

^[6] O. J. Scherer, C. Blath, G. Wolmershäuser, J. Organomet. Chem. 1990, 387, C21.

^[7] a. O. J. Scherer, Acc. Chem. Res. **1999**, 32, 751 (Neueste Übersicht).

b. K. H. Whitmire, Adv. Organometallic Chem. 1998, 42, 1.

c. O. J. Scherer, Angew. Chem. 1990, 102, 1137; Angew. Chem. Int. Ed. Engl. 1990, 29, 1104.

d. M. Scheer, E. Herrmann, Z. Chem. 1990, 30, 41.

Reaktionsprodukte erklärt werden. Zum einen findet man homobimetallische Cluster vom Typ III ^[8].

Abb. 4: Synthese von $[(Cp*Ir)_2(\mu-\eta^{2:2}-P_2)_2]$ (**III**).

Zum anderen findet man heterobimetallische Cluster vom Typ $IV^{[9,10]}$.

 $\label{eq:Abb.5:Synthese von} \textbf{[Cp}^{R}Mo(CO)(\mu\textbf{-}\eta^{2:2}\textbf{-}P_2)_2FeCp*]~(\textbf{IVa,b}).$

Es werden aber auch Reaktionen beschrieben, bei denen eine ganze Serie von Abbauprodukten gefunden wird, die von den bisher beschrieben Typen **III** und **IV** abweicht. So

^[8] M. Detzel, *Dissertation*, Universität Kaiserslautern **1995**.

^[9] O. J. Scherer, C. Hofmann, G. Wolmershäuser, *J. Organomet. Chem.* **1998**, 559, 219.

^[10] E. Hauck, *Dissertation*, Universität Kaiserslautern **1995**.

liefert die Umsetzung von $[Cp^*Fe(\eta^5-P_5)]$ (**Ia**) mit Kobalt-Einkernverbindungen eine Reihe mehrkerniger Komplexe, die in Abb. 6 dargestellt sind ^[11].

Abb. 6: Syntheseschema für die Bildung der Komplexe V – VIII.

1.3 Folgechemie der Komplexe IVa und IVb

Die Folgechemie der Komplexe **IVa**,**b** hängt von den eingesetzten Liganden ab. So beobachtet man bei Einsatz des Cp^{**}-Liganden den Ringschluß zu einem cyclo-(μ - $\eta^{5:5}$ -P₅)-Liganden (**IX**), dessen Struktur aufgrund seiner NMR-, massenspektrometrischen- und ESR-Daten vorgeschlagen wurde ^[10].

Abb. 7: Synthese von $[Cp^{\prime\prime\prime}Mo(\mu-\eta^{5:5}-P_5)FeCp^*]$ (IX).

^[11] O. J. Scherer, S. Weigel, G. Womershäuser, Chem. Eur. J. 1998, 4, 1910.

Setzt man anstelle des Cp^{**}-Liganden am Molybdän den Cp^{*}-Liganden ein, so erhält man den ungewöhnlichen Cluster X mit einem $(\mu - \eta^{4:2} - P_4)(\mu - \eta^{2:2} - P_2)$ -Baustein^[9].

Abb. 8: Synthese von $[Cp*Mo(\mu-\eta^{4:2}-P_4)(\mu-\eta^{2:2}-P_2)FeCp^R]$ (**Xa,b**).

Bei allen Umsetzungen von **IVa**,**b** wird stets als Nebenprodukt der Hexaphosphabenzol Komplex (**XI**) gebildet, der durch Umkristallisation von **IX** bzw. **X** abgetrennt werden kann. [12,13]

Abb. 9: Synthese von $[(Cp*Mo)_2(\mu-\eta^{6:6}-P_6)]$ (**XI**).

 ^[12] O. J. Scherer, H. Sitzmann, G. Wolmershäuser, Angew. Chem. 1985, 97, 358; Angew. Chem. Int. Ed. Engl. 1985, 24, 351.

 ^[13] O. J. Scherer, H. Sitzmann, G. Wolmershäuser, Angew. Chem. 1989, 101, 214; Angew. Chem. Int. Ed. Engl. 1989, 28, 212.

1.4 Heteroliganden aus Phosphor und Arsen

Nur wenige Komplexe mit EE'-Heteroliganden konnten bislang röntgenographisch charakterisiert werden. Als Beispiele seien hier die Tetrahedrankomplexe $[Mo_2Cp_2(CO)_2(\mu - \eta^2-PE)]$ [E = P, As, Sb] (XII) ^[14,15] aufgeführt.

Abb. 10: Bildungssequenz der Tetrahedrankomplexe [$Mo_2Cp_2(CO)_2(\mu-\eta^2-PE)$] [E = P, As, Sb] (**XII**).

Eine weitere Tetrahedranstruktur konnte durch Umsetzung von $[(Cp(CO)_2Cr)_2(\mu-\eta^{22}-P_2)]$ mit ECl₃ erhalten werden ^[16].

Abb. 11: Syntheseschema der Tetrahedrankomplexe XIII und XIV.

^[14] J. E. Davies, L. Kerr, M. Mays, P. Raithby, P. K. Tompkin, A. D. Woods, Angew. Chem. 1998, 110, 1473; Angew. Chem. Int. Ed. Engl. 1998, 37, 1428.

^[15] J. E. Davies, M. J. Mays, P. R. Raithby, G. P. Shields, P. K. Tompkin, A. D. Woods, J. Chem. Soc., Dalton Trans. 2000, 125.

^[16] S. Umbarkar, P. Sekar, M. Scheer, J. Chem. Soc. Dalton Trans. 2000, 1135.

2 Problemstellung

Wie im vorherigen Kapitel vorgestellt, konnte *C. Hofmann* ^[9] durch Umsetzung von $[Cp^{R}Mo(CO)(\mu-\eta^{2:2}-P_{2})_{2}FeCp^{*}]$ (**IVa,b**) mit weißem Phosphor einen zum Acetylen isolobalen und isovalenzelektronischen P₂-Liganden im Komplex $[Cp^{*}Mo(\mu-\eta^{4:2}-P_{4})(\mu-\eta^{2:2}-P_{2})FeCp^{R}]$ (**Xa,b**) stabilisieren. Deshalb sollen die Komplexe **IV** nun mit sterisch- und elektronisch unterschiedlichen Alkinen, sowie mit Phosphaalkin, umgesetzt werden. werden. Dabei sollen sie auch auf ihre Eignung zur Generierung von gemischten, substituentenfreien Heteroliganden aus Phosphor und Arsen hin untersucht

Desweitern soll die Synthese der Eduktverbindung Neun für die jeweiligen Ligandensysteme optimiert werden.

3.1 Reaktionen des Phosphaalkins (1) mit Komplexen des Typs [Cp^RMo(CO)(μ-h^{2:2}-P₂)₂FeCp^R⁽²⁾] (2)

Abb. 12: Syntheseschema von $[Cp^{R}Mo(\mu-\eta^{4:2}-P_{3}C^{t}Bu)(\mu-\eta^{2:2}-P_{2})FeCp^{R^{t}}]$ (3).

Phosphaalkin (1) wird in einem geringen Überschuß mit $[Cp^RMo(CO)(\mu-\eta^{2:2}-P_2)_2FeCp^{R^*}]$ (2) vereinigt und bei 120 °C im Druckschlenkrohr in Toluol gerührt. IR-spektroskopisch kann die Abnahme der für 2 typischen CO-Valenzschwingung bei $\overline{n} = 1954 \text{ cm}^{-1}$ beobachtet werden, die je nach Ligandenmuster nach 30 – 45 Minuten vollständig verschwunden ist. Da in dieser Phase keinerlei neue Banden beobachtet werden, wird die Reaktion zu diesem Zeitpunkt abgebrochen und das Lösungsmittel am Vakuum entfernt. Säulenchromatographische Aufarbeitung des Rückstandes durch liefert eine einzige braune Fraktion 3, die nach Entfernen des Lösungsmittels als brauner Feststoff erhalten wird. Selbst durch Erhöhung der Lösungsmittelpolarität bis hin zu reinem Diethylether können keine weiteren Fraktionen erhalten werden. Im ³¹P-NMR-Spektrum der Rohlösung kann neben den Signalsätzen einer neuen unbekannten Verbindung 3 stets der Tripeldeckerkomplex [(Cp^RMo)₂P₆] (4) ^[12,13] nachgewiesen werden. Eine Isolierung bzw.

Abtrennung ist aufgrund der geringen Mengen durch säulenchromatographische Aufarbeitung nicht möglich (vgl. hierzu 3.1.1). Hinzu kommt, daß **4** die Eigenschaft hat, sich auf alle Fraktionen zu verteilen und nicht als eine geschlossene Fraktion erhalten werden kann.

3.1.1 Charakterisierung von 3

Eigenschaften

Alle Komplexe des Typs **3** haben in Lösung eine braune Farbe und sind als Feststoff dunkelbraun. Sie sind in allen gängigen Lösungsmitteln gut bis sehr gut löslich. Ihre Luftempfindlichkeit ist mäßig und eine Lagerung unter Schutzgas über mehrere Monate ist problemlos möglich. Eine "Alterung", die zu einer merklichen Abnahme der Löslichkeit bis hin zur Unlöslichkeit selbst in Methylenchlorid führt, ist im Gegensatz zum Edukt **2** hier nicht feststellbar^[17].

Kristallisation

Durch Umkristallisation aus einer gesättigten n-Hexan-Lösung bei -30 °C kann **3** erfolgreich vom Hexaphosphabenzol-Komplex (**4**) abgetrennt werden.

Um diffraktometertaugliche Einkristalle zu erhalten (n-Hexan; -30 °C), war eine Vielzahl von Ligandvariationen nötig. Als die am besten geeignete hat sich diejenige erwiesen, bei der das Molybdän den Cp^{**-}, Eisen den Cp^{**-} und der Kohlenstoff den *tert*.-Butyl-Liganden trägt.

NMR-Spektroskopie

a. ¹H-NMR

Im ¹H-NMR-Spektrum werden die erwarteten Signalsätze der eingesetzten Liganden gefunden. Die Zuordnung der Cp*-Liganden in **3a** zu den jeweiligen Metallfragmenten gelingt durch Vergleich der chemischen Verschiebungen bei den unterschiedlichen Ligandkombinationen eindeutig.

^[17] C. Hofmann, *Dissertation*, Universität Kaiserslautern 1997.

Tabelle 1: 1 H-NMR-Daten der Verbindungen [Cp^RMo(μ - $\eta^{4:2}$ -P₃C^tBu)(μ - $\eta^{2:2}$ -P₂)FeCp^{R'}] (**3a-e**)im Vergleich (400.13 MHz, CDCl₃).

Verbindung	d [ppm]	Zuordnung
$Cp^{R} = Cp^{*}$	1.98 (s, 9H)	$C(CH_3)_3P$
$Cp^{R'} = Cp^*$	1.61 (s, 15H)	Cp*Mo
$R^{\prime\prime} = {}^{t}Bu$	1.42 (s, 15H)	Cp*Fe
3 a		
$Cp^{R} = Cp^{*}$	2.14 (q, 2H)	CH ₂ CH ₃
$Cp^{R'} = Cp^*$	1.96 (s, 9H)	$C(CH_3)_3P$
$R^{\prime\prime} = {}^{t}Bu$	1.68 (s, 6H)	C ₅ (CH ₃) ₄ Et
3b	1.61 (s, 6H)	C ₅ (CH ₃) ₄ Et
	1.41 (s, 15H)	Cp*Fe
	0.63 (t, 3H)	CH_2CH_3
$Cp^{R} = Cp^{*}$	1.98 (s, q, 11H) überlagert	$CH_2CH_{3,}C(CH_3)_3P$
$Cp^{R'} = Cp^{*'}$	1.61 (s, 15H)	Cp*Mo
$\mathbf{R}^{*} = {}^{\mathrm{t}}\mathbf{B}\mathbf{u}$	1.49 (s, 6H)	C ₅ (CH ₃) ₄ Et
3c	1.43 (s, 6H)	C ₅ (CH ₃) ₄ Et
	0.69 (t, 3H)	CH_2CH_3
$Cp^{R} = Cp^{*}$	2.23 (m, 15H)	Ad
$Cp^{R'} = Cp^*$	1.65 (s, 15H)	Cp*Mo
$R^{\prime\prime} = Ad$	1.44 (s, 15H)	Cp*Fe
3d		
$Cp^{R} = Cp^{\prime\prime\prime}$	3.94 (s, 1H)	$C_5(^tBu_3H_2)$
$Cp^{R'} = Cp^{*'}$	3.63 (s, 1H)	$C_5(^tBu_3H_2)$
$R^{\prime\prime} = {}^{t}Bu$	1.47 (q, 2H)	CH_2CH_3
3e	1.43 (s, 9H)	$C(CH_3)_3P$
	1.16 (s, 9H)	C(CH ₃) ₃
	1.10. (s, br. ,12H)	$2 \ge C_5(CH_3)_4Et$
	0.99 (s, 9H)	C(CH ₃) ₃
	0.90 (s, 9H)	C(CH ₃) ₃
	0.47 (t, 3H)	CH_2CH_3

b. ¹³C-NMR-Spektroskopie

Für die Strukturermittlung sind nur die Signale des Phosphaalkin-Kohlenstoffatoms relevant. Deshalb wird hier auf die Darstellung und Zuordnung der übrigen Signalsätze verzichtet, da diese keine zusätzlichen Informationen gegenüber der ¹H-NMR-Spektroskopie liefern bzw. indirekt schon durch die ¹H-NMR-Spektroskopie eindeutig bestimmt sind.

Für den C(1)-Kern wird für alle Ligand-Kombinationen ein doppelt dublettiertes Doppeldublett (ddd) detektiert. Davon sind zwei Aufspaltungen ähnlicher Größe im Bereich typischer ${}^{1}J_{PC}$ -Kopplungen ${}^{[18]}$ zu finden, die auf eine direkte Nachbarschaft zu zwei Phosphorkernen schließen lassen. Ferner zeigt eine ${}^{2}J_{PC}$ -Kopplung von 19 Hz, daß ein weiterer Phosphorkern in unmittelbarer Nähe sein muß. Eine zusätzliche Feinaufspaltung im 5 Hz-Bereich deutet eine weitere PC-Kopplung an, jedoch ist diese vom Grundrauschen nicht eindeutig abtrennbar (s. dazu auch Abb. 15; S. 16), so daß diese nur im Rahmen der Meßgenauigkeit geschätzt werden kann.

Tabelle 2:	$usgewählte \ ^{13}C\{^{1}H\}-NMR-Daten \ der \ Verbindungen \ [Cp^{R}Mo(\mu-\eta^{4:2}-P_{3}C^{t}Bu)(\mu-\eta^{2:2}-P_{2})FeCp^{R^{\cdot}}] \ \textbf{(3a-e)}$
	m Vergleich (100.61 MHz, CDCl ₃).

Verbindung	d [ppm]	J _{PC} -Kopplungen [Hz]
$Cp^{R} = Cp^{*}$		${}^{1}J_{PC} = 113$
$Cp^{R'} = Cp^*$	174.0 (1111.0(1))	${}^{1}J_{PC} = 106$
$R^{**} = {}^{t}Bu$	174.9 (dddd, C(1))	${}^{2}J_{PC} = 19$
3 a		2 J _{PC} ~ 5
$Cp^{R} = Cp^{*}$		
$Cp^{R'} = Cp^*$	Keine Detektion möglich	
$R^{**} = {}^{t}Bu$	(vermutl. zu geringe Konzentration der NMR- Probe)	
3b	11000)	

^[18] M. Hesse, H. Meier, B. Zeeh, *Spektroskopische Methoden in der organischen Chemie*, 5. Auflage, Georg-Thieme-Verlag Stuttgart **1995**.

$Cp^{R} = Cp^{*}$ $Cp^{R'} = Cp^{*'}$ $R^{''} = {}^{t}Bu$	175.2 (dddd, C(1))	${}^{1}J_{PC} = 132$ ${}^{1}J_{PC} = 107$ ${}^{2}J_{PC} = 19$
3c		2 J _{PC} ~ 5
$Cp^{R} = Cp^{*}$ $Cp^{R'} = Cp^{*}$ $R'' = Ad$ $3d$	Keine Detektion möglich (vermutl. zu geringe Konzentration der NMR- Probe)	
$Cp^{R} = Cp^{**}$ $Cp^{R*} = Cp^{**}$ $R^{**} = {}^{t}Bu$ $3e$	169.7 (dddd, C(1))	${}^{1}J_{PC} = 132$ ${}^{1}J_{PC} = 106$ ${}^{2}J_{PC} = 20$ ${}^{2}J_{PC} \sim 5$

c. ³¹P-NMR-Spektroskopie

Da sich die beschriebenen Ligandvariationen nur geringfügig auf die Verschiebungen auswirken, wird im folgenden das Spinsystem beispielhaft an Komplex **3e** beschrieben.

Das ³¹P-NMR-Spektrum von Komplex **3e** zeigt ein ABMXY-Spinsystem von fünf chemisch und magnetisch unterschiedlichen Phosphorkernen (s. dazu Abb. 13), die alle im gleichen Integrationsverhältnis zueinander stehen. Charakteristisch ist das Auftreten nur zweier ¹J_{PP}-Kopplungen ^[19,20] mit -395 Hz für P_B und P_M, sowie -446 Hz für P_X und P_Y (zur Benennung der Phosphoratome: siehe dazu Abb. 15). (*Bem.:* Die negativen Kopplungen wurden direkt aus dem Spektrum entnommen und mit dem Spektrensimulationsprogramm Perch ^[21,33] verifiziert). Kern A tritt bei $\delta = 289.2$ ppm (pt) in Resonanz und weist nur Kopplungen im ²J_{PP}-Bereich auf,

was auf das Fehlen einer direkten Phosphor-Phosphor-Bindung hinweist. In Kombination mit

^[19] J. Hahn in J. G. Verkade, L. D. Quin (eds.), *Phosphorus-31NMR-Spectroscopy in Stereochemical Analysis*, VCH Publishers Inc., Deerfield Beach Florida **1987**, 331.

^[20] E. G. Finer, R. K. Harris, *Mol. Phys.* **1967**, 13, 65.

^[21] R. Laatikainen, M. Niemetz, *Perch-Programm Version* **1994**, Universität Kuopio Finnland.

dem ¹³C{¹H}-NMR Spektrum, das bei $\delta = 170$ ppm ein vierfach dublettiertes Signal des Kohlenstoffs des Phosphaalkins zeigt, kann auf das Vorliegen eines Phosphor-Kohlenstoff-Gerüstes geschlossen werden, bei dem der Kohlenstoff den Kern A von den Kernen B ($\delta = 275.1$ ppm, pdd) und M ($\delta = 67.1$ ppm, ptd) separiert. Ferner zeigt das Vorliegen nur zweier ¹J_{PP}-Kopplungen, daß zwischen den Kernen M und X bzw. Y und A keine direkte Bindung besteht und damit eine isolierte P₂-Einheit, der Kerne X ($\delta = -60.7$ ppm, pdd) und Y ($\delta = -97.5$ ppm, d, br.) vorliegen muß.

Abb. 13: ³¹P-NMR-Spektrum (Gesamtspektrum und Ausschnittsvergrößerungen) von $[Cp^{\cdot \cdot \cdot}Mo(\mu-\eta^{4:2}-P_3C^tBu)(\mu-\eta^{2:2}-P_2)FeCp^{* \cdot }] (3e).$

Tabelle 3: 31 P-NMR-Daten der Verbindungen [Cp^RMo(μ - $\eta^{4:2}$ -P₃C^tBu)(μ - $\eta^{2:2}$ -P₂)FeCp^{R*}] (**3a-e**)im Vergleich (161.91 MHz, CDCl₃).

Verbindung d [ppm]		¹ J _{PP} -Kopplungen [Hz]	
$Cp^{R} = Cp^{*}$	-106.6 (pd, 1P _Y)	-443	
$Cp^{R'} = Cp^*$	-31.4 (ptd, 1P _X)	-443	
$\mathbf{R}^{"} = {}^{t}\mathbf{B}\mathbf{u}$	59.8 (ptd, 1P _M)	-382	
3 a	274.1 (ptd, 1P _B)	-382	
	289.1 (pt, 1P _A)		
$Cp^{R} = Cp^{*}$	-107.2 (pdq, 1P _Y)	-445	
$Cp^{R'} = Cp^*$	-31.2 (ptd, 1P _X)	-445	
$\mathbf{R}^{*} = {}^{t}\mathbf{B}\mathbf{u}$	59.2 (ptd, 1P _M)	-385	
3b	274.1 (ptd, 1P _B)	-385	
	289.4 (pt, 1P _A)		
$Cp^{R} = Cp^{*}$	-107.1 (pdq, 1P _Y)	-443	
$Cp^{R'} = Cp^{*'}$	-32.1 (ptd, 1P _X)	-443	
$\mathbf{R}^{*} = {}^{t}\mathbf{B}\mathbf{u}$	60.3 (ptd, 1P _M)	-382	
3c	273.2 (ptd, 1P _B)	-382	
	287.8 (pt, 1P _A)		
$Cp^{R} = Cp^{*}$	-108.9(pdq, 1P _Y)	-444	
$Cp^{R^{\star}} = Cp^{*}$	-29.3 (ptd, 1P _X)	-444	
$R^{\prime\prime} = Ad$	58.8 (ptd, 1P _M)	-383	
3d	274.4 (ptd, 1P _B)	-383	
	282.7 (ptd, 1P _A)		
$Cp^{R} = Cp^{\prime\prime\prime}$	-97.5 (pdd, 1P _Y)	-446	
$Cp^{R'} = Cp^{*'}$	-60.7 (d,br, 1P _X)	-446	
$R^{\prime\prime} = {}^{t}Bu$	67.1 (ptd, 1P _M)	-395	
3 e	275.1 (pdd, 1P _B)	-395	
	289.2 (pt, 1P _A)		

Zur Überprüfung der getroffenen Zuordnungen wurde von **3e** ein ³¹P-³¹P-COSY-45-NMR-Spektrum aufgenommen. Die gefundenen Crosspeaks bestätigen eindeutig das Vorliegen nur zweier ¹J_{PP}-Kopplungen zwischen den Kernen X und Y, sowie B und M (s. Abb. 14). Aus Gründen der Übersichtlichkeit konnten im ³¹P-³¹P-COSY-45-NMR-Spektrum von [Cp^{···}Mo(μ - $\eta^{4:2}$ -P₃C^tBu)(μ - $\eta^{2:2}$ -P₂)FeCp*[•]] (**3e**) die aufgefundenen ²J_{PP}-Kopplungen nicht dargestellt werden (Grundrauschen zu stark). Diese sind jedoch in Abb. 15 aufgeführt.

Abb. 14: ${}^{31}P - {}^{31}P - COSY - 45 - NMR - Spektrum von [Cp'''Mo(\mu-\eta^{4:2}-P_3C^tBu)(\mu-\eta^{2:2}-P_2)FeCp^{*'}]$ (3e).

Aufgrund aller NMR-spektroskopischen Daten ergibt sich folgende Zuordnung:

Zum einen muß ein isoliertes P₂-Stäbchen der Kerne X und Y und zum anderen ein Phosphor-Kohlenstoff-Gerüst vorliegen, das aus einer P₃C-Kette (Kerne A, B und M) aufgebaut ist. Ferner zeigt das ¹H-NMR-Spektrum, daß das System durch [Cp^RMo], [Cp^RFe] und eine *tert*-Butylbzw. eine Ad-Gruppe stabilisiert ist.

In Abb. 15 sind nochmals alle gefundenen Kopplungen zusammengefaßt.

Bem.: Da alle aufgefunden ²J_{PP}-Kopplungen zwischen 33 und 35 Hz liegen, ist eine exakte Zuordnung im Rahmen der Meßgenauigkeit nur schwer möglich. Aus diesem Grund wurde ein Mittelwert von 34 Hz angenommen. Die Zuordnung der gefundenen Kopplungen erfolgt durch ein ³¹P-³¹P-COSY-45-NMR-Spektrum.

Abb. 15: ³¹P- und ¹³C{¹H}-Kopplungsschema von [Cp^{···}Mo(μ - η ^{4:2}-P₃C^tBu)(μ - η ^{2:2}-P₂)FeCp^{*·}] (**3e**).

Massenspektrometrie

Im EI-Massenspektrum der Verbindung $[Cp^{\prime\prime\prime}Mo(\mu-\eta^{4:2}-P_3C^tBu)(\mu-\eta^{2:2}-P_2)FeCp^{*\prime}]$ (3e) wird der Molekülionenpeak bei m/z = 759.6 amu mit einer relativen Intensität von 10.5 % detektiert. Den Basis-Peak (100 %) bildet interessanterweise $[Cp^{\prime\prime\prime}MoP_4FeCp^{*\prime}]^+$, das sich durch Abspaltung von (^tBuC = P) (2) gebildet hat. Der Ionenpeak für [^tBuCP]⁺ wird bei m/z = 100 amu mit einer relativen Intensität von 6 % gefunden.

Dies kann als erster Hinweis gedeutet werden, daß **3e** möglicherweise durch eine [2+2]-Cycloadditions-Reaktion von **2** -unter Spaltung einer P₂-Einheit- entstanden ist. Im Massenspektrum kann dann die Cycloreversions-Reaktion beobachtet werden. Weitere Fragmentierungsprodukte sind $[Cp^{**}MoP_5FeCp^{**}]^+$ bei m/z = 690.6 amu mit einer relativen Intensität von 2.16 % und $[Cp^{\prime\prime\prime}MoP_2FeCp^{*\prime}]^+$ bei m/z = 585.5 amu mit einer relativen Intensität von 5.96 %. Ein analoges Fragmentierungsmuster wird bei den Komplexen von *C*. *Hofmann*^[9] beobachtet. Auch in diesem Fall gelingt die Abspaltung von zwei Phosphoratomen besonders leicht, und das Fragmention $[Cp^*MoP_4FeCp^R]^+$ bildet den Basispeak. Bei $[Cp^{\prime\prime\prime}MoP_5FeCp^{*\prime}]^+$ könnte es sich um den Tripeldeckerkomplex $[Cp^{\prime\prime\prime}Mo(\mu-\eta^{5:5}-P_5)FeCp^{*\prime}]$ (vgl dazu *E. Hauck*^[10]). Alle weiteren Fragmentierungsionen können Tabelle 4 entnommen werden. Für die anderen Ligandkombinationen werden ähnliche Ergebnisse gefunden, so daß hier auf eine explizite Beschreibung verzichtet wird.

Tabelle 4:Ausgewählte massenspektrometrische Daten der Verbindung
 $[Cp^{\prime\prime\prime}Mo(\mu-\eta^{4:2}-P_3C^tBu)(\mu-\eta^{2:2}P_2)FeCp^{*\prime}]$ (3e).

EI, 70 eV, 1 mA, QT 200 °C.

Fragmentation	m/z	rel. Intensität
von 3e	[amu]	[%]
$[Cp^{\prime\prime\prime}Mo(P_3C^tBu)(P_2)FeCp^{\prime\prime}]^+$	759.6	10.51
[Cp ^{···} MoP ₅ FeCp [*] [·]] ⁺	690.6	2.16
[Cp ^{···} MoP ₄ FeCp [*] [·]] ⁺	659.6	100.00
[Cp ^{···} MoP ₂ FeCp [*] [·]] ⁺	585.5	5.96
[Cp```Mo] ⁺	329.8	2.77
$[Cp*'Fe]^+$	205.0	15.85
[Cp*'] ⁺	149.0	4.88
$[^{t}Bu]^{+}$	57	77.02

Anhand von Verbindung **3e** wurde exemplarisch für die Verbindungsklasse **3** eine Kristallstrukturanalyse durchgeführt. Ausgewählte Strukturparameter sind in den Tabellen 5 a-c aufgelistet. Detaillierte Angaben können dem Anhang entnommen werden.

Abb. 16: Kristallstruktur von [Cp⁺⁺Mo(μ - η ^{4:2}-P₃C^tBu)(μ - η ^{2:2}-P₂)FeCp⁺⁺] (3e).

 $\textbf{Tabellen 5 a-c}: Ausgewählte Strukturdaten von [Cp```Mo(\mu-\eta^{4:2}-P_3C^tBu)(\mu-\eta^{2:2}-P_2)FeCp*`] (\textbf{3e}).$

P(1)-P(2)	2.0806 (14)
P(3)-P(4)	2.1465 (11)
P(5)P(1)	2.5586 (11)
P(3)P(2)	2.6721 (12)
P(4)-C(1)	1.759 (3)
P(5)-C(1)	1.775 (3)
Fe-Mo	2.7779 (5)
Mo-Cp ["] _{Cent.}	2.057
Fe-Cp*' _{Cent.}	1.7479

Mo-P(1)	2.5391 (8)
Mo-P(2)	2.5043 (8)
Mo-P(3)	2.4308 (7)
Mo-P(4)	2.5753 (8)
Mo-P(5)	2.4947 (7)
Mo-C(1)	2.509 (3)
Fe-P(1)	2.3067 (9)
Fe-P(2)	2.2635 (9)
Fe-P(3)	2.2815 (9)
Fe-P(5)	2.2527 (8)

a.	Ausgewählte	Bindungsabstände	und	nichtbindende	Abstände	in	[Å	1:
	0	0					L.	

b. Ausgewählte Bindungswinkel in Grad:

P(2)-P(1)-P(5)	104.65 (4)
P(1)-P(2)-P(3)	104.30 (4)
P(4)-P(3)-P(2)	126.04 (4)
C(1)-P(4)-P(3)	105.61 (10)
C(1)-P(5)-P(1)	129.91 (9)
P(4)-C(1)-P(5)	124.27 (16)
Cp*' _{Cent} -Fe-Mo	172.6
Cp"" _{Cent.} -Mo-Fe	159.4

c. Winkel zwischen den Ebenen:

Ebene	Atome	Mittlere	
		Abweichung	
E1	C(1)-P(4)-P(5)-P(3)	0.0106	
E2	C(2)-C(3)-C(4)-C(5)-C(6)	0.0169	
E3	C(7)-C(8)-C(9)-C(10)-C(11)	0.0043	
E4	P(1)-P(2)-P(3)-P(5)	0.0153	
E5	Fe-P(3)-P(5)	-	

Ebenen	Winkel [°]
E2/E3	15.9
E2/E1	14.8
E2/E4	20.7
E1/E3	29.9
E1/E4	34.9
E5/E1	18.6

Das Ergebniss der Kristallstrukturanalyse von **3e** zeigt deutlich, daß die Phosphaalkin-Einheit sich in das System -unter Verdrängung einer CO-Gruppe- eingelagert hat.

3e läßt sich formal als eine Kondensation eines Tetrahedrans (Fe, Mo, P(1) und P(2)) mit einer pentagonalen Pyramide (Mo, Fe, P(3), P(4), C(1), P(5)) beschreiben, die eine gemeinsame Kante (Mo-Fe) besitzen (s. Abb. 17). Alle Phosphoratome in **3e** sind chiral.

Klar ersichtlich wird auch, daß **3e** je einen isolierten P₂- und P₃C^tBu-Liganden enthält, da der Abstand zwischen P(5) und P(1) bzw. zwischen P(2) und P(3) mit 2.559 Å bzw. 2.672 Å eindeutig im nichtbinden Bereich einzuordnen ist ^[22], wenn man diese Abstände mit dem längsten gesicherten Phosphor-Phosphor-Einfachbindungsabstand im *Ginsberg*-Komplex vergleicht. Dieses Ergebnis bestätigen die NMR-spektroskopischen Untersuchungen, die eben diese Untergliederung in zwei unabhängige Liganden schon zeigten.

Abb. 17: Grundgerüst von 3e ohne Ligandensphäre.

Die für **3e** gefundenen Bindungsabstände liegen im erwarteten Bereich, so ist z.B. der Abstand zwischen den Phosphoratomen P(1) und P(2) von rund 2.081 Å charakteristisch für einen Diphosphorliganden mit Dreifachbindungscharakter, der isolobal und iso(valenz)elektronisch zum HC=CH ist ^[23].

Die Verlängerung der Phosphor-Phosphor-Bindungslänge gegenüber der des freien Diphosphors von 1.894 Å in der Gasphase ^[24] auf jetzt 2.081 Å ist durch die Komplexierung an zwei Metallzentren zu erklären, was einem typischen 4-Elektronen-Donor-Verhalten entspricht.

^[22] A. P. Ginsberg, W. E. Lindsell, K. J. McCullough, C. R. Sprinkle, A. J. Welch, J. Am. Chem. Soc. 1986, 108, 403.

^[23] R. Hoffman, Angew. Chem. **1982**, 94, 725; Angew. Chem. Int. Ed. Engl. **1982**, 21, 711.

^[24] K. P. Huber, G. Herzberg, "*Constants of Diatomic Molecules*", van Nostrand, New York **1979**.

Die Phosphor-Kohlenstoff-Bindungsabstände von P(4) zu C(1) bzw. P(5) zu C(1) sind mit 1.759 Å und 1.775 Å nahezu gleich lang und liegen damit zwischen den Bereichen typischer Phosphor-Kohlenstoff-Einfachbindungslängen von 1.85 Å und Phosphor-Kohlenstoff-Doppelbindungen von 1.67 Å ^[25]. Dies deutet auf gewisse Mehrfachbindungsanteile hin. Der Bindungsabstand zwischen P(3) und P(4) ist mit 2.147 Å ebenfalls im Vergleich zur typischen Phosphor-Phosphor-Einfachbindungslänge von 2.21 Å ^[26] im weißen Phosphor etwas verkürzt. Dieser Befund belegt den eben aufgezeigten Trend nochmals. Eine Diskussion des cisoiden Triphosphabutadiendiylliganden als 6e⁻-Donator ist daher durchaus angebracht. Die mesomeren Grenzstrukturen **A** und **B** verdeutlichen diese Überlegung.

Abb. 18: Mesomere Grenzformeln der P₃C-Kette ohne Metallfragmente.

Wie aus Abbildung 17 ersichtlich ist, sind die Metallfragmente nicht symmetrisch angeordnet. So ist das [Cp^{···}Mo]-Fragment aus dem Zentrum des Fünfringes heraus versetzt. Dies spiegelt sich auch in zwei unterschiedlichen Paaren von Molybdän-Phosphor-Abständen wieder. Man findet einen relativ kurzen Molybdän-Phosphor-Abstand von 2.431 Å (Mo-P(3)) und zwei etwas verlängerte Abstände von 2.50 Å (Mo-P(5)) und 2.54 Å (Mo-P(5)). Die Abstände bewegen sich dabei aber im Rahmen bisher bekannter Molybdän-Phosphor-Bindungsabstände ^[27].

Das Eisenfragment steht nicht genau zentrosymmetrisch unter dem Molybdänfragment sondern ist leicht abgewinkelt. Daraus resultiert eine "Zick-Zack"-Kette, die die Metallfragmente mit ihren Liganden bilden. Dabei ist das Eisenfragment um 7.4° und das Molybdänfragment um 20.6° abgewinkelt. Der Bindungsabstand vom Eisen zum Molybdän liegt mit 2.776 Å ebenfalls

^[25] M. Regitz, O. J. Scherer, *Multiple Bonds and Low Coordination in Phosphorus Chemistry*, Georg-Thieme-Verlag Stuttgart **1990**.

^[26] L. R. Maxwell, S. B. Hendricks, V. M. Mosley, J. Chem. Phys. **1935**, 3, 699.

D. E. C. Corbridge, *"The Structural Chemistry of Phosphorus"*, Elsevier Amsterdam 1974. Und z. B. D. I. Arnold, F. A. Cotton, F. E. Kühn, *Inorg. Chem.* 1996, 35, 5764.

im Rahmen bisher bekannter Bindungsabstände dieser Metalle ^[28,29]. Er ist nahezu identisch mit dem in der Ausgangsverbindungklasse [{Cp*(CO)Mo(μ_3 - $\eta^{2:2:1}$ -P₂)₂FeCp*}{Mo(CO)₅}₂] (**IV**) ^[9]. Auch hier erfüllen beide Metall-zentren die 18VE-Regel. Die Eisen-Phosphor-Abstände liegen zwischen 2.50 Å und 2.31 Å und damit exakt in der Größenordnung bisher bekannter Bindungslängen ^[30].

Die beiden Ebenen des Mitteldecks von **3e** bilden einen Interplanarwinkel von ca. 145°. Dieser Wert ist nur um 1° erhöht gegenüber dem der Verbindung [Cp*Mo(μ - $\eta^{4:2}$ -P₄)(μ - $\eta^{2:2}$ -P₂)FeCp*] (**X**). Ein Vergleich mit den 28VE-Tripeldeckerkomplexen des Typs [(Cp*Mo)₂(μ - $\eta^{6:6}$ -P₆)] (**4**) ^[12] ist daher nur bedingt möglich.

Die Faltung des Phosphorgerüstes erinnert eher an ein Dewar-Benzol. Aber aufgrund der nichtbindenden Abstände zwischen P(1) und P(5) bzw. P(2) und P(3) ist auch dieser Vergleich nur eingeschränkt möglich.

3.2 Reaktion des Diphenylacetylens (8) mit Komplexen des Typs [Cp*Mo(CO)(μ-h^{2:2}-P₂)₂FeCp^R] (2)

Abb. 19: Syntheseschema von $[Cp*Mo(\mu-\eta^{4:2}-P_2C_2Ph_2)(\mu-\eta^{2:2}-P_2)FeCp^R]$ (7a,b).

^[28] L. E. Bogan, T. B. Rauchfuss, A. L. Rheingold, *Inorg. Chem.* **1985**, 24, 3722.

^[29] M. E. Garcia, J. C. Jeffrey, P. Sherwood, F. G. A. Stone, J. Chem. Soc. Dalton Trans. 1988, 2443.

 ^{[&}lt;sup>30]</sup> M. Detzel, T. Mohr, O. J. Scherer, G. Wolmershäuser, Angew. Chem. 1994, 106, 1142; Angew. Chem. Int. Ed. Engl. 1994, 33, 1110.

Die Umsetzung von 2 mit dem relativ reaktionsträgen Diphenylacetylen erfordert eine deutlich höhere Reaktionstemperatur bei gleicher Reaktionsdauer im Vergleich zum Phosphaalkin (IR-Kontrolle). Nach dem Abdestillieren des Lösungsmittels im Vakuum und anschließender säulenchromatographischer Aufarbeitung kann ebenfalls nur eine einzige dunkelbraune Fraktion 7 eluiert werden. Auch hier ist NMR-spektroskopisch der Hexaphosphabenzol-Tripeldeckerkomplex 4 als Nebenprodukt nachweisbar. Eine Abtrennung ist (vergleiche dazu auch Kapitel 3.1) nur durch fraktionierende Kristallisation von 7 möglich.

3.2.1 Charakterisierung von 7

Eigenschaften

Die unbekannte Fraktion 7 hat in Lösung eine braune Farbe und ist als Feststoff dunkelbraun. Sie ist in allen gängigen Lösungsmitteln gut bis sehr gut löslich. Ihre Luftempfindlichkeit ist mäßig und eine Lagerung unter Argon problemlos durchführbar. Eine "Alterung", die zu einer merklichen Abnahme der Löslichkeit bis hin zur Unlöslichkeit selbst in warmen Methylenchlorid führt, ist hier im Gegensatz zu Produkt 3 nach ca. zwei Wochen feststellbar.

Kristallisation

Röntgenstrukturtaugliche Einkristalle sind durch langsames Abkühlen einer siedenden n-Hexan-Lösung auf Raumtemperatur erhältlich. Dabei wird der Feststoff mit wenig n-Hexan so aufgenommen, daß ein Bodensatz zurückbleibt. Durch Erwärmen löst sich dieser weitestgehend auf und die heiße Lösung wird schnell über eine G4-Fritte gegeben. Anschließend wird die Lösung langsam auf Raumtemperatur abgekühlt. Die Kristalle haben ebenfalls eine dunkelbraune Farbe.

Das Abkühlen einer gesättigten Lösung auf 0 °C bzw. –30 °C führt zum Ausfällen eines Niederschlages innerhalb von wenigen Minuten, der keine brauchbaren Einkristalle enthält. Diese sind jedoch dann erhältlich, wenn die Lösung vor dem Abkühlen mit wenigen Tropfen Methylenchlorid wieder verdünnt wird bzw. eine nicht gesättigte Lösung abgekühlt wird.

NMR-Spektroskopie

a. ¹H-NMR-Spektroskopie

Im ¹H-NMR-Spektrum der Verbindungen **7a**,**b** werden die erwarteten Signalsätze für die jeweiligen Liganden gefunden. Jedoch ist die Zuordnung zu den einzelnen Metallfragmenten nicht möglich, da die chemischen Verschiebungen zu ähnlich sind.

Tabelle 6:	¹ H-NMR-Daten der Verbindungen [Cp*Mo(μ - $\eta^{4:2}$ -P ₂ C ₂ Ph ₂)(μ - $\eta^{2:2}$ -P ₂)FeCp ^R] (7 a , b)
	im Vergleich (400.13 MHz, CDCl ₃).

Verbindung	d [ppm]	Zuordnung
	1.63 (s, 15H)	C ₅ Me ₅
$Cp^{*} = Cp^{*}$	1.58 (s, 15H)	C5 Me5
7a	7.4 (1010)	
	7.4 (m, 10H)	$2 \times C_6 H_5$
	1.61 (s, 15H)	C ₅ Me ₅
	1.58 (s, 6H)	C5(CH3)4Et
$Cp^{R} = Cp^{*}$	1.57 (s, 6H)	C5(CH3)4Et
7b	0.83 (t, 3H)	CH_2CH_3
	1.98 (q, 2H)	C H ₂ CH ₃
	7.3 (m, 10H)	2 x C ₆ H ₅

b. ³¹P-NMR-Spektroskopie

Das ³¹P-NMR-Spektrum von **7a**,**b** zeigt auf den ersten Blick ein völlig anderes Aussehen als das von **3e**. In dem hier vorliegenden Fall kann ein AA'XX'-Spinsystem detektiert werden, das auf eine relativ hohe Symmetrie von **7a**,**b** schließen läßt. Da aufgrund des Massenspektrums vier Phosphorkerne im System vorliegen, muß von jeweils zwei zumindest chemisch identischen Phosphorkernen ausgegangen werden, da das Integrationsverhältnis der beiden Tripletts gleich ist. Theoretisch wird für ein AA'XX'-Spinsystem eine maximale Linienzahl von 20 erwartet, was einem Spinsystem höherer Ordnung entspricht ^[18]. In dem hier vorliegenden Fall werden

jedoch nur Kopplungskonstanten von ausschließlich jeweils 25 Hz gemessen, die darauf schließen lassen, daß mehrere Kopplungen aufgrund ihrer ähnlichen Größe zusammengefallen sind und so das ganze System als zwei einfache Tripletts erscheinen lassen. Daß ein komplizierterer Fall vorliegt, kann schon aus den relativ breiten Signalen geschlossen werden (s. Gesamtspektrum Abb. 20 am Beispiel von 7a). Die zwei Tripletts täuschen das Vorliegen eines Spinsystems erster Ordnung (A_2X_2) vor, für das zwei Tripletts mit maximal sechs Linien gefordert werden, die nur eine Kopplung JAX besitzen. Diese Art von AA'XX'-Spektren wird in der Literatur als "deceptively simple" bezeichnet ^[31,32]. Sowohl für den A- als auch für den X-Teil werden jeweils 10 Linien gefordert. Diese 10 Linien teilen sich wieder in ein Dublett (50 % der Signalintensitäten) und in zwei Subspektren des AB-Typs auf. Jedes Subspektrum erzeugt zwei intensitätsschwache Linien links und rechts des äußeren Randes des Dubletts und zwei Linien innerhalb des Dubletts (jedes AB-Spektrum hat 25 % der Signalintensität). Für den Fall, daß die Frequenzen v_A und v_B von AB nun ähnlich bzw. identisch werden, sind die äußeren Linien nicht mehr sichtbar und fallen mit den inneren Linien in ihrem Schwerpunkt zusammen und erscheinen als eine einzige Linie mit 50 % der Signalintensitäten. Die beiden Linien des Dubletts besitzen je 25 % der Signalintensität, was insgesamt einem klassischen Triplett der Intensität 1:2:1 entspricht ^[33].

Abb. 20: ³¹P-NMR-Spektrum (Gesamtspektrum und Ausschnittsvergrößerungen) von $[Cp*Mo(\mu-\eta^{4:2}-P_2C_2Ph_2)(\mu-\eta^{2:2}-P_2)FeCp*] (\textbf{7a}) .$

^[31] P. Diehl, R. K. Harris, R. G. Jones, *Progr. NMR Spectrosc.* 1967, 3, 1.

^[32] R. J. Abraham, *The Analysis of High Resolution NMR Spectra*, Elsevier, Amsterdam **1971**.

^[33] PD Dr. K. Karaghiosoff, persönliche Mitteilung.
Das Vorliegen nur zweier ${}^{2}J_{PP}$ -Kopplungen läßt auf das Vorliegen entweder zweier PCP-Einheiten schließen, die keine direkte Phosphor-Phosphor-Bindung haben, oder aber, wenn man einen der Phosphaalkin-Umsetzung analogen Reaktionsablauf annimmt, ist die ${}^{1}J_{PP}$ -Kopplung der P₂–Einheit aufgrund einer Spiegelebene im Molekül nicht im ${}^{31}P$ -NMR-Spektrum detektierbar.

Eine Unterscheidung beider denkbaren Möglichkeiten ist auf Basis der ³¹P-NMRspektroskopischen Daten nicht möglich. Jedoch erscheint Variante zwei, also die Phosphaalkin analoge Anlagerung einer Acetyleneinheit am wahrscheinlichsten, da bei der ersten Möglichkeit, der Bildung zweier PCP-Liganden, eine Spaltung der Dreifachbindung des Tolans und zweier P-P Mehrfachbindungen nötig wäre.

Tabelle 7: 31 P-NMR-Daten der Verbindungen [Cp*Mo(μ - $\eta^{4:2}$ -P₂C₂Ph₂)(μ - $\eta^{2:2}$ -P₂)FeCp^R] (7a,b)im Vergleich (161.91 MHz, CDCl₃).

Verbindung	d [ppm]	J _{PP} -Kopplungen [Hz]
$Cp^R = Cp^*$	-43 (t, 2P)	25
7a	238 (t, 2P)	25
$Cp^{R} = Cp^{*}$	-45 (t, 2P)	25
7b	234 (t, 2P)	25

Ein Vergleich der ³¹P-NMR-Daten von **3**, **7** und **X** zeigt, daß die chemischen Verschiebungen des P₂-Ligandenteils (P(1), P(2)) von δ = -147.5 ppm bei **X**^[9] über δ = -97.5/-60.7 bei **3** nach δ = -43.0 ppm bei **7** immer weiter tieffeldverschoben sind.

Ferner ist bei der Darstellung von **3** und **7** zu beobachten, daß immer nur eines von drei möglichen Regioisomeren gebildet wird. Es finden sich keinerlei NMR-spektroskopische Anhaltspunkte, die auf ein Isomerengemisch hinweisen. In Abbildung 21 ist dieser Sachverhalt am Beispiel von Verbindung **7** dargestellt. Alle Reaktionen laufen damit immer streng regiospezifisch ab.

Abb. 21: Denkbare Regioisomere am Beispiel von 7.

c. ¹³C-NMR-Spektroskopie

Die beiden Alkin-Kohlenstoffatome aus dem Diphenylacetylen können im ¹³C-NMR-Spektrum nicht detektiert werden, da sie vermutlich unter den Phenyl-Ring-Signalen liegen und in ihrer Intensität zu schwach sind. Auch die Variation der Relaxationszeiten, der Scan-Gesamtzahl und der Konzentration der vermessenen Proben erbrachte keine Verbesserung der Signale. Auf die Diskussion der übrigen Kohlenstoffe wird verzichtet, da sie schon im ¹H-NMR indirekt über ihre Protonen eindeutig bestimmt sind und deshalb nicht weiter von Interesse sind. Im EI-Massenspektrum der Verbindungen [Cp*Mo(μ - $\eta^{4:2}$ -P₂C₂Ph₂)(μ - $\eta^{2:2}$ -P₂)FeCp^R] (**7a,b**) wird der Molekülionenpeak bei m/z = 725 amu (13.5 %) bzw. 741 amu (17.9 %) gefunden. Auch hier bilden die Fragmente der Alkinabspaltungen die Basispeaks (100 %) bei m/z = 548 amu bzw. 562 amu. Weitere intensitätsstarke Peaks sind nur noch die freien Diphenylacetylenionen bei m/z = 178 amu mit 13.9 % bzw. 15.5 %.

Ebenfalls kann hier -analog zu **3e**- angenommen werden, daß sich **7** möglicherweise durch eine [2+2]-Cycloadditions-Reaktion von **2**, unter Spaltung einer P₂-Einheit, gebildet hat. Im Massenspektrum kann dann die Cycloreversions-Reaktion beobachtet werden.

Tabelle 8:Ausgewählte massenspektrometrische Daten der Verbindungen
 $[Cp*Mo(\mu-\eta^{4:2}-P_2C_2Ph_2)(\mu-\eta^{2:2}-P_2)FeCp^R]$ (**7a,b**) im Vergleich.

EI, 70 eV, 1 mA, QT 200 °C.

	7a			7b
Fragmention	m/z	rel. Intensität	m/z	rel. Intensität
	[amu]	[%]	[amu]	[%]
$[Cp*MoP_4C_2Ph_2FeCp^R]^+$	725.5	13.52	740.7	6.37
[Cp*MoP ₄ FeCp ^R] ⁺	548.5	100.00	561.7	100.00
$[Cp*FeP_5]^+$	345.6	2.33	-	-
$[PhC_2Ph_2]^+$	178.9	13.93	178.9	2.18
$[Cp^*]^+$	135	3.42	-	-
$[Cp^{*}]^{+}$	-	-	149	1.19

$\label{eq:constant} Kristallstrukturanalyse \ von \ [Cp*Mo(\textbf{mh}^{4:2}\text{-}P_2C_2Ph_2)(\textbf{mh}^{2:2}\text{-}P_2)FeCp*] \ (7a)$

Von Verbindung **7a** konnte eine Röntgenstrukturanalyse durchgeführt werden. Ausgewählte Strukturparameter sind in den Tabellen 9 a-c aufgelistet. Detaillierte Angaben können dem Anhang entnommen werden. Die Einheitszelle enthält zwei unabhängige Moleküle, die sich in ihren Bindungslängen und -winkeln nur geringfügig unterscheiden. Deshalb wird im folgenden nur eine der beiden Strukturen diskutiert.

Abb. 22: Kristallstruktur von $[Cp*Mo(\mu-\eta^{4:2}-P_2C_2Ph_2)(\mu-\eta^{2:2}-P_2)FeCp*]$ (7a).

 $\label{eq:constraint} \textbf{Tabellen 9 a-c:} \quad \text{Ausgewählte Strukturdaten von} \ [Cp*Mo(\mu-\eta^{4:2}-P_2C_2Ph_2)(\mu-\eta^{2:2}-P_2)FeCp*] \ \textbf{(7a)}.$

P(1)-P(2)	2.0872 (11)
P(2)P(3)	2.6676 (9)
P(4)P(1)	2.726
C(1)-C(2)	1.418 (3)
P(3)-C(2)	1.803 (2)
P(4)-C(1)	1.802 (2)
Fe(1)-Mo(1)	2.7193
Mo(1)-Cp* _{Cent.}	2.044
Fe(1)-Cp* _{Cent.}	1.743

Mo(1)-P(2)	2.4977 (7)
Mo(1)-P(1)	2.4868 (7)
Mo(1)-P(3)	2.4353 (7)
Mo(1)-P(4)	2.4121 (6)
Mo(1)-C(2)	2.444 (2)
Mo(1)-C(1)	2.435 (2)
Fe(1)-P(2)	2.3020 (7)
Fe(1)-P(1)	2.2765 (8)
Fe(1)-P(3)	2.2651 (7)
Fe(1)-P(4)	2.2845 (7)

a. Ausgewählte Bindungslängen und nichtbindende Abstände in [Å]:

b. Ausgewählte Bindungswinkel in Grad:

C(2)-C(1)-P(4)	121.2
C(1)-C(2)-P(3)	121.8
C(2)-P(3)-P(2)	126.1
P(3)-P(1)-P(1)	103.0
P(4)-P(2)-P(2)	102.9
C(1)-P(4)-P(1)	125.1
Cp* _{Cent.} -Fe-Mo	172.4
Cp* _{Cent.} -Mo-Fe	159.6

c. Winkel zwischen den Ebenen:

Ebene	Atome	Mittlere Abweichung
E1	P(4)-C(1)-C(2)-P(3)	0.0012
E2	C(41)-C(45)-(Cp*)	0.0069
E3	C(31)-C(35)-(Cp*)	0.0034
E4	Fe(1)-P(3)-P(4)	0.0000
E5	P(2)-P(1)-P(3)-P(4)	0.0099
E6	C(11)-C(16) (Ph)	0.0012
E7	C(21)-C(26) (Ph)	0.0088

Ebenen	Winkel [°]
E2/E3	14.7
E1/E5	50.8
E1/E4	18.2
E6/E7	47.5

Der Schakal-Plot von **7a** bestätigt die zweite Reaktionsmöglichkeit, die schon aufgrund der ³¹P-NMR-Daten vorgeschlagen wurde (s. Seite 26). Das Diphenylacetylen hat sich an den Cluster **2**, analog der Phosphaalkin-Umsetzung, *side-on* angelagert. Die ¹J_{PP}-Kopplung der P₂-Einheit ist aufgrund der vorliegenden Spiegelebene nicht im ³¹P-NMR detektierbar.

Auch in diesem Fall sind alle Phosphoratome chiral und die P₂-Einheit dient als 4-Elektronendonor, wobei der Bindungsabstand zwischen P(1) und P(2) mit rund 2.087 Å nahezu identisch mit dem in Verbindung **3e** (2.081 Å) ist, was eine Aufweitung gegenüber dem im freien Diphosphor darstellt ^[24].

Der Abstand zwischen den beiden Kohlenstoffatomen C(1) und C(2) liegt mit 1.418 Å zwischen dem der Kohlenstoff-Kohlenstoff-Einfachbindung und dem der Kohlenstoff-Kohlenstoff-Doppelbindung und bewegt sich damit im Rahmen bisher bekannter Alkin-Komplexe mit zwei Metallzentren ^[34].

Die Phosphor-Kohlenstoff-Bindungsabstände sind nahezu gleich lang und mit rund 1.80 Å nur etwas verkürzt im Vergleich zur Phosphor-Kohlenstoff-Einfachbindung von 1.85 Å^[25].

Zur Beschreibung der Bindungsverhältnisse können die mesomeren Grenzformeln **A** und **B** (vgl. Abb. 23) herangezogen werden. **A** zeigt die P_2C_2 -Einheit als Diphosphabutadiendiylligand, während **B** zusammen mit dem Eisen-Zentralatom als Ferradiphosphacyclopenten bezeichnet werden kann. Aufgrund der gefundenen Abstände kommt der Grenzstruktur **B** jedoch größeres Gewicht zu.

Abb. 23: Mesomere Grenzformeln der P₂C₂-Kette ohne Liganden.

^[34] Ch. Elschenbroich, A. Salzer, *Organometallchemie*; Teubner-Verlag 3. Auflage **1993**.

Die Trennung des Mitteldecks in zwei isolierte Einheiten dokumentiert sich auch in diesem Fall durch zwei nichtbindende Abstände zwischen den Phosporatomen P(1) und P(4) von 2.726 Å (**X**: 2.508 Å ^[9], **3**: 2.559 Å), sowie zwischen P(2) und P(3) von 2.668 Å (**X**: 2.500 Å ^[9], **3**: 2.672 Å). Bei **7a** sind die nichtbindenden Abstände damit am längsten.

Auch das Mitteldeck ist bei **7a** nicht eben, sondern um 50.2° abgewinkelt. Dies ist der größte Grad der Abwinkelung dieser Ebenen im Rahmen der Serie (**X**: 36° ^[9], **3**: 35°).

Der Bindungsabstand von Eisen zum Molybdän ist mit 2.719 Å der kleinste der drei diskutierten Verbindungen (**3e**: 2.776 Å; **X**: 2.765 Å^[9]).

Die stärksten Verzerrungen bei den Metall-Phosphor- bzw. Metall-Kohlenstoff-Bindungslängen weist erwartungsgemäß das symmetrieerniedrigte Derivat **3e** auf. So findet man dort für Mo(1)-P(1)/P(2) = 2.54/2.50 Å und Fe(1)-P(1)/P(2) = 2.31/2.26 Å (Tab. 9), während diese Bindungslängen bei **X** ^[9] 2.53/2.54 Å sowie 2.29/2.30 Å und hier bei **7** (Tab. 9) 2.50/2.49 Å sowie 2.30/2.28 Å betragen. In Abb. 24 (S. 34) sind die Komplexe **3**, **7** und **X** noch einmal vergleichend gegenübergestellt.

An den Komplexen **3e**, **7** und **X** lassen sich die Elektronenzählregeln nach Mingos ^[35] bzw. die erweiterten Wade-Mingos-Zählregeln für Cluster ^[36] verdeutlichen.

Nach Mingos muß z.B. 7 als eine formale Kondensation eines Tetrahedrans [P(1), P(2), Mo, Fe] mit einer pentagonalen Pyramide [Mo, Fe, P(3), P(4), C(1), C(2)] angesehen werden, die eine gemeinsame Kante miteinander besitzen.

Die nido-Polyeder liefern folgende Elektronenzahlen:

Tetrahedran:	14n + 4 = 60 e - 20 e für die zwei Hauptgruppenelemente: 40 e
Pentagonale Pyramide:	14n + 4 = 88e - 40e für die beiden Hauptgruppenelemente: 48 e
Gemeinsame Kante:	18n - 2 = 34e

Gesamtsumme: 54 Elektronen

Die Gesamtelektronensumme von 54 entspricht der Valenzelektronenzahl des Gesamtclusters.

^[35] D. M. P. Mingos, Acc. Chem. Res. **1984**, 17, 311.

^[36] K. Wade, Adv. Inorg. Radiochem. **1976**, 18, 1.

Nach den erweiterten Wade-Mingos-Zählregeln muß für 7 wie folgt gezählt werden:

Cp*Fe:	13e - 12e = 1 GE
Cp*Mo:	11 e - 12 e = -1 GE
$P_2(CPh)_2$:	4 x (5 - 2) = 12 GE
P ₂ :	4 GE als zusätzlicher Ligand

Gesamtsumme:	16 GE oder 8	GEP's, wa	s formal einen	1 nido- (n 4	+ 2)-Cluster	entspricht.
--------------	--------------	-----------	----------------	--------------	--------------	-------------

 Bemerkung: Die beiden Phenylringe tragen jeweils ein Elektron bei, so daß die beiden Kohlenstoff-Atome je 5e liefern.
 Der P₂-Baustein muß als zusätzlicher Ligand betrachtet werden. Wenn ein geschlossenes Mitteldeck vorliegenden würde, käme man insgesamt auf neun GEP's was einem closo-Polyeder entsprechen würde.

Abb. 24: Vergleich der P_nC_m [n = 6 -m; m = 0, 1, 2] Bausteine miteinander.

3.3 Reaktionen weiterer Alkine mit Komplexen des Typs [Cp^RMo(CO)(μ-h^{2:2}-P₂)₂FeCp^R[']] (2)

3.3.1 Reaktion mit dem ringgespannten Cyclooctin (9)

Abb. 25: Syntheseschema von $[Cp^* Mo(\mu-\eta^{4:2}-P_2C_8H_{12})(\mu-\eta^{2:2}-P_2)FeCp^*]$ (10).

Um zu überprüfen, ob ein im Vergleich zum Phosphaalkin bzw. Diphenylacetylen ringgespanntes Alkin eine andere Reaktivität induziert, werden annähernd äquimolare Mengen an **2b** mit Cyclooctin (**9**) in siedendem Dekalin gerührt. Auch in diesem Fall ist nach 30-45 Minuten die terminale Carbonylbande bei $\overline{n} = 1958$ cm⁻¹ verschwunden. Die ³¹P-NMR-spektroskopische Untersuchung der Rohlösung zeigt neben geringen Mengen an **4b** ein Spinsystem, das dem von **7** sehr ähnlich ist.

Durch Säulenchromatographie kann ausschließlich eine braun-schwarze Fraktion **10** erhalten werden. $[(Cp^*Mo)_2(\mu-\eta^{6:6}-P_6)]$ (**4b**) wird auch in diesem Fall durch Umkristallisation von **10** abgetrennt. Das vergleichbare Reaktionsverhalten läßt eine ähnliche Reaktivität wie bei den bisher schon vorgestellten Reaktionen vermuten.

3.3.1.1 Charakterisierung von 10

Eigenschaften

10 ist in allen gängigen Lösungsmitteln gut bis sehr gut löslich, jedoch nimmt die Löslichkeit innerhalb einer Woche rapide ab.

In Lösung sowie als Feststoff hat **10** eine braun-schwarze Farbe und ist nur mäßig luftempfindlich.

NMR-Spektroskopie

a. ¹H-NMR-Spektroskopie

Im ¹H-NMR-Spektrum der Verbindung **10** werden die erwarteten Signalsätze für die jeweiligen Liganden gefunden. Die Signale für den Cyclooctin-Ring treten jeweils als breite Singuletts auf.

Verbindung	d [ppm]	Zuordnung
	2.67 (s, br., 4H)	C_8H_{12}
	2.33 (s, br., 4H)	C_8H_{12}
	2.07 (s, br., 4H)	C_8H_{12}
	1.95 (q, 2H)	С H ₂ CH ₃
10	1.72 (s, 15H)	Cp*Fe
	1.55 (s, 6H)	C5(CH3)4Et
	1.54 (s, 6H)	C5(CH3)4Et
	0.82 (t, 3H)	CH_2CH_3

Tabelle 10: 1 H-NMR-Daten der Verbindung [Cp*'Mo(μ - $\eta^{4:2}$ -P₂C₈H₁₂)(μ - $\eta^{2:2}$ -P₂)FeCp*] (10)(400.13 MHz, CDCl₃).

b. ³¹P-NMR-Spektroskopie

Im ³¹P-NMR-Spektrum zeigt **10** ein im Vergleich zu den Verbindungen **7** sehr ähnliches Verhalten, so daß allein aufgrund der NMR-Daten eine der Verbindungen **7** analoge Struktur vorgeschlagen werden kann.

Tabelle 11: ${}^{31}P$ -NMR-Daten der Verbindung [Cp*'Mo(μ - $\eta^{4:2}$ -P₂C₈H₁₂)(μ - $\eta^{2:2}$ -P₂)FeCp*] (10)(161.91 MHz, CDCl₃).

Verbindung	d [ppm]	J _{PP} -Kopplungen [Hz]
10	218.5 (t, 2P)	25
10	-40.0 (t, 2P)	25

Massenspektrometrie

Im EI-Massenspektrum von **10** tritt bei m/z = 670 amu der Molpeak mit einer relativen Intensität von 8.09 % auf. Dies bestätigt die Zusammensetzung des Clusters **10**, die schon aufgrund der NMR-Daten angenommen wurde. Auch das weitere Defragmentierungsmuster ist mit denen der Verbindungen **3** und **7** vergleichbar: Die Abspaltung von Cyclooctin bei m/z= 562 amu wird auch hier beobachtet. Dieser Peak entspricht [Cp*'MoP₄FeCp*]⁺, das auch in diesem Fall als Cycloreversionsprodukt gedeutet werden kann. Jedoch stellt dieses Ion hier nicht den Basispeak dar. Dieser wird durch ein einzelnes Eisen-Ion [Fe]⁺ gebildet. Weitere Fragmentierungen können Tabelle 12 entnommen werden.

 Tabelle 12:
 Ausgewählte massenspektrometrische Daten der Verbindung

$$\begin{split} & [Cp^*`Mo(\mu \mbox{-}\eta^{4:2} \mbox{-} P_2 C_8 H_{12})(\mu \mbox{-}\eta^{2:2} \mbox{-} P_2) FeCp^*] \mbox{(10)} \\ & EI, \mbox{70 eV}, \mbox{1 mA}, \mbox{QT 200 °C}. \end{split}$$

	10		
Fragmention	m/z	rel. Intensität	
Truginonium	[amu]	[%]	
$[Cp*'MoP_4C_8H_{12}FeCp*]^+$	670	8.09	
[Cp*'MoP ₄ FeCp*] ⁺	562	12.69	
$[Cp*'MoP_3]^+$	340	49.21	
$[Cp*'Mo]^+$	243	9.26	
$[Cp*Fe]^+$	199	8.01	
$[C_8H_{12}]^+$	109	28.72	
$[Fe]^+$	55	100	

3.3.1.2 Strukturvorschlag für [Cp*'Mo(μ-**h**^{4:2}-P₂C₈H₁₂)(μ-**h**^{2:2}-P₂)FeCp*] (10)

Aufgrund der vorliegenden NMR-spektroskopischen- und massenspektrometrischen Daten sollte **10** einen analogen strukturellen Aufbau wie **7** bzw. **3** besitzen. Eine Aussage bezüglich der absoluten Anordnung des Cyclooctin-Ringes kann ohne eine Röntgenstrukturanalyse nicht getroffen werden.

 $\label{eq:Abb.26: Strukturvorschlag für [Cp*'Mo(\mu-\eta^{4:2}-P_2C_8H_{12})(\mu-\eta^{2:2}-P_2)FeCp*] \ (10) \ .$

3.3.2 Reaktion mit DMAD (11)

Abb. 27: Syntheseschema für $[Cp*Mo(\mu-\eta^{4:2}-P_2C_4O_4Me_2)(\mu-\eta^{2:2}-P_2)FeCp*]$ (12).

Auch die Umsetzung von 2 mit dem elektronenziehenden DMAD (11) zeigt das gleiche Reaktionsbild wie die bisher vorgestellten Reaktionen. Die terminale Carbonylbande bei $\mathbf{n} =$ 1954 cm⁻¹ von 2a läßt sich nach 45 Minuten im Infrarotspektrum nicht mehr detektieren. Zusätzlich erscheint hier bei $\mathbf{n} = 1732$ cm⁻¹ (Toluol) die Carbonylbande der Methylesterfunktion. Die säulenchromatographische Aufarbeitung des Reaktionsansatzes führt hier nicht zum Erfolg, da vermutlich wegen der großen Polarität der Esterfunktionen das Rohprodukt eine derart hohe Affinität zum Säulenmaterial hat, daß sogar mit Methylenchlorid keine eluierbare Fraktion erhalten wird. Deshalb wird der Reaktionsrückstand mit Methylenchlorid mehrmals extrahiert und die vereinigten Lösungen vom Ungelösten abzentrifugiert. Bei -75 °C fällt ein Niederschlag von 12 aus, der nach dem Entfernen des Lösungsmittels als leicht pastöser Feststoff zurückbleibt.

3.3.2.1 Charakterisierung von 12

Eigenschaften

Verbindung **12** ist in unpolaren Lösungsmitteln, wie n-Hexan oder Petrolether, fast unlöslich. Nur in sehr polaren Lösungsmitteln, wie Methylenchlorid oder Diethylether, kann eine Lösung erhalten werden. Jedoch ist nach 1-2 Tagen auch diese Löslichkeit fast ganz verschwunden. Sowohl in Lösung als auch als Feststoff ist **12** braun-schwarz.

IR-Spektroskopie

Bei $\bar{n} = 1760 \text{ cm}^{-1}$ (br., CH₂Cl₂) kann ein breites Signal für die Carbonyl-Gruppen der beiden Esterfunktionen detektiert werden, das im typischen Bereich für Carbonsäureester ^[18] liegt.

NMR-Spektroskopie

a. ¹H-NMR-Spektroskopie

Im ¹H-NMR-Spektrum von **12** erscheinen die beiden Methylgruppen der Esterfunktionen aufgrund einer Spiegelebene im System als ein Singulett. Für die beiden Cp*-Liganden werden erwartungsgemäß zwei Singuletts gefunden.

Tabelle 13: 1 H-NMR-Daten der Verbindung [Cp*Mo(μ - $\eta^{4:2}$ -P₂C₄O₄Me₂)(μ - $\eta^{2:2}$ -P₂)FeCp*] (12)
(400.13 MHz, CDCl₃).

Verbindung	d [ppm]	Zuordnung
	3.76 (s, 6H)	CH3
12	1.85 (s, 15H)	C5 Me5
	1.53 (s, 15H)	C_5Me_5

b. ³¹P-NMR-Spektroskopie

Im ³¹P-NMR-Spektrum von **12** zeigt sich das gleiche Spinsytem wie in den vorherigen Reaktionen mit Diphenylacetylen und Cyclooctin. Die beiden Methylgruppen erzeugen keine Kopplung im ³¹P-NMR, da sie zu weit entfernt sind.

Tabelle 14: 31 P-NMR-Daten der Verbindung [Cp*Mo(μ - $\eta^{4:2}$ -P₂C₄O₄Me₂)(μ - $\eta^{2:2}$ -P₂)FeCp*] (12)
(161.91 MHz, CDCl₃).

Verbindung	d [ppm]	J _{PP} -Kopplungen [Hz]
12	235.4 (t, 2P)	25
12	-56.5 (t, 2P)	25

Massenspektrometrie

Das EI-Massenspektrum von 12 zeigt keinerlei verwertbare Informationen. Aus diesem Grund wird auf eine weitere Diskussion an dieser Stelle verzichtet.

3.3.2.2 Strukturvorschlag

Trotz der fehlenden Informationen durch ein Massenspektrum sind durch das Infrarotspektrum und die NMR-Daten genügend Beweise zusammengetragen, um eine zu 7 analoge Struktur vorzuschlagen. Demnach hat sich DMAD *side-on* an 2 angelagert und dabei die terminale CO-Gruppe von 2 verdrängt.

Abb. 28: Strukturvorschlag für $[Cp*Mo(\mu-\eta^{4:2}-P_2C_4O_4Me_2)(\mu-\eta^{2:2}-P_2)FeCp*]$ (12).

3.3.3 Reaktion mit 1.7-Octadiin (13)

Abb. 29: Syntheseschema für $[Cp*Mo(\mu-\eta^{4:2}-P_2C_8H_{10})(\mu-\eta^{2:2}-P_2)FeCp*]$ (14).

Bei der Umsetzung mit 1.7-Octadiin sollen zwei Cluster des Typs 2 über eine C₈-Einheit miteinander verknüpft werden. Dazu wird 2a in einem zweifachen molaren Überschuß mit 1.7 -Octadiin zur Reaktion gebracht. Auch bei dieser Reaktion zeigt sich das schon bekannte Reaktionsverhalten. Die terminale Carbonylbande bei $\overline{n} = 1954$ cm⁻¹ von 2a ist nach 45 Minuten verschwunden und die Reaktion wird daraufhin abgebrochen. Im ³¹P-NMR-Spektrum der Rohlösung kann ein Spinsystem detektiert werden, das aus vier unterschiedlichen Phosphorsignalen besteht. Ob eine Verknüpfung zweier Komplexe des Typs 2 erreicht wurde, kann nur das ¹³C-NMR eindeutig zeigen, da im negativen Fall die beiden unkomplexierten Kohlenstoffe der Dreifachbindung detektierbar sein müßten. Das Massenspektrum sollte außerdem die exakte Summenformel angeben.

3.3.3.1 Charakterisierung von 14

Eigenschaften

14 ist in allen gängigen Lösungsmitteln gut bis sehr gut löslich. In Lösung wie als Feststoff hat 14 eine braun-schwarze Farbe. Die Luftempfindlichkeit ist eher mäßig. Auch hier stellt

sich nach einigen Tagen eine merkliche Abnahme der Löslichkeit ein. Das Kristallisationsverhalten ist sehr schlecht bzgl. der Züchtung von Einkristallen.

NMR-Spektroskopie

a. ¹H-NMR-Spektroskopie

Im ¹H-NMR-Spektrum der Verbindungen **14** werden die erwarteten Signalsätze für die jeweiligen Liganden gefunden. Das im P₄C₂-Liganden eingebundene Proton tritt ungewöhnlich tieffeldverschoben bei $\delta = 5.16$ ppm in Resonanz, was sich durch die Komplexierung einer terminalen Dreifachbindung an zwei Metallzentren erklären läßt.

Das Proton der unkomplexierten Dreifachbindung wird, bedingt durch den Anisotropieeffekt, bei $\delta = 1.44$ ppm gefunden. Diese Beobachtung deckt sich mit Literaturwerten ^[18]. Im Routine-¹H-NMR werden hier maximal ³J_{HH}-Kopplungen gefunden, was sich in den Aufspaltungsmustern bemerkbar macht, da ansonsten gerade bei den CH₂-Gruppen noch komplexere Aufspaltungen zu erwarten wären (s. Tabelle 15).

Verbindung	d [ppm]	Zuordnung
	5.16 (dd, 1H)	H C, ${}^{2}J_{PH} = 30 \text{ Hz}$
		$^{3}J_{PH} = 6 \text{ Hz}$
	2.88 (tt, 2H)	CH_2
	2.45 (tt, 2H, br.)	CH_2
14	2.30 (t, 2H)	CH_2
	1.98 (t, 2H)	CH_2
	1.77 (s, 15H)	C ₅ Me ₅
	1.52 (s, 15H)	C5 Me5
	1.44 (s, 1H)	HC

Tabelle 15: 1 H-NMR-Daten der Verbindung [Cp*Mo(μ - $\eta^{4:2}$ -P₂C₈H₁₀)(μ - $\eta^{2:2}$ -P₂)FeCp*] (14)
(400.13 MHz, CDCl₃).

b. ³¹P-NMR-Spektroskopie

Die Einführung eines unsymmetrischen Liganden bewirkt eine Asymmetrie im P_4C_2 -Baustein der bisher bekannten Verbindungen **7**, **10** und **12**. Alle vier Phosphorkerne erscheinen nun bei verschiedenen Resonanzen in einem ABXY-Spinsystem (s. bzgl. Benennung Abb. 30). Der Resonanzbereich ist fast identisch mit dem der Verbindungsklasse **3**. Auch hier spaltet das Signal des Kerns A, das bei tiefstem Feld erscheint, zu einem pseudo-dublettierten Triplett auf. Dies kann durch die ähnlichen Kopplungskonstanten mit allen übrigen Phosphor-kernen erklärt werden. Auch wird keine ¹J_{PP}-Kopplung gefunden, die auf das Vorliegen eines isolierten Phosphorkerns hinweist. Das gleiche Resultat ist bei Kern B zu beobachten, der ebenfalls keine ¹J_{PP}-Kopplung aufweist. Jedoch ist durch das am benachbarten C(2)-Kohlenstoff gebundene Proton das Signal weiter komplex aufgespalten.

Klarheit darüber bringt die Aufnahme eines protonen-entkoppelten ${}^{31}P{}^{1}H$ -NMR-Spektrums, bei dem das Signal des Kernes B wesentlich vereinfacht wird.

Die Kerne X und Y treten -analog zu **3**- jeweils als pseudo-dublettiertes Dublett auf. Auch hier wird eine Kopplungskonstante von 450 Hz gefunden, die nahezu mit der bei **3** gefundenen übereinstimmt (-445 Hz).

Der Signalschwerpunkt des AB-Teils von **14** (δ = 161 ppm) ist gegenüber dem des AA'-Teils von **7a** (δ = 235 ppm) um ca. 70 ppm hochfeldverschoben. Dagegen ist der Schwerpunkt des XY-Teils von **14** (δ = -17.9 ppm) um ca. 25 ppm gegenüber dem des XX'-Teils von **7a** (δ = -43.4 ppm) tieffeldverschoben.

Tabelle 16: 31 P-NMR-Daten der Verbindung [Cp*Mo(μ - $\eta^{4:2}$ -P₂C₈H₁₀)(μ - $\eta^{2:2}$ -P₂)FeCp*] (14)(161.91 MHz, CDCl₃).

Verbindung	d [ppm] und Zuordnung	¹ J _{PP} -Kopplungen [Hz]
	217.5 (pdt, 1P, P _A)	-
14	213.0 (m, 1P, P _B)	-
14	25.6 (pdd, 1P, P _X)	450
	-61.4 (pdd, 1P, P _Y)	450

Abb. 30: Zuordnung der Phosphorkerne in Verbindung 14.

c. ¹³C-NMR-Spektroskopie

Als wesentliche Information liefert das ¹³C{¹H}-NMR-Spektrum die beiden Signale für die unkomplexierten Kohlenstoffatome der Kohlenstoff-Kohlenstoff-Dreifachbindung bei δ = 99.6 ppm und δ = 93.3 ppm. Die Zuordnung erfolgt durch Vergleich mit Literaturdaten ^[18]. Auch hier sind die beiden Kohlenstoffatome des P₄C₂-Bausteins nicht detektierbar. Vermutlich spielen Konzentrations- und/oder Relaxationsprobleme eine Rolle. Auf die Beschreibung der übrigen Kohlenstoff-Atome wird hier verzichtet, da diese schon indirekt durch die ¹H-NMR-Spektroskopie bestimmt worden sind.

Tabelle 17:	$^{13}C{^{1}H}-NMR-Daten der Verbindungen [Cp*Mo(\mu-\eta^{4:2}-P_2C_8H_{10})(\mu-\eta^{2:2}-P_2)FeCp*]$ (14)
	(100.61 MHz, CDCl ₃).

Verbindung	d [ppm]
14	99.6 (s, sp-C)
	93.3 (s, sp-C)

Massenspektrometrie

Im EI-Massenspektrum von 14 kann bei m/z = 654 amu der Molpeak mit einer relativen Intensität von 39.3 % gefunden werden. Damit ist die durch die NMR-Spektroskopie vermutete Zusammensetzung des Clusters bestätigt, bei der keine Verknüpfung zweier Edukt-Moleküle 2a erfolgt ist, sondern die *side-on* Anlagerung nur einer Alkin-Einheit von 13 an 2a. Auch hier findet man die Abspaltung des Alkin-Fragmentes (hier: 1.7-Octadiin-Fragmention) als Basispeak. Dies ist eine weitere Bestätigung für den analogen Reaktionsverlauf wie bei den schon vorgestellten Verbindungen 7, 10 und 12, bei denen die selben Abspaltungsmuster gefunden wurden. Weitere Fragmentierungen können Tabelle 18 entnommen werden.

Tabelle 18:Ausgewählte massenspektrometrische Daten der Verbindung $[Cp*Mo(\mu-\eta^{4:2}-P_2C_8H_{10})(\mu-\eta^{2:2}-P_2)FeCp*]$ (14)EI, 70 eV, 1 mA, QT 200 °C.

Fragmention	14	
	m/z	rel. Intensität
	[amu]	[%]
$[Cp*MoP_4C_8H_{10}FeCp*]^+$	653.8	39
[Cp*MoP ₄ FeCp*] ⁺	547.8	100
$[C_8H_{10}]^+$	106	5.26
$[Fe]^+$	55	16.39

3.3.3.2 Strukturvorschlag für [Cp*Mo(µ-**h**^{4:2}-P₂C₈H₁₀)(µ-**h**^{2:2}-P₂)FeCp*] (14)

Aufgrund der vorliegenden NMR-spektroskopischen- und massenspektrometrischen Daten sollte **14** einen analogen strukturellen Aufbau wie **7** bzw. **3** besitzen. Demnach ist das 1.7-Octadiin als einfache Octin-Kette *side-on* in **2a** eingebaut worden. Die ursprünglich gewünschte Verknüpfung von zwei Molekülen **2a** hat nicht stattgefunden.

Die gefundenen ³¹P-NMR-Daten nehmen eine Brückenstellung zwischen denen für Verbindung **3** und **7** gefundenen Daten ein. Bei **3** kann ein ABMXY-Spinsystem von fünf

verschiedenen Phosphorkernen gefunden werden. Bei 7 ist aufgrund einer Spiegelebene nur ein AA'XX'-Spinsytem der vier Phosphorkerne detektierbar. Durch die Einführung eines unsymmetrischen Liganden wird nun diese Symmetrie aufgehoben und alle vier Phosphorkerne werden chemisch und magnetisch unterschiedlich. Das System nähert sich nun mehr dem Spinsystem von 3 an.

Natürlich kann ohne eine Röntgenstrukturanalyse nichts über die absolute Anordnung der Octin-Kette ausgesagt werden werden. Jedoch erlauben die vorliegenden analytischen Daten einen Strukturvorschlag.

Abb. 31: Strukturvorschlag für $[Cp*Mo(\mu-\eta^{4:2}-P_2C_8H_{10})(\mu-\eta^{2:2}-P_2)FeCp*]$ (14).

3.4 Komplexierungsreaktionen

3.4.1 Komplexierung von [Cp*Mo(**mh**^{4:2}-P₂C₂Ph₂)(**mh**^{2:2}-P₂)FeCp*] (7a) mit [W(CO)₅thf] (15)

Abb. 32: Syntheseschema für $[Cp*Mo(\mu_3-\eta^{4:2:1}-P_2C_2Ph_2)\{W(CO)_5\}(\mu-\eta^{2:2}-P_2)FeCp*]$ (16) und 17.

Rührt man [Cp*Mo(μ - $\eta^{4:2}$ -P₂C₂Ph₂)(μ - $\eta^{2:2}$ -P₂)FeCp*] (**7a**) mit einem ca. fünffachen Überschuß an [W(CO)₅thf] (**15**) 18 h bei Raumtemperatur, so ist im IR-Spektrum neben einer sehr intensiven Bande von nicht komplexiertem bzw. wieder zurückgebildetem [W(CO)₆] bei $\overline{\mathbf{n}}$ = 1974 cm⁻¹ eine Vielzahl von anderen Banden zu erkennen. Im ³¹P-NMR-Spektrum der Rohlösung werden Hinweise darauf gefunden, daß ein Mono- und ein Multikomplexierungs-Produkt nebeneinander vorliegen.

Die Reaktion wird daraufhin abgebrochen und der Rückstand säulenchromatographisch aufgearbeitet. Insgesamt können zwei Fraktionen **16** und **17** erhalten werden, wobei letztere in sehr geringer Ausbeute vorliegt. Von **17** liegen zu wenige aussagekräftige analytische Daten vor, so daß auf eine weitere Diskussion im folgenden verzichtet werden muß.

3.4.1.1 Charakterisierung der unbekannten Fraktion 16

Eigenschaften

16 ist sowohl in Lösung als auch als Feststoff eine rotbraune Substanz, die in polaren Lösungsmitteln gut bis sehr gut löslich ist. Die Luftempfindlichkeit ist gering, so daß eine kurzfristige Handhabung an der Luft möglich ist.

IR-Spektroskopie

Für **16** werden im IR-Spektrum fünf Banden gefunden, die alle im Bereich typischer terminaler Schwingungsfrequenzen liegen ^[34]. Die IR-Daten sind Tabelle 19 zu entnehmen.

Tabelle 19: IR-Daten der Verbindung [Cp*Mo(μ_3 - $\eta^{4:2:1}$ -P₂C₂Ph₂){W(CO)₅}(μ - $\eta^{2:2}$ -P₂)FeCp*] (16) in Hexan.

Verbindung	\overline{n} (CO) [cm ⁻¹]	Intensität	
	2062	S	
	1968	m	
16	1946	S	
	1928	S	
	1920	S	

NMR-Spektroskopie

a. ¹H-NMR-Spektroskopie

Im ¹H-NMR-Spektrum werden die erwarteten Signalgruppen für die beiden Cp*-Liganden gefunden. Eine Zuordnung der Cp*-Liganden zu den jeweiligen Metallfragmenten ist aufgrund fehlender Vergleichsdaten jedoch nicht möglich. Ebenfalls können bei $\delta = 7.5$ ppm die Resonanzen für zwei Phenylgruppen detektiert werden.

Verbindung	d [ppm]	Zuordnung	
	7.5 (m, 10H)	C_6H_5	
16	1.71 (s, 15H)	C_5Me_5	
	1.58 (s, 15H)	C5 Me5	

Tabelle 20: ¹H-NMR-Daten der Verbindung [Cp*Mo(μ_3 - $\eta^{4:2:1}$ -P₂C₂Ph₂){W(CO)₅}(μ - $\eta^{2:2}$ -P₂)FeCp*] (16)(400.13 MHz, CDCl₃).

b. ³¹P-NMR-Spektroskopie

Die Einführung nur eines Metallfragmentes führt auch hier (vgl. dazu die 1,7-Octadiin-Umsetzung von 2a) zu einer Asymmetrie im P₄C₂-Baustein von 7a. Man detektiert ein ABXY-Spinsystem von vier chemisch und magnetisch unterschiedlichen Phosphorkernen, die alle im gleichen Integrationsverhältnis zueinander stehen.

Da nur am B-Teil des Spinsystems ein doppeltes Wolframsatellitenpaar erkennbar ist, kann hieraus gefolgert werden, daß nur ein Wolframfragment an **7a** koordiniert ist. Die Wolfram-Phosphor-Kopplungskonstante ist mit 241.6 Hz deutlich größer als die bei [{Cp*Mo(CO)(μ_3 - $\eta^{2:2:1}$ -P₂)₂FeCp*}{W(CO)₅}²] ^[9] mit 27 Hz. Jedoch zeigen Phosphanliganden [W(CO)(PR₃)] (je nach Substituent) zum Teil erheblich größere ¹J_{WP}-Kopplungskonstanten im Bereich von 140 - 485 Hz ^[37]. Der Komplex [Co₂(CO)₆(PhC=P){W(CO)₅}] weist eine Kopplung von 232 Hz auf ^[38], die damit exakt in der Größenordnung von **16** liegt.

Die ${}^{1}J_{PP}$ -Kopplungskonstante im XY-Teil von **16** ist mit -444 Hz wiederum im typischen Bereich der bisher vorgestellten Verbindungen **3** und **10**.

Weiterhin ist auffallend, daß das XY-Spinsystem unterschiedlich gut aufgelöst ist (ddd bzw. dd). Eine Begründung kann in den möglichen unterschiedlichen Relaxationszeiten der Kerne X und Y gesehen werden, die durch die chemisch unterschiedlichen Umgebungen verursacht werden.

^[37]C. E. McFarlane, D. S. Rycroft, J. Chem. Soc. Dalton Trans. **1976**, 1616.

^[38] D. Seyferth, J. S. Merola, R. S. Hendersom, *Organometallics* **1982**, 1, 859.

Verbindung	d [ppm]	¹ J _{PP} -Kopplungen [Hz]
	263.2 (pddd, P _A)	
16	158.1 (pd, P _B)	${}^{1}J_{WP} = 241.6, {}^{2}J_{WP} = 208.9$
10	21.8 (ddd, P _X)	-444
	-64.8 (dd, P _Y)	-444

$$\label{eq:21} \begin{split} \text{Tabelle 21:} \ ^{31}\text{P-NMR-Daten der Verbindung} \ [Cp*Mo(\mu_3-\eta^{4:2:1}-P_2C_2Ph_2)\{W(CO)_5\}(\mu-\eta^{2:2}-P_2)FeCp*] \ (16) \\ (161.91\ \text{MHz},\ CDCl_3). \end{split}$$

Massenspektrometrie

16 läßt sich nur sehr schlecht massenspektrometrisch vermessen. Im EI-Massenspektrum (70 eV) läßt sich der Molekülionenpeak von 16 nicht detektieren. Als höchstes Massenfragment ist nur $[Cp*Mo(CO)Ph_2P_4FeCp*]^+$ bestimmbar, das als Abbauprodukt von 16 gewertet werden kann. Desweiteren wird der Molpeak des Eduktes 7a m/z = 723.8 amu mit einer rel. Intensität von 8.7 % gefunden. Weitere Massen können den Abbauprodukten von 7a bzw. $[W(CO)_5P]^+$ zugeordnet werden (s. Tabelle 22).

Tabelle 22:Ausgewählte massenspektrometrische Daten der Verbindung $[Cp*Mo(\mu_3-\eta^{4:2:1}-P_2C_2Ph_2)\{W(CO)_5\}(\mu-\eta^{2:2}-P_2)FeCp*]$ (16)

EI, 70	eV, 1	mA,	QT 200	°C.
--------	-------	-----	--------	-----

	16	
Fragmention	m/z [amu]	rel. Intensität [%]
$\left[Cp*Mo(CO)P_4(CPh)_2FeCp*\right]^+$	745.9	8.2
$\left[Cp*MoP_4(CPh)_2FeCp*\right]^+(7a)$	717.9	19.7
[Cp*MoP ₄ FeCp*] ⁺	547.8	54.5
$[W(CO)_5P]^+$	353.8	16
$[W(CO)_4]^+$	295.8	11.1
$[W(CO)_3]^+$	269.9	27.6
[PhCCPh] ⁺	178.0	75.3

Trotz des fehlenden Molpeaks von **16** im Massenspektrum ist ein Strukturvorschlag auf Basis der NMR-spektroskopischen Datenlage möglich. Durch Vergleich mit den NMR-Daten von Verbindung **14** und dem Auffinden nur eines Wolframsatelliten-Paares im B-Teil des ABXY-Spinsystems von **16** erscheint die in Abb. 33 vorgestellte Struktur plausibel.

Abb. 33: Strukturvorschlag für $[Cp*Mo(\mu_3-\eta^{4:2:1}-P_2C_2Ph_2)\{W(CO)_5\}(\mu-\eta^{2:2}-P_2)FeCp*]$ (16).

Abb. 34: Syntheseschema von $[Cp^* Mo(\mu_3 - \eta^{4:2:1} - P_3C^tBu) \{W(CO)_5\}(\mu - \eta^{2:2} - P_2)FeCp^*]$ (18).

Die Komplexierung der Verbindungsklasse **3** (hier am Beispiel von **3b**) zeigt ähnliche Eigenschaften wie die von **7**. Jedoch ist hier nur eine einzige Fraktion **18** durch säulenchromatographische Aufarbeitung eluierbar. Das ³¹P-NMR-Spektrum der Rohlösung zeigt neben sehr geringen Mengen an nicht umgesetztem Edukt **3b**, ein ABMXY-Spinsystem, das auf ein einziges Komplexierungsprodukt hinweist.

3.4.2.1 Charakterisierung der unbekannten Fraktion 18

Eigenschaften

18 zeigt keine wesentlichen Unterschiede in seinen Eigenschaften bzgl. Farbe und Löslichkeit im Vergleich zu 3b. Jedoch ist festzuhalten, daß das Kristallisationsverhalten deutlich verschlechtert ist. Damit bestätigt sich ein Trend, der sich schon bei der Komplexierung von 7a angedeutet hat.

IR-Spektroskopie

Für 18 werden im IR-Spektrum fünf Banden im terminalen Bereich gefunden. Anzumerken ist, das die Signale von $\bar{n} = 1967-1919$ cm⁻¹ als sehr breite, schlecht aufgelöste Signale erscheinen. Die IR-Daten sind Tabelle 23 zu entnehmen.

 $\label{eq:action} \textbf{Tabelle 23:} \quad \text{IR-Daten der Verbindung } [Cp*'Mo(\mu_3-\eta^{4:2:1}-P_3C^tBu) \{W(CO)_5\}(\mu-\eta^{2:2}-P_2)FeCp*] \ \textbf{(18) in } CH_2Cl_2 \ \textbf{(18) } CH_2Cl_2 \ \textbf$

Verbindung	\overline{n} (CO) [cm ⁻¹]	Intensität
	2058	S
	1967	sh
18	1940	S
	1934	S
	1919	sh

NMR-Spektroskopie

a. ¹H-NMR-Spektroskopie

Das ¹H-NMR-Spektrum von **18** zeigt die erwarteten Signalgruppen für die Cp*- und Cp*'-Liganden, sowie für die *tert*.-Butylgruppe.

 $\label{eq:24:1} \begin{array}{ll} \mbox{Tabelle 24:} & {}^1\mbox{H-NMR-Daten der Verbindung } [Cp*`Mo(\mu_3-\eta^{4:2:1}-P_3C^tBu) \{W(CO)_5\}(\mu-\eta^{2:2}-P_2)FeCp*] \ (18) \\ & (400.13 \ \mbox{MHz, CDCl}_3). \end{array}$

Verbindung	d [ppm]	Zuordnung
18	2.18 (q, 2H)	CH_2CH_3
	1.81 (s, 9H)	C_4H_9
	1.79 (s, 6H)	C5(CH3)4Et
	1.75 (s, 6H)	C ₅ (CH ₃) ₄ Et
	1.55 (s, 15H)	C5 Me5
	0.91 (t, 3H)	CH ₂ CH ₃

b. ³¹P-NMR-Spektroskopie

Das ³¹P-NMR-Spektrum von **18** zeigt ein ähnliches Spinsystem wie das der Verbindungsklasse **3**. Auch hier liegt ein ABMXY-Spinsystem von fünf unterschiedlichen Phosphorkernen vor. Als einziger Kern weist A das typische Wolframsatellitenpaar auf, was auf eine Monokomplexierung mit [W(CO)₅] im Bereich des P₃C-Bausteines hindeutet. Die ¹J_{WP}-Kopplung liegt mit 91 Hz deutlich unter der bei **16** gefundenen. Mit der Wolfram-Komplexierung von A geht ein Tieffeldshift von ca. 24 ppm (jeweils immer im Vergleich zum Spektrum von **3b**) einher. Einen sehr drastischen Hochfeldshift erfährt der Kern B, der hier bei $\delta = 193.2$ ppm in Resonanz tritt. Dagegen wird dieses Signal bei **3b** erst bei $\delta = 274.1$ ppm detektiert. Der Hochfeldshift beträgt somit über 80 ppm.

Nahezu unverändert zeigt sich die ${}^{1}J_{PP}$ -Kopplungskonstante von Kern B mit 386 Hz gegenüber 385 Hz bei **3b**. Der M-Teil ist dagegen wieder um ca. 40 ppm tieffeldverschoben (**18**: $\delta = 106.2$ ppm; **3b**: $\delta = 59.2$ ppm). Auch der P₂-Baustein bleibt nicht völlig unverändert. Während Kern X nur unwesentlich verschoben ist, wird bei Kern Y ebenfalls ein Hochfeldshift von ca. 50 ppm beobachtet. Dagegen ist auch hier die ${}^{1}J_{PP}$ -Kopplungskonstante mit -452 Hz zwischen den Kernen X und Y fast unverändert verglichen mit der bei **3b**.

In Tabelle 25 sind nochmals alle Daten zusammengefaßt.

Verbindung	Inpm] und Zuordnung	¹ J _{PP} -Kopplungen [Hz]
v ei bindung		¹ J _{WP} -Kopplungen [Hz]
	313.1 (pddd, P _A)	${}^{1}J_{WP} = 91$
	193.2 (ptd, P _B)	-386
18	106.2 (ptd, P _M)	-386
	-36.0 (pd, P _X)	-452
	-64.8 (pd, P _Y)	-452

Tabelle 25: ³¹P-NMR-Daten der Verbindung [Cp*'Mo(μ_3 - $\eta^{4:2:1}$ -P₃C^tBu){W(CO)₅}(μ - $\eta^{2:2}$ -P₂)FeCp*] (18) (161.91 MHz, CDCl₃).

Massenspektrometrie

Von 18 konnte kein aussagekräftiges Massenspektrum erhalten werden.

3.4.2.2 Strukturvorschlag

Trotz der unbefriedigenden Informationslage bei der Massenspektrometrie sollte aufgrund der sehr aussagekräftigen NMR-Daten ein fundierter Strukturvorschlag gelingen.

Aus den ¹H-NMR-Daten kann auf das Vorliegen der [Cp*Fe]- und [Cp*'Mo]-Fragmente geschlossen werden. Auch die *tert*.-Butylgruppe kann eindeutig identifiziert werden. Durch Vergleich des ³¹P-NMR-Datensatzes mit dem von **3b** ist auf eine analoge Gerüststruktur wie bei Verbindungsklasse **3** zu schließen. Da nur ein Wolfram-Satellitenpaar an Kern A gefunden wird, ist davon auszugehen, daß eine Monokomplexierung von [W(CO)₅] am Phosphorkern A stattgefunden hat. Alle diese Informationen führen zu folgendem Struktur-vorschlag:

Abb. 35: Strukturvorschlag für $[Cp^* Mo(\mu_3 - \eta^{4:2:1} - P_3C^tBu) \{W(CO)_5\}(\mu - \eta^{2:2} - P_2)FeCp^*]$ (18).

3.5 Syntheseoptimierung von $[Cp'''Mo(CO)(\mu-h^{2:2}-P_2)_2FeCp^*]$ (2e)

Abb. 36: Syntheseoptimierung von $[Cp^{\prime\prime\prime}Mo(CO)(\mu-\eta^{2:2}-P_2)_2FeCp^*]$ (**2e**).

Da die Darstellung der Edukte $[Cp^{\prime\prime\prime}Mo(CO)(\mu-\eta^{2:2}-P_2)_2FeCp^R]$ (**2d**,**e**) ($Cp^R = Cp^*$, $Cp^{*\prime}$) für die röntgenstrukturanalytische Charakterisierung von **3** von Bedeutung ist, gilt es die Reaktion zu optimieren. Im folgenden wird nur auf die Umsetzung von $[Cp^*Fe(\eta^5-P_5)]$ (**19**) mit **20** eingegangen, da die Umsetzung mit $[Cp^*Fe(\eta^5-P_5)]$ (**19a**) völlig analog verläuft. Bisher war für die Darstellung von Komplexen des Typs **2** mit einem Cp⁽⁺⁾-Liganden eine Reaktionszeit von 10 h ^[10] vorgeschrieben. *C. Hofmann* ^[9] verkürzte diese bei der Darstellung der Cp*/Cp*-Derivate **IVb** ^[9] auf 3-4 h (IR-Kontrolle). Sowohl *E. Hauck* als auch *C. Hofmann* beobachteten dabei stets nur die Entstehung eines einzigen Produktes des Typs **2**. Verkürzt man nun auch bei dem Cp⁽⁺⁾-Liganden die Reaktionszeit entsprechend, so kann IR- spektroskopisch das Entstehen neuer Banden neben der schon bekannten Bande von 2 bei n =1954 cm⁻¹ beobachtet werden. Nach 3.5 h haben diese ihr Maximum erreicht. Daraufhin wird die Reaktion abgebrochen und das Reaktionsgemisch säulenchromatographisch aufgearbeitet. Dabei ist es vorteilhaft, anstelle von Kieselgel neutrales Aluminiumoxid als Trägermaterial zu verwenden, damit das nicht umgesetzte $[Cp*Fe(\eta^5-P_5)]$ (19) zerstört wird. Mit dem Eluentenverhältnis Petrolether/Diethylether von 80:1 kann zunächst der schon bekannte braune Cluster vom Typ 2 eluiert werden. Dabei werden weitere, unbekannte Fraktionen sichtbar. Zunächst eine braune Fraktion A, dann eine türkis-blaue Fraktion B und schließlich eine moosgrüne Fraktion 21. A kann durch langsames Erhöhen der Polarität auf 40:1 von den übrigen Fraktion abgetrennt und schließlich eluiert werden. Durch weiteres schrittweises Erhöhen der Polarität auf 15:1 können auch die Fraktionen B und 21 erhalten werden. Jedoch ist eine Unterscheidung zwischen B und 21 recht schwierig. Zwar erscheinen beide Fraktionen anfangs deutlich voneinander abgetrennt, doch mit zunehmender Elutionsdauer werden sie in ihren Farben und ihrem Laufverhalten immer ähnlicher. Während der Abtrennung von B und 21 werden zwei weitere Fraktionen C und D sichtbar. C erscheint grau-blau, während D wieder braun ist. C kann mit einem Eluentenverhältnis von 5:1 erhalten werden. Dagegen ist **D** selbst mit reinem Diethylether nicht eluierbar.

3.5.1 Charakterisierung der unbekannten Fraktion 21

Eigenschaften

21 ist anfangs in allen gängigen Lösungsmitteln gut bis sehr gut löslich. Jedoch ist nach einigen Tagen eine deutliche Abnahme der Löslichkeit feststellbar. Selbst in Diethylether oder Methylenchlorid ist keine vollständige Lösung mehr möglich. **21** ist in Lösung moosgrün, als Feststoff eher braun-grün. Eine kurzfristige Handhabung an Luft ist durchaus möglich, jedoch ist eine längere Lagerung nur unter striktem Luftausschluß und Kühlung (-35 °C) empfehlenswert.

Kristallisation

Da in allen gängigen Lösungsmitteln und unter allen bekannten Wachstumsbedingungen keine Einkristalle gezüchtet werden konnten, hat sich Petrolether als letzte Möglichkeit angeboten. Im PE-Lösungsmittelgemisch hat sich Cyclohexan als das Lösungsmittel herausgestellt, das **21** zum Kristallwachstum benötigt. Bei –35 °C konnte ein einziger Kristall erhalten werden, der zwar nur bedingt die Kriterien für einen optimalen Einkristall erfüllte, jedoch trotzdem für eine röntgenstrukturanalytische Untersuchung geeignet war.

IR-Spektroskopie

Für **21** werden im IR-Spektrum zwei Banden gefunden, die im Bereich terminaler Schwingungsfrequenzen liegen ^[34]. Die IR-Daten sind Tabelle 26 zu entnehmen.

Tabelle 26: IR-Daten der Verbindung [{Cp'''Mo(CO)(μ - $\eta^{3:1}$ -P₃)}{Cp*Fe(CO)}{Cp*Fe(μ_3 - $\eta^{4:1:1}$ -P₇Me)}](21) in Petrolether.

Verbindung	\overline{n} (CO) [cm ⁻¹]	Intensität
21	1966	S
21	1900	S

NMR-Spektroskopie

a. ¹H-NMR-Spektroskopie

Das ¹H-NMR-Spektrum von **21** zeigt die erwarteten Signalgruppen für die Cp*- und Cp^{**-} Liganden. Für den Cp^{**-}Liganden wird eine symmetrische Umgebung gefunden, da nur zwei Signale für die insgesamt drei *tert.*-Butylgruppen detektiert werden. Jedoch ist das erwartete Singulett für die beiden Methinprotonen des Cp^{**-} Liganden nicht auffindbar, da die Probe sehr dünn war und so die an sich schon sehr intensitätsschwachen Signale nicht gefunden werden konnten.

Für die Methylgruppe tritt bei $\delta = 1.86$ ppm ein Dublett ($^2J_{PH} = 8$ Hz) auf, was auf die Kopplung mit einem Phosphorkern zurückzuführen ist.

Tabelle 27:¹H-NMR-Daten der Verbindung

$$\label{eq:constraint} \begin{split} & [\{Cp^{**}Mo(CO)(\mu-\eta^{3:1}-P_3)\}\{Cp^{*}Fe(CO)\}\{Cp^{*}Fe(\mu_3-\eta^{4:1:1}-P_7Me)\}]\,(\textbf{21}) \\ & (400.13 \text{ MHz}, CDCl_3). \end{split}$$

Verbindung	d [ppm]	Zuordnung
	1.57 (s, 18H)	$C_5(^t \mathbf{Bu_3}H_2)$
	1.67 (s, 9H)	$C_5({}^t \mathbf{Bu}_3 \mathbf{H}_2)$
21	(s, 2H)	$C_5(^tBu_3H_2)$
	1.41 (s, br., 15H)	C5 Me5
	1.41 (s, br., 15H)	C5 Me5
	1.87 (d, ${}^{2}J_{PH} = 8$ Hz)	PMe

b. ³¹P-NMR-Spektroskopie

Das ³¹P-NMR-Spektrum von Fraktion **21** zeigt ein komplexes Aufspaltungsmuster. Insgesamt werden acht Multipletts im Resonanzbereich von $\delta = 300$ bis $\delta = -400$ ppm aufgefunden. Für eine weitere Diskussion ist jedoch das Signal/Rausch-Verhältnis zu ungünstig, da noch weitere Signalgruppen überlagert sein könnten.

Eine Integration ist ebenfalls nicht aussagekräftig, da das Signal/Rausch-Verhältnis zu schlecht ist, um zuverlässige Ergebnisse zu erzielen.

Massenspektrometrie

Bislang konnte kein aussagekräftiges Massenspektrum von 21 erhalten werden.

Kristallstrukturanalyse von

 $[\{Cp^{\prime\prime\prime}Mo(CO)(\mu - h^{3:1} - P_3)\}\{Cp^*Fe(CO)\}\{Cp^*Fe(\mu_3 - h^{4:1:1} - P_7Me)\}] (21)$

Abb. 37: Kristallstruktur von [{Cp'''Mo(CO)(μ - $\eta^{3:1}$ -P₃)}{Cp*Fe(CO)}{Cp*Fe(μ_3 - $\eta^{4:1:1}$ -P₇Me)}] (21).

Bei der Röntgenstrukturanalyse von [{Cp^{'''}Mo(CO)(μ - $\eta^{3:1}$ -P₃)}{Cp*Fe(CO)}{Cp*Fe(μ_3 - $\eta^{4:1:1}$ -P₇Me)}] (**21**) tritt ein multiples Verzwillingungsproblem auf. Zusätzlich befinden sich drei teilweise fehlgeordnete Cyclohexanmoleküle auf Inversionszentren innerhalb des Kristalls. Die Qualität des Datensatzes ist aus diesen Gründen eher mäßig. Dennoch konnte eine Verfeinerung durchgeführt werden, die eine Diskussion der Bindungsparameter erlaubt. Weitere Angaben zu dieser Problematik können dem Anhang entnommen werden. Die Bindungslängen und -winkel sind aus diesem Grund nur auf zwei bzw. eine Dezimalstelle und ohne Standardabweichung angegeben.
Tabellen 30 a-d:
 Ausgewählte Strukturdaten von

$$[{Cp'''Mo(CO)(\mu-\eta^{3:1}-P_3)}{Cp*Fe(CO)}{Cp*Fe(\mu_3-\eta^{4:1:1}-P_7Me)}] (21).$$

a. Bindungslängen in [Å]:

P(1)-P(2)	2.12
P(2)-P(3)	2.11
P(1)-P(3)	2.19
P(4)-P(5)	2.24
P(5)-P(6)	2.19
P(4)-P(8)	2.20
P(4)-P(9)	2.20
P(6)-P(10)	2.20
P(6)-P(7)	2.20
P(9)-P(10)	2.15
P(7)-P(8)	2.16
Mo(1)-Cp ^{···} _{Cent} .	2.09
Fe(1)-Cp* _{Cent.}	1.76
Fe(2)-Cp* _{Cent.}	1.75

Mo(1)-P(2)	2.48
Mo(1)-P(1)	2.55
Mo(1)-P(3)	2.54
Mo(1)-P(4)	2.51
Fe(2)-P(5)	2.26
Fe(2)-P(2)	2.19
Fe(1)-P(8)	2.32
Fe(1)-P(7)	2.32
Fe(1)-P(9)	2.34
Fe(1)-P(10)	2.32

b. nicht bindende Abstände in [Å]:

P(8)P(9)	3.00
P(7)P(10)	3.00
P(3)P(4)	3.35
P(2)P(5)	3.01
P(6)P(4)	3.36

c. Winkel zwischen den Ebenen:

Ebene	Atome	Mittlere		Ebenen	Winkel [°]
		Abweichung			
E1	P(8)-P(7)-P(4)-P(6)	0.0013	Ī	E1/E2	90.2
E2	P(10)-P(9)-P(6)-P(4)	0.0113		E1/E3	45.1
E3	P(6)-P(4)-P(5)	-]	E2/E3	45.1

P(8)-P(4)-P(9)	86.5
P(10)-P(6)-P(7)	85.3
P(5)-Fe(2)-P(2)	85.1
Fe(2)-P(5)-P(4)	113.7
P(5)-P(4)-Mo(1)	113.1
P(4)-Mo(1)-P(2)	74.1
Mo(1)-P(2)-Fe(2)	138.4
P(2)-P(1)-P(3)	58.7
P(1)-P(2)-P(3)	62.3
P(2)-P(3)-P(1)	59.0

d. Ausgewählte Bindungswinkel in Grad:

Das Gerüst von [{Cp'''Mo(CO)(μ - $\eta^{3:1}$ -P₃)}{Cp*Fe(CO)}{Cp*Fe(μ_3 - $\eta^{4:1:1}$ -P₇Me)} (**21**) ist im wesentlichen aus zwei zentralen Strukturinkrementen aufgebaut. Zum einen ist ein formales Heptaphosphanorbornadien zu erkennen, das aus den Phosphoratomen P(4), P(5), P(6), P(7), P(8), P(9) und P(10) aufgebaut ist. Die beiden formalen Doppelbindungen zwischen den Phosphoratomen P(10) und P(9), sowie P(8) und P(7) dokumentieren sich in den Bindungsabständen, die mit 2.15 Å und 2.16 Å deutlich verkürzt sind. Die Verlängerung gegenüber dem typischen Phosphor-Phosphor-Doppelbindungsabstand von 2.03 Å ist durch die Komplexierung an das [Cp*Fe(1)]-Fragment zu erklären, das die vier Phosphoratome überkappt. Die Komplexierung ist relativ symmetrisch erfolgt, da drei der vier Bindungen mit ca. 2.30 Å nahezu identisch sind. Nur die Bindung Fe(1)-P(9) ist mit 2.34 Å etwas verlängert. Alle Werte bewegen sich aber im typischen Bereich einer Phosphor-Eisenbindung ^[39,40]. Der Faltungswinkel zwischen den beiden Ebenen E1 [(P(8), P(7), P(4), P(6)] und E2 [(P(10), P(9), P(4), P(6)] beträgt 90.2°. Die relativ große Faltung gegenüber dem idealen Wert von 120° ist durch den Klammereffekt zu begründen, der durch das Eisenfragment ausgeübt wird. Auch die Winkel zwischen den Kernen P(9)-P(4)-P(8) und P(7)-P(6)-P(10) sind mit 85.3° und 86.5° relativ klein und gehen annähernd konform mit dem Faltungswinkel.

^[39] O. J. Scherer, G. Schwarz, G. Wolmershäuser, Z. Anorg. allg. Chem. **1996**, 622, 951.

^[40] L. Weber, O. Sommer, H. G. Stammler, B. Neumann, Z. Anorg. allg. Chem. 1996, 622, 543.

Abb. 38: Schweratomgerüst von [{Cp^{'''}Mo(CO)(μ - $\eta^{3:1}$ -P₃)}{Cp*Fe(CO)}{Cp*Fe(μ_3 - $\eta^{4:1:1}$ -P₇Me)}] (21).

Als weiteres Strukturinkrement ist ein Tetrahedran zu erkennen, das aus den Atomen Mo(1), P(3), P(2) und P(1) aufgebaut ist. Das Tetrahedran-Motiv mit einem cyclo-P₃-Liganden und nur einem Metallatom ist in der Übergangsmetallchemie des Phosphors häufig anzutreffen ^[7]. Auch von Molybdän existiert eine röntgenographisch abgesicherte Tetrahedran-Struktur. *Sitzmann* erhielt 1984 durch Umsetzung von [Cp₂Mo₂(CO)₄](Mo Mo) mit weißem Phosphor ^[41] unter anderem ein [Cp(CO)₂Mo(η^3 -P₃)] (**22**) Tetrahedran, dessen Bindungsabstände nahezu identisch mit denen in **21** sind. So ist der Molybdän-Phosphor-Abstand bei **22** mit 2.54 Å im Schnitt nur unwesentlich im Vergleich zu **22** (2.52 Å) verlängert. Auch der mittlere Phosphor-Phosphor-Abstand ist in beiden Molekülen fast identisch (**21**: 2.14 Å; **22**: 2.13 Å). Beide Substrukturen sind über ein aus den Atomen Fe(2), P(5), P(4), Mo(1) und P(2) gebildetes Pentagon miteinander verbunden. Der Fünfring ist jedoch völlig unsymmetrisch, da insgesamt drei relativ verschiedene Winkelwerte gefunden werden, zum einen ein Winkelpaar von ca. 113° und zum anderen je ein Winkel von 74°, 85° und 138°. Zwei weitere Pentagon-Motive sind im Norbarnadien-Gerüst (P₅-Bicyclus) ausgebildet, die jeweils die Atome P(6),

 ^[41] O. J. Scherer, H. Sitzmann, G. Wolmershäuser, Angew. Chem. 1985, 97, 358; Angew. Chem. Int. Ed. Engl. 1985, 24, 351.

P(4) und P(5) gemeinsam haben. Das P(5) nimmt dabei die *envelope*-Position ein (Abknickwinkel: jeweils 45.1°).

Ein interessantes weiteres Strukturmerkmal bildet die Methylierung des P(5)-Atoms. Dies ist insofern von Interesse, da der Verbleib der Methylgruppe bei den bisher bekannten Umsetzungen von [Cp*Fe(η^5 -P₅)] (**19**) mit [Cp^RMo(CO)₃Me] (**20**) ^[9,10] nicht geklärt werden konnte. Der Bindungsabstand P(5)-CH₃ entspricht mit 1.85 Å exakt dem typischen Wert für Phosphor-Kohlenstoff-Einfachbindungen ^[25].

Formal muß **21** als ein inneres Salz betrachtet werden, da das [Fe(1)]-Fragment 17 VE besitzt und die 18-Elektronenregel nur erfüllt, wenn es eine formale negative Ladung trägt. Alle anderen Metallzentren werden durch die Lone-pairs der benachbarten Phosphorzentren abgesättigt. Das Phosphoratom P(5) trägt eine formale positive Ladung, die durch die Methylierung des P(5)-Atoms begründet werden kann.

3.5.2 *Exkurs*: Bisher bekannte E₇-Bausteine

Nortricyclan-(**E**)- und Norbornadien-(**F**)-Gerüste sind bislang die einzig bekannten Strukturtypen von Liganden mit der Summenformel E_7 (E = P, As, Sb). Die reaktiven Positionen bei **E** sind die verbrückenden E-Atome und bei **F** das Brückenkopfatom mit ihren jeweiligen formalen Ladungen, die diese Positionen für den Angriff kationischer Spezies (R⁺, R_2P^+ , etc.) prädestinieren.

Abb. 39: Nortricyclan-(E)- und Norbornadien-(F)-Gerüste.

Von **E** sind ein ganze Reihe von Vertretern bekannt, so zum Beispiel $[P_7(P^tBu)_2(^tBu)$ { $Cr(CO)_5$ }_2] (23) ^[42] oder $[P_7{Fe(CO)_2Cp}_3]$ (24) ^[43]. Von **F** konnten ebenfalls einige Strukturen realisiert werden. *Eichhorn* ^[44] und *Tremel* ^[45] synthetisierten die Verbindungsklasse 25 (s. Abb. 40), die ebenfalls verbrückende Metallfragmente über den beiden formalen Doppelbindungen aufweisen (vgl. dazu auch Verbindung 21).

Abb. 40: $[\eta^4 - E_7 \{M(CO)_3\}]$ (E = P, As, Sb; M = Cr-W) (25).

Auch bei **25** liegt das reaktive Zentrum beim bivalenten E-Atom am Brückenkopf, das mit nucleophilen Salzen des Typs R_4N^+ (R = Me, Et, nBu) in Ethylendiamin reagiert ^[44]. Ein weiteres P₇-Norbornadiengerüst erhielt *L.Goh* ^[46,47] im [Cr(CO)₂CpP₁₀] (**25a**) Komplex.

Abb. 40a: $[Cr(CO)_2Cp(\mu_5-\eta^{2:2:2:2:2}-P_{10})]$ -Gerüst

^[45] U. Bolle, W. Tremel, J. Chem. Soc. Chem. Commun. 1991, 217.

^[42] W. Hönle, H. G. v. Schnering, G. Fritz, H. Schneider, Z. Anorg. Allg. Chem. 1990, 584, 51.

^[43] G. Fritz, K. D. Hoppe, W. Hönle, D. Weber, H. G. von Schnering, *Organomet.Chem.* 1983, 249, 63.

^[44] S. Charles, J. Danis, J. Fettinger, B. Eichhorn, *Inorg. Chem.* **1997**, 36, 3772 und dort zitierte Literatur.

^[46] L. Goh, R. C. S. Wong, E. Sinn, J. Chem. Soc. Chem. Commun. 1990, 1484

^[47] L. Goh, C. K. Chu, R. C. S. Wong, T. W. J. Hambley, J. Chem. Soc., Dalton Trans. 1989, 1951.

Die Verknüpfung eines Norbornadiengerüstes mit anderen Phosphoreinheiten ist ebenfalls bereits in der Literatur beschrieben. So verknüpfte *Berg* ^[48] ein P₇-Norbornadien mit einer P₅-Einheit zu einer P₇-P₅-Struktur **26**.

Abb. 41: $[{Cp'''Co}_3(\mu-\eta^{4:1}-P_7)(\mu-\eta^{4:3}-P_5](26).$

Der Norbornadien-Strukturtyp erscheint auch in $[Ni{P^tBu}_2]_4P_{14}$ (27), wo *Fenske* ^[49] zwei P₇-Einheiten miteinander verbinden konnte. Bei beiden Verbindungen 26 und 27 dient ebenfalls das apicale Brückenkopfatom als reaktives Zentrum bzw. als Verknüpfungsstelle.

Abb. 42: $[(Ni{P^tBu}_2)_4(\mu_3-\eta^{4:2:1}-P_7)_2]$ (27).

Nicht vergessen werden darf der Hittorfsche Phosphor (28), der ebenfalls formale P₇-Norbornadiene -in vielfältiger Variation- bzw. Fünfringe als Substrukturen enthält.

^[48] O. J. Scherer, G. Berg, G. Wolmershäuser, Chem. Ber. 1996, 129, 53.

^[49] R. Ahlrichs, D. Fenske, K. Fromm, H. Krautscheid, O. Treutler, Chem. Eur. J. 1996, 2, 238.

Abb. 43: Hittorf-Phosphor (Ausschnitt).

Fazit: [{Cp^{···}Mo(CO)(μ - $\eta^{3:1}$ -P₃)}{Cp*Fe(CO)}{Cp*Fe(μ_3 - $\eta^{4:1:1}$ -P₇Me)} **(21)** stellt meines Wissens die erstmalige Verknüpfung des in der Phosphorchemie wichtigen Norbornan-Bausteins mit dem eines Tetrahedrans dar. Dabei ist neben der literaturbekannten Alkylierung mit einem typischem Elektrophil (CH₃⁺) an das apicale P(5) eine weitere Anlagerung eines Eisenfragmentes beobachtbar.

3.5.3 Gezielte Synthese von [{Cp'''Mo(CO)(μ -**h**^{3:1}-P₃)}{Cp*Fe(CO)}{Cp*Fe(μ_3 -**h**^{4:1:1}-P₇Me)}] (21)

Bei formaler Betrachtung von **21** ist festzuhalten, daß zwei Moleküle $[Cp*Fe(\eta^5-P_5)]$ (**19**) und nur ein Molekül $[Cp^{\prime\prime\prime}Mo(CO)_3Me]$ (**20**) in **21** eingebaut sind. Aus diesem Grund gilt es zu überprüfen, ob durch den Einsatz eines zweifachen molaren Überschußes an **19** eine gezielte Synthese von **21** möglich ist.

Dazu werden [Cp^{···}Mo(CO)₃Me] (**20**) und eine zweifache Menge an [Cp*Fe(η^5 -P₅)] (**19**) in Xylol gelöst und 3.5 h (NMR- und IR-Kontrolle) bei ca. 144 °C gerührt. Nach 3.5 h zeigt das IR-Spektrum bei den neu entstandenen CO-Banden keine weiteren Veränderungen mehr an. Aufgrund der geringen Produktmengen von **21**, **A**, **B** und **C** bzw. der äußert schlechten Empfangbarkeit im ³¹P-NMR dieser Verbindungen zeigt das NMR-Spektrum außer den bekannten Signalen von **19** und **2** keinerlei neue Signale. Durch Säulenchromatographie wird die gleiche Produktverteilung, wie schon in Kapitel 3.5.1 beschrieben, festgestellt. Als Fazit läßt sich sagen, daß durch den Einsatz eines zweifachen molaren Überschusses an **19** keine gezielte Synthese von **21** durchführen läßt.

3.6 Cyclo-(PhAs)₆ (29) und (^tBuAs)₄ (38) als Arsenquellen

Cyclo-(PhAs)₆ (**29**) und ⁽BuAs)₄ (**38**) haben sich wegen der einfacheren Darstellung und Lagerfähigkeit dem gelben Arsen gegenüber als weit überlegen erwiesen (vgl. dazu die Darstellung bzw. Handhabung von gelben Arsen ^[50]). Auch die Reaktivität gegenüber Metall-komplexen, vor allem von cyclo-(PhAs)₆ (**29**), ist schon seit längerem Gegenstand der Literatur ^[51]. (^tBuAs)₄ (**38**) hat sich erst kürzlich in unserem Arbeitskreis ^[52] als sehr nützliche Arsenquelle erwiesen (vgl. dazu auch Abschnitt 3.6.4: Ausbeutensteigerung bei der Darstellung von [Cp*Fe(η^5 -As₅] (**45**)). Ebenso haben *Schnöckel et al.* ^[53] bei der Darstellung von [{Cp*Al}₃(As)₂] (**41**) das große Synthesepotential von **38** bereits aufgezeigt.

3.6.1 Reaktion von cyclo-(PhAs)₆ (29) mit [Cp*'Mo(CO)(µ-**h**^{2:2}-P₂)₂FeCp*] (2)

Abb. 44: Syntheseschema von $[Cp^* Mo(\mu - \eta^{5:5} - P_m As_n Ph)FeCp^*]$ (m = 5 – n; n = 1,2,3,4) (**30**).

^[50] O. J. Scherer, H. Sitzmann, G. Wolmershäuser, J. Organomet. Chem. 1986, 309, 77.

Modifizierte Synthese: K. Mast, Diplomarbeit, Universität Kaiserslautern 1996.

^[51] A. J. Dimaio, A. L. Rheingold, *Chem. Rev.* **1990**, 90, 169.

^[52] K. Mast, J. Meiers, O. J. Scherer, G. Wolmershäuser, Z. Anorg. allg. Chem. 1999, 625, 70.

^[53] C. K. F. v. Hänisch, C. Üffing, M. A. Junker, A. Ecker, B. O. Kneisel, H. Schnöckel, Angew. Chem. 1996, 108, 3003; Angew. Chem. Int. Ed. Engl. 1996, 35, 2875.

Rührt man äquimolare Mengen von cyclo-(PhAs)₆ (**29**) mit $[Cp^* Mo(CO)(\mu - \eta^{2:2} - P_2)_2 FeCp^*]$ (**2b**) in siedendem Dekalin 15 Minuten lang, so tritt schon nach fünf Minuten unter relativ straker Gasentwicklung ein Farbumschlag von gelb-braun in ein intensives Rot ein. Nach 15 Minuten entweicht der Lösung kein Kohlenmonoxid mehr, und im IR-Spektrum ist dementsprechend die Carbonylbande von **2b** bei $\bar{n} = 1958$ cm⁻¹ nicht mehr detektierbar. Durch säulenchromatographische Aufarbeitung des Reaktionsrückstandes kann nur eine einzige rote Fraktion **30** erhalten werden.

3.6.1.1 Charakterisierung von 30

Eigenschaften

30 ist in allen gängigen Solventien gut bis sehr gut löslich. Die Verbindung ist sehr luftempfindlich. Schon nach kurzer Zeit an Luft zeigt eine Weißfärbung die beginnende Zersetzung an. **30** hat einen relativ üblen Geruch, der sich vor allem in Lösung (z. B. bei der säulenchromatographischen Aufarbeitung) bemerkbar macht.

Eine Auftrennung des Produktgemisches ist bisher nicht gelungen, da sowohl beim Wechsel des Säulenmaterials (Kieselgel), als auch beim Sublimieren eine Zersetzung bzw. irreversible Veränderung von **30** beobachtet wird.

Kristallisation

Das Kristallisationsvermögen ist recht gut. Jedoch ist die Kristallqualität bzgl. der Durchführung einer Röntgenstrukturanalyse als relativ schlecht zu bezeichnen, da mit der Ligandkombination Cp*/Cp* ausschließlich nadelförmige Kristalle erhalten werden, die für eine Strukturanalyse zu dünn sind. Mit der Kombination Cp*Fe/Cp*'Mo sind relativ gute Einkristalle zu erzielen, die jedoch viel zu groß sind und zum Teil geschnitten werden müssen. Auch die Einführung des Ligandensystems Cp'''Mo/Cp*'Fe bringt im Gegensatz zur Verbindungsklasse **3** keine qualitativ hochwertigeren Einkristalle.

NMR-Spektroskopie

a. ¹H-NMR-Spektroskopie

Das ¹H-NMR-Spektrum von **30** zeigt ein komplexes Aussehen, da mehrere Verbindungen des selben Typs nebeneinander vorliegen. Eine exakte Zuordnung bzw. Integration ist aufgrund der nicht weiter aufgelösten Signale deshalb wenig sinnvoll, da z.B. das Cp*-Signal vielfach als Multiplett erscheint. Entsprechend kompliziert erscheinen komplexere Ligandenmuster. Auf eine Angabe der Integration wird deshalb in Tabelle 31 verzichtet.

Verbindung	d [ppm]	Zuordnung
	7.2 (m)	C_6H_5
	2.35 (m)	CH_2CH_3
	1.68 (m)	C ₅ (CH ₃) ₄ Et
30	1.65 (m)	C ₅ (CH ₃) ₄ Et
	1.61 (m)	C5 Me5
	1.38 (m)	C5 Me5
	0.56 (m)	CH_2CH_3

Tabelle 31: ¹H-NMR-Daten der Verbindung [Cp*'Mo(μ - η ^{5:5}-P_mAs_nPh)FeCp*] (m = 5 - n; n = 1,2,3,4)(**30**) (400.13 MHz, CDCl₃).

b. ³¹P-NMR-Spektroskopie

Auch das ³¹P-NMR-Spektrum von **30** ist wenig aussagekräftig, da im Bereich von $\delta = 200$ bis $\delta = -150$ ppm eine Vielzahl von Signalen bzw. Signalsätzen detektiert werden, die zunächst keiner bestimmten Verbindung zugeordnet werden können. Auf eine Auflistung bzw. Zuordnung soll deshalb an dieser Stelle verzichtet werden. Die Vielzahl von Signalen indiziert jedoch, daß **30** ein Gemisch von vielen Verbindungen sein muß. Auffallend bei allen Spektren dieses Typs ist jedoch, daß zunächst bei tiefem Feld im Bereich von $\delta = 150 - 200$ ppm Signale gefunden werden und dann wieder bei hohen Feld zwischen $\delta = -20$ ppm und $\delta = -100$ ppm eine ganze Reihe von Peaks auftreten. Dazwischen werden bei $\delta = 30 - 40$ ppm

je nach Konzentration auch einige wenige Signale detektiert. Eine bestimmte Systematik ist jedoch nicht erkennbar.

Massenspektrometrie

Das EI-Massenspektrum (70 EV) von **30** gibt Aufschluß über das komplexe ¹H- und ³¹P-NMR-Verhalten. Es beweist das Vorliegen mehrerer Systeme der allgemeinen Zusammensetzung [Cp*'Mo(μ - $\eta^{5:5}$ -P_mAs_nPh)FeCp*] (m = 5 – n; n = 1,2,3,4) (**30**), deren Molpeaks jeweils detektiert werden können. Lediglich für n = 1 kann nicht der Molpeak, sondern zwei Abbaufragmente gefunden werden. Zum einen [Cp*'Mo**P**₃AsC₆H₅FeCp*]⁺ bei m/z = 668.2 amu, bei dem ein Phosphorion abgespalten ist, und zum anderen [Cp*'Mo**P**₄C₆H₅FeCp*]⁺ bei m/z = 619 amu, beim dem ein Arsenion defragmentiert wird.

Tabelle 32:Ausgewählte massenspektrometrische Daten der Verbindung
 $[Cp^*Mo(\mu-\eta^{5:5}-P_mAs_nPh)FeCp^*] (m = 5 - n; n = 1,2,3,4) (30)$

EI, 70 eV, 1 mA, QT 200 °C.

	30	
Fragmention	m/z	rel. Intensität
	[amu]	[%]
$[Cp*'MoPAs_4C_6H_5FeCp*]^+$	831.0	15.4
$[Cp^* Mo \mathbf{P}_2 \mathbf{A} \mathbf{s}_3 C_6 H_5 Fe Cp^*]^+$	787.0	24.2
[Cp*'Mo PAs ₄ FeCp*] ⁺	754.0	72.0
$[Cp^* MoP_3As_2C_6H_5FeCp^*]^+$	740.2	12.7
$[Cp^* Mo \mathbf{P}_2 \mathbf{A} \mathbf{s}_2 C_6 H_5 Fe Cp^*]^+$	710.1	100
$[Cp*'MoP_3AsC_6H_5FeCp*]^+$	668.2	25.3
$[Cp^* Mo\mathbf{P}_4C_6H_5FeCp^*]^+$	619.0	14.1
$[Cp*'MoAsC_6H_5FeCp*]^+$	575.1	16.7
$[Cp*'MoPC_6H_5FeCp*]^+$	531.2	10.0
[Cp*'Mo P FeCp*] ⁺	462.3	10.2
$[C_6H_5]^+$	77.0	5.0

Insgesamt können vier Verbindungen dieser Art im Massenspektrum nachgewiesen werden, die ein P_mAs_n -Fünfringdeck besitzen, wobei die Anzahl der Arsen-Atome von n = 4 bis n = 1 reicht. Die Anzahl der Phosphoratome variiert entsprechend.

Natürlich sagt das Massenspektrum nichts über die möglichen Isomere aus. Insgesamt sind aus den vier nachgewiesen Phospor-Arsen-Verbindungen 18 denkbare Isomere bildbar, die in Lösung alle vorliegen können.

Abb. 45: Vier massenspektrometrisch charakterisierte Verbindungen und ihre insgesamt 18 denkbaren Isomere.

Dieser Überblick erklärt, warum in den NMR-Spektren ein solch komplexes Verhalten beobachtet wird.

Kristallstrukturanalyse von

 $[Cp^{*}Mo(\mu-h^{5:5}-P_mAs_nPh)FeCp^{*}]$ (m = 5 – n; n = 1,2,3,4) (30)

Abb. 46: Kristallstruktur von [Cp*'Mo(μ - $\eta^{5:5}$ -P_mAs_nPh)FeCp*] (m = 5 - n; n = 1,2,3,4) (**30**).

30 liegt als ein Mischkristall von drei unabhängigen Molekülen vor, die jeweils eine Fehlordnungsproblematik im Bereich des planaren E_4 -Bausteins aufweisen.

Aufgrund der Elektronenverteilung kann nicht mit letzter Sicherheit festgestellt werden, welche Besetzung (Phosphor oder Arsen) an dieser Stelle des Moleküls vorliegt. Dieses Ergebnis steht im Einklang mit den massenspektrometrischen Daten, die ein Vorliegen mehrerer Systeme nebeneinander vorhersagen. Genau das gleiche Resultat wird hier vorgefunden. Damit sind keine Aussagen über Besetzungsverhältnisse, Bindungswinkel und Bindungslängen in diesem Bereich möglich. Lediglich in den zu dem E₄-Baustein peripheren Regionen können ungefähre Aussagen über die vorhandenen Winkel getroffen werden.

Nur das Phosphoratom mit einer Phenylgruppe kann im Mitteldeck lokalisiert werden. Interessanterweise ist in diesem Fall eine Phenylgruppe vom $cyclo-(PhAs)_6$ (29) zu einem Phosphoratom gewandert.

Folgende Aussagen zur Struktur können getroffen werden:

- Der Faltungswinkel zwischen dem E₄-Deck und der von dem Phosphor-Atom und den zwei E-Einheiten aufgespannten Ebene beträgt ca. 12°.
- Der Bindungswinkel zwischen dem Phenylring, dem Phosphor-Atom und dem Molybdän-Atom beträgt ca. 115°.
- Der Out-of-Plane Winkel (Zur Definition: s. folgende Seite) zwischen dem Phenylring und der PEE-Ebene weicht mit ca. 20° von der Linearität ab.
- Winkelsumme des dreifach koordinierten Phosphors (Ipso-C, P und 2 E): 350°

G. Schwarz konnte 1994 ^[54] in unserer Arbeitsgruppe den Cluster [Cp''Fe(η^5 -E₅)] (E₅ = P_{5-n}As_n; n = 0 – 5) (**31**) erhalten, der ebenfalls ein gemischtes Arsen-Phosphor-Fünfring-Deck aufweist. Jedoch basiert die Struktur von **31** nur auf massenspektrometrischen- und NMR-Daten, die natürlich keinen endgültigen Strukturbeweis darstellen.

Abb. 47: Strukturvorschlag für $[Cp''Fe(\eta^5-E_5)]$ ($E_5 = P_{5-n}As_n$; n = 0 - 5) (**31**).

^[54] G. Schwarz, *Dissertation*, Universität Kaiserslautern 1994.

Auch *H. Slodzyk* generierte in unserer Arbeitsgruppe einen gemischten Tripeldeckerkomplex $[(Cp*Mo)_2(\mu-\eta^{6:6}-As_nP_{6-n})]$ (n = 0 – 6) (**32**) mit E₆-Mitteldeck ^[55]. Aber auch hier stützen nur die NMR- und massenspektrometrischen Daten die vorgeschlagene Struktur.

Abb. 48: Strukturvorschlag für $[(Cp*Mo)_2(\mu-\eta^{6:6}-As_nP_{6:n})]$ (n = 0 – 6) (**32**).

Allen Verbindungen **30**, **31** und **32** ist gemein, daß es bis heute nicht gelungen ist, die Produkt-Gemische sauber aufzutrennen. Dies deutet darauf hin, daß es sich um eine Eigenschaft handelt, die allen diesen Systemen gemein ist.

Trotz der aufgefundenen Abweichung des Mitteldecks von der Planarität sollte eine Einordnung der Verbindungsklasse **30** als Arsaphosphole möglich sein. Im folgenden werden die in der Literatur beschrieben qualitativen Kriterien zur Klassifizierung der klassischen Phosphole zusammengefasst.

^[55] H. Slodzyk, *Dissertation*, Universität Kaiserslauterm **1993**.

3.6.1.2 Exkurs: Phosphole

In den letzten Jahren stand die Frage nach der Aromatizität der Phosphole im Mittelpunkt der Diskussion ^[56]. Generell beobachtet man zwei gegenläufige Tendenzen bei der Betrachtung der Aromatizität. Zum einen wird der planare Zustand durch die sicherlich vorhandene Elektronendelokalisierung stabilisiert. Zum anderen ist diese jedoch oft nicht groß genug, um die relativ hohe Inversionsbarriere des Phosphors zu überwinden, der die pyramidale Anordnung bevorzugt. Aus diesem Grund muß bei den Phospholen zwischen zwei Extremfällen unterschieden werden. Dies soll am Beispiel der 1,2,4-Triphosphole diskutiert werden.

Abb. 49: Grenzfälle A und B bei den 1,2,4-Triphospholen.

Im Fall **A** dominiert der pyramidale Zustand des Phosphors, der keine Einbeziehung des Lone-pairs am Phosphor in das benachbarte π -System zuläßt. Im zweiten Fall **B** dagegen ist eine planare aromatische Beschreibung des Fünfrings zulässig, bei der ein 6π -Elektronen-System vorgefunden wird.

Folgende Faktoren vergrößern nun die Planariät des System und verringern damit die Pyramidaliät am Phosphor^[57]:

- Einführung sterisch aufwendiger Substituenten R am dreifach koordinierten Phosphor (z.B. Super-Mesityl, TMS, etc.)

^[56] K. B. Dillon, F. Mathey, J. F. Nixon, *Phosphorus, The Carbon Copy*, Wiley, Chichester **1998**.

^[57] A. Dreinsfeld, L. Nyulázi, P. v. Ragué Schleyer, *Inorg. Chem.* 1998, 37, 4413.

- Einbau zusätzlicher zweifach koordinierter Phosphor-Einheiten in den Fünfring, die den Ring spannen und ferner ein Gefälle in der Elektronegativität innerhalb des Ringes erzeugen (zwischen P und C).
- Einführung zusätzlicher Acceptor-Substituenten für R und R' (TMS, P(Ph)₃⁺ oder BH₂).

Diese Überlegungen führten zur Synthese eines planaren 1,2,4-Triphosphol-Systems **33** ^[58], bei dem für R' die TMS-Gruppen und für R die CH(TMS)₂-Gruppe eingeführt wurden. Wie groß der Einfluß von R' für das System ist, zeigt Verbindung **34** ^[59], bei der der gleiche Grundkörper wie in **33** vorliegt. Durch den Austausch der beiden SiMe₃-Gruppen gegen zwei *tert*.-Butylgruppen wird die Planarität des 1,2,4-Triphosphols aufgehoben. Abb. 50 zeigt diese beiden 1,2,4-Triphosphol-Systeme.

Abb. 50: 1,2,4-Triphosphol-Systeme 33 und 34.

Zur Klassifizierung der Planarität werden im allgemeinen zwei Kenngrößen verwandt: zum einen die Winkelsumme um den dreifach koordinierten Phosphor herum und zum zweiten der damit eng verwandte Out-of-Plane Winkel (s. Abb. 51).

^[58] F. G. Cloke, P. B. Hitchcock, P. B. Hunnable, P. Nixon, J. F. Nyulázi, E. Niecke, V. Thelen, *Angew. Chem.* **1998**, 110, 8; *Angew. Chem. Int. Ed. Engl.* **1998**, 378, 1083.

^[59] V. Caliman, P. B. Hitchcock, J. F. Nixon, J. Chem. Soc. Chem. Commun. 1995, 1661.

Abb. 51: Definition des Out-of-Plane Winkels α .

Bei **33** kann praktisch von einem planaren, relativ aromatischen System ausgegangen werden (Winkelsumme: 359.6°). Dagegen ist bei **34** nur eine Winkelsumme von 342° zu finden, die eine relativ hohe Pyramidalisierung des dreifachkoordinierten Phosphors anzeigt.

Fazit:

Vergleicht man nun Verbindung [Cp*'Mo(μ - $\eta^{5:5}$ -P_mAs_nPh)FeCp*] (m = 5 – n; n = 1,2,3,4) (**30**) mit **33** und **34**, so läßt sich feststellen, daß die Kenngrößen Winkelsumme am dreifachkoordinierten Phosphor und Out-of-Plane Winkel mit 350° bzw. 160° zwischen denen von **33** und **34** liegen.

Dennoch läßt sich sagen, daß [Cp*'Mo(μ - $\eta^{5:5}$ -P_mAs_nPh)FeCp*] (m = 5 – n; n = 1,2,3,4) (**30**) sich eher mit Verbindung **34** bzw. Grenzfall **A** vergleichen läßt, da die aufgefundenen Parameter vermuten lassen, daß beim Phosphor die Pyramidalisierung gegenüber der Planarität überwiegt (s. Abb. 52).

Abb. 52: Beschreibung von 30 analog dem Grenzfall A.

3.6.2 Reaktion von cyclo-(PhAs)₆ (29) mit [Cp"Fe(CO)₂]₂ (35)

Abb. 53: Syntheseschema von $[{Cp''Fe(CO)_2}_2(\mu-\eta^{1:1}-As_2Ph_2)]$ (**36**).

Rührt man cyclo-(PhAs)₆ (**29**) mit einem annähernd fünffachen Überschuß an [Cp⁺⁺Fe(CO)₂]₂ (**35**) nur fünf Minuten bei 190 °C, so stellt sich noch vor dem beginnenden Rückfluß ein Farbumschlag von Braun in ein tiefes Rot ein. Nach fünf Minuten ist im IR-Spektrum die Absorptionsbande der CO-Liganden von **35** bei $\overline{n} = 1772$ cm⁻¹ nahezu vollständig verschwunden. Die Reaktion wird daraufhin abgebrochen und einer säulenchromatographischen Aufarbeitung unterworfen. Mit reinem Petrolether als Laufmittel können insgesamt drei Fraktionen eluiert werden. Zunächst eine schwachgelbe Fraktion in sehr geringen Mengen, die als Ferrocen identifiziert wird. Weiter wird eine braun-rote Fraktion von nicht umgesetztem Edukt **35** erhalten. Als letzte Fraktion kann **36** mit einer tiefroten Farbe eluiert werden.

3.6.2.1 Charakterisierung von 36

Eigenschaften und Kristallisation

36 ist in allen gängigen Lösungsmitteln sehr gut löslich. Die Luftempfindlichkeit ist gering. Auch nach einigen Wochen Lagerung unter Schutzgas ist keine Abnahme der Löslichkeit feststellbar. Durch Abkühlen einer gesättigten n-Pentan-Lösung auf -35 °C können röntgenstrukturtaugliche Einkristalle erhalten werden.

IR-Spektroskopie

 $\label{eq:advector} \textbf{Tabelle 33:} \ IR-Daten \ der \ Verbindung \ [\{Cp``Fe(CO)_2\}_2(\mu-\eta^{1:1}-As_2\ Ph_2)] \ (\textbf{36}) \ in \ Pentan.$

Verbindung	$\overline{\boldsymbol{n}}$ (CO) [cm ⁻¹]	Intensität
26	1990	S
30	1948	S

¹H-NMR-Spektroskopie

Im ¹H-NMR-Spektrum werden die erwarteten Signalgruppen gefunden, die in Tabelle 34 aufgelistet sind.

 Tabelle 34:
 1 H-NMR-Daten der Verbindung [{Cp''Fe(CO)₂}₂(µ-η^{1:1}-As₂ Ph₂)] (36) (400.13 MHz, CDCl₃).

Verbindung	d [ppm]	Zuordnung
	7.3 (m, 5H)	C_6H_5
36	1.69 (s, 18H)	$2 \ge C_4 H_9$
30	4.33 (s, 1H)	СН
	5.25 (s, br, 2H)	2x C H

Massenspektrometrie

Im EI-Massenspektrum (70 eV) von **36** kann kein Molekülionenpeak gefunden werden. Jedoch ist bei m/z = 770.1 amu [{Cp''Fe(CO)₂}{Cp''}Ph₂As₂]⁺ auffindbar, bei dem ein [Fe(CO)₂]⁺ Fragment abgespalten wurde. Der Peak für die komplette Abspaltung eines [Cp''Fe(CO)₂]⁺-Ions wird bei m/z = 593.0 amu detektiert. Im weiteren Verlauf der Fragmentierung werden ein Eisenion und die erste Phenylgruppe abgespalten. Den Basispeak bildet das [Cp''Fe]⁺-Fragment bei m/z = 233.1 amu. Das vollständige Fragmentierungsmuster ist in Tabelle 35 wiedergegeben.
 Tabelle 35:
 Ausgewählte massenspektrometrische Daten der Verbindung

[{Cp''Fe(CO)₂}₂(μ-η^{1:1}-As₂ Ph₂)] (**36**) EI, 70 eV, 1 mA, QT 200 °C.

	36	
Fragmention	m/z	rel. Intensität
Tragmention	[amu]	[%]
$[{Cp''Fe(CO)_2}{Cp''}Ph_2As_2]^+$	770.1	14.5
$[{Cp''Fe(CO)_2}Ph_2As_2]^+$	593.0	27.0
$[{Cp''(CO)_2}Ph_2As_2]^+$	537.0	47.1
$[{Cp''(CO)_2}PhAs_2]^+$	462.0	8.0
$[Ph_2As_2]^+$	303.9	6.4
$[Cp''Fe(CO)_2]^+$	289.1	14.1
[Cp''Fe] ⁺	233.1	100
$[Cp''H]^+$	178.3	3.6
$[PhAs]^+$	152.0	2.7
$[Ph]^+$	77.0	10.3

Kristallstrukturanalyse von [{Cp''Fe(CO)₂}₂(μ -**h**^{1:1}-As₂ Ph₂)] (36)

Von Verbindung **36** konnte eine Röntgenstrukturanalyse durchgeführt werden. Ausgewählte Strukturparameter sind in den Tabellen 36 a-c aufgelistet. Detaillierte Angaben können dem Anhang entnommen werden.

Abb. 54: Kristallstruktur von $[{Cp''Fe(CO)_2}_2(\mu-\eta^{1:1}-As_2Ph_2)]$ (**36**).

Tabellen 36 a-c:Ausgewählte Strukturdaten von $[{Cp''Fe(CO)_2}_2(\mu-\eta^{1:1}-As_2Ph_2)]$ (36).

As(1)-As(2)	2.4620 (6)
Fe(1)-As(1)	2.4520 (8)
Fe(2)-As(2)	2.4545 (8)
As(1)-C(151)	1.961 (4)
As(2)-C(161)	1.965 (4)
Fe(1)-C(01)	1.752 (5)
Fe(1)-C(02)	1.760 (5)
Fe(2)-C(03)	1.756 (5)
Fe(2)-C(04)	1.754 (5)
Fe(1)-Cp [·] _{Cent.}	1.736
Fe(2)-Cp [·] _{Cent.}	1.746

a. Ausgewählte Bindungslängen in [Å]:

Fe(1)-As(1)-As(2)	103.45 (3)
Fe(2)-As(2)-As(1)	103.49 (3)
C(25)-As(2)-Fe(2)	106.98 (12)
C(25)-As(2)-As(1)	94.96 (13)
C(15)-As(1)-Fe(1)	106.64 (12)
C(15)-As(1)-As(2)	96.30 (12)
Cp''_{Cent} -Fe(1)-As(1)	119.1
Cp''_{Cent} -Fe(2)-As(2)	119.5
C(01)-Fe(1)-C(02)	89.6 (2)
C(03)-Fe(2)-C(04)	91.9 (2)

b. Ausgewählte Bindungswinkel in Grad:

c. Winkel zwischen den Ebenen:

Ebene	Atome
E1	C(151)-As(1)-As(2)
E2	Fe(2)-As(2)-As(1)
E3	C(25)-As(2)-As(1)
E4	Fe(1)-As(1)-As(2)

Ebenen	Winkel [°]
E1/E2	108.8
E3/E4	109.3

Die Röntgenstrukturanalyse von **36** zeigt einen tetrasubstituierten Bisarsinidenkomplex in alltrans-Konfiguration der Liganden. Formal hat eine Additionsreaktion stattgefunden, bei der sich [Cp''Fe(CO)₂]₂ (**35**) an das hypothetische (PhAs = AsPh) addiert. Jedes As-Atom gibt dabei ein Elektron an das benachbarte Eisenatom ab. Damit erfüllen beide Metallzentren die 18 VE-Regel. Die Arsen-Arsen-Einfachbindung ist mit 2.462 Å etwas verlängert im Vergleich zum bereits beschriebenen Zweikernkomplex [{CpFe(CO)₂}₂(μ - η ^{1:1}-As₂Ph₂)] (**37**) ^[60]. Die geringe Verlängerung kann auf den erhöhten Raumbedarf der insgesamt vier *tert.*-Butylgruppen an den Cp-Ringe zurückgeführt werden. Jedoch liegt auch dieser Wert im Rahmen der bisher bekannten Arsen-Arsen-Einfachbindungen ^[61].

Auch die Eisen-Arsen-Abstände sind mit 2.452 Å und 2.455 Å etwas verlängert im Vergleich zu **37**. Auch hier kann der Grund in den sterisch aufwendigeren Liganden gesehen werden. Im Vergleich zu anderen Eisen-Arsen-Abständen sind sie jedoch um ca. 0.10 - 0.15 Å verlängert, so zum Beispiel bei den Komplexen [(CO)₄FeAs(CCH₃)₃] (2.30 Å) ^[62] und $[C_6H_4(As(CH_3)_2)_2Fe(CO)_3]$ (2.36 Å) ^[63].

Die Fe(1)-As(1)-As(2)-Fe(2)-Atome bilden eine "Zickzack"-Kette und schließen Winkel von zweimal 103.5° (Fe(1)-As(1)-As(2) und Fe(2)-As(2)-As(1)) ein. Die Torsionswinkel zwischen Fe(1)-As(1)-As(2)-Ph und Fe(2)-As(2)-As(1)-Ph betragen dabei 109° [**37**: 72.3°] (vgl. dazu Abb. 55). Dies stellt eine signifikante Vergrößerung gegenüber **37** dar, die aber auch mit dem erhöhten Raumbedarf der [Cp"Fe]-Fragmente erklärt werden kann.

Abb. 55: Torsionswinkel von 36; Projektion entlang der As(1)-As(2)-Achse.

^[60] A. L. Rheingold, M. J. Foley, P. J. Sullivan, Organometallics 1982, 1, 1429.

^[61] F. Donohue, J. Acta Crystallogr. **1962**, 15, 708.

^[62] J. Legendre, C. Girard, M. Huber, Bull. Soc. Chim. Fr. 1971, 1998.

^[63] D. Brown, G. Bushnell, Acta Crystallogr. 1967, 22, 296.

Fazit: Der Einsatz des sterisch anspruchsvolleren Cp''–Liganden zeigt keine andere Reaktivität als der Cp-Ligand.

3.6.3 Umsetzung von cyclo-(PhAs)₆ (29) mit [Cp"Co(CO)₂] (39)

Abb. 56: Syntheseschema von 40 und 41.

Rührt man cyclo-(PhAs)₆ (**29**) in einem annähernd vierfachen Überschuß mit $[Cp''Co(CO)_2]$ (**39**) in siedendem Dekalin, so tritt bereits nach fünf Minuten unter stetiger CO-Entwicklung ein Farbumschlag von gelb-braun in intensives braun-schwarz ein. Nach 2.5 h sind im IR-Spektrum die Banden des Eduktes nicht mehr detektierbar. Die säulenchromato-graphische Aufarbeitung zeigt bei einer äquimolaren Reaktionsführung nur eine einzige braune Fraktion **40**, die mit reinem Petrolether erhalten werden kann. Bei einem vierfachen molaren Überschuß an **39** kann zusätzlich mit reinem Petrolether eine weitere orange Fraktion **41** eluiert werden.

3.6.3.1 Charakterisierung von 40

Eigenschaften

40 ist in allen gängigen Lösungsmitteln gut bis sehr gut löslich. Die Luftempfindlichkeit ist eher mäßig. Ein Lagerung unter Schutzgasatmosphäre ist problemlos möglich. Durch Abkühlen einer gesättigten n-Hexan-Lösung können Einkristalle erhalten werden, die jedoch ein multiples Verzwillingungsproblem beinhalten. Auch durch Wechsel der Lösungsmittel kann dieses Problem nicht beseitigt werden.

IR-Spektroskopie

40 zeigt im IR-Spektrum keine Carbonylbanden.

¹H-NMR-Spektroskopie

Im ¹H-NMR-Spektrum von **40** kann ein symmetrischer Signalsatz für den Cp⁺⁺-Liganden aufgefunden werden, da beide *tert*.-Butyl-Gruppen als ein Singulett erscheinen. Ebenso erscheinen zwei der Ringprotonen als ein breites Singulett.

 Tabelle 37:
 ¹H-NMR-Daten der Verbindung 40 (400.13 MHz, CDCl₃).

Verbindung	d [ppm]	Zuordnung
	1.41 (s, 18H)	$2 \ge C_4 H_9$
40	4.58 (s, br., 2H)	2 H
	5.34 (s, br., 1H)	Н

Massenspektrometrie

Das EI-Massenspektrum (70 eV) von **40** zeigt als Molpeak ein Fragmention der rel. Masse 932.7 amu, was auf eine Verbindung mit der Summenformel $[{Cp''Co}_3As_3]^+$ hindeutet. Als Basispeak kann $[{}^tBu]^+$ detektiert werden.

Tabelle 38:Ausgewählte massenspektrometrische Daten der Verbindung 40.EI, 70 eV, 1 mA, QT 200 °C.

	40	
Fragmention	m/z	rel. Intensität
	[amu]	[%]
$[{Cp''Co}_3As_3]^+$	932.7	9.2
$[{Cp``Co}_2As_3]^+$	696.0	3.8
$[^{t}Bu]^{+}$	57.0	100

Strukturvorschlag

Die vorliegenden analytischen Daten erlauben einen Strukturvorschlag, der auf den vorliegenden analytischen Daten basiert. Im Massenspektrum konnte nachgewiesen werden, das **40** in einem sechs Ecken Polyeder vorliegt. Unter Berücksichtigung der Symmetrie des Cp⁺-Liganden, die sich aus dem ¹H-NMR-Spektrum ergibt, könnte **40** in einem trigonalem Antiprisma vorliegen.

Abb. 57: Strukturvorschlag für [{Cp''Co}₃(μ_3 - $\eta^{3:3:3}$ -As₃)] (**40**)

3.6.3.2 Charakterisierung von 41

Eigenschaften

In Lösung hat **41** eine orange Farbe, als Feststoff ist die Verbindung braun. **41** ist in allen Lösungsmitteln gut bis sehr gut löslich. Die Luftempfindlickeit ist eher gering. Kristallisationsversuche blieben bislang erfolglos.

IR-Spektroskopie

Im IR-Spektrum von **41** ist eine CO-Bande im terminalen Bereich ^[34] bei $\bar{n} = 1997$ cm⁻¹ detektierbar (Pentan).

¹H-NMR-Spektroskopie

Das ¹H-NMR-Spektrum von **41** zeigt eine symmetrische Umgebung für den Cp⁺⁺-Liganden an, da die beiden *tert*.-Butyl-Gruppen als ein Singulett erscheinen. Ebenso treten zwei Ringprotonen als ein breites Singulett in Resonanz. Außerdem können Signale für eine Phenylgruppe gefunden werden.

 Tabelle 39:
 ¹H-NMR-Daten der Verbindung 41 (400.13 MHz, CDCl₃).

Verbindung	d [ppm]	Zuordnung
	1.27 (s, 18H)	$2 \ge C_4 H_9$
/1	4.52 (s, br., 2H)	CH
41	5.18 (s, br., 1H)	СН
	7.3 (m, 5H)	C ₆ H 5

Massenspektrometrie

Das Massenspektrum von **41** zeigt einen Molpeak von m/z = 567.2 amu, der auf eine Verbindung mit der Summenformel [Cp''Co(CO)As₃Ph] hindeutet. Ferner läßt sich die Fragmentierung dieser Verbindung fast lückenlos dokumentiern. (vgl. Tabelle 40).

Tabelle 40:Ausgewählte massenspektrometrische Daten der unbekannten Verbindung 41.EI, 70 eV, 1 mA, QT 200 °C.

	41	
Fragmention	m/z	rel. Intensität
	[amu]	[%]
[Cp''Co(CO)As ₃ Ph]	567.2	26.9
[Cp''CoAs ₃ Ph]	539.2	93.9
$[PhAs]^+$	153.9	100
$[PhAs_2]^+$	227.7	4.7
$[As]^+$	75.0	5.25
$[Ph]^+$	77.0	23.8
[^t Bu] ⁺	57.0	92.2

Strukturvorschlag

Trotz der deutlich abweichenden CHN-Analyse (s. dazu experimenteller Teil) deuten die IR-, NMR- und massenspektrometrischen Daten auf eine mögliche Struktur hin:

Abb. 58: Strukturvorschlag für $[{Cp''(CO)Co}Ph(\eta^2-As_3)]$ (41).

Dieser Strukturvorschlag basiert auf einer ähnlichen Reaktion von *K. Pfeiffer* ^[64], bei der die dimere Cobalt-Verbindung [Cp*Co(μ -CO)]₂(Co=Co) mit gelben Arsen umgesetzt wird. Dabei ist u.a. auch [Cp*(CO)(η^2 -As₄)] erhältlich, das einen ähnlichen strukturellen Aufbau wie **41** besitzt.

^[64] O. J. Scherer, K. Pfeiffer, G. Wolmershäuser, *Chem. Ber.* 1992, 125, 2367.

3.6.4 (^tBuAs)₄ (38) als Arsenquelle: Syntheseoptimierung von [Cp*Fe(**h**⁵-As₅)] (45)

Abb. 59: Synthese von $[Cp*Fe(\eta^5-As_5)]$ (45).

Da $[Cp^*Fe(\eta^5-As_5)]$ (45) für weitere Umsetzungen in größeren Mengen benötigt wird, steht die Syntheseoptimierung zunächst im Vordergrund ^[50]. Die erstmalige Darstellung von 45 durch *C. Blath* ^[6] über gelbes Arsen liefert $[Cp^*Fe(\eta^5-As_5)]$ (45) nur in Ausbeuten von 11 %. Dabei wird gelbes Arsen in einem zehnfachen molaren Überschuß bezogen auf $[Cp^*Fe(CO)_2]_2$ (46) eingesetzt. Weitere Produkte sind bei dieser Umsetzung nicht erhalten worden. *B. Rink* ^[65] erzielt durch Reduktion des Überschusses an gelbem Arsen auf 3:1 eine Steigerung der Ausbeute von 11 % auf bis zu 25 %. Zusätzlich kann bei dieser Art der Reaktionsführung [{Cp*Fe}₃As₆(H)] (47) als weiteres Produkt isoliert werden. Entscheidend für die Ausbeutensteigerung ist neben der Verminderung des Überschusses an gelbem As₄ auch die Reaktionsdauer. Da die Ausbeuten an $[Cp*Fe(\eta^5-As_5)]$ (45) mit zunehmender Reaktionsdauer deutlich abnehmen, ist der Reaktionsabbruch nach dem Verschwinden der

^[65] B. Rink, *Dissertation*, Universität Kaiserslautern 1994.

verbrückenden Carbonylbande im IR-Spektrum von $[Cp*Fe(CO)_2]_2$ (46) bei $\mathbf{n} = 1740 \text{ cm}^{-1}$ zwingend erforderlich.

Ergebnisse mehrerer Versuchsreihen mit verschiedenen Reaktionszeiten Die und Molverhältnissen bestätigen die von B. Rink aufgefundenen Reaktionsbedingungen, so daß diese auch auf (^tBuAs)₄ (**38**) als Arsenquelle übertragbar sind. So ist eindeutig erkennbar (s. experimenteller Teil), daß bei einer längeren Thermolysedauer die Ausbeuten zwischen 5 und 20 % liegen. Die Verkürzung der Reaktionszeit auf 25-35 Minuten (Verschwinden der verbrückenden CO-Bande von **46**) erbringt eine Steigerung der Ausbeute an $[Cp*Fe(\eta^5-As_5)]$ (45) auf bis zu max. 54 % [Im allgemeinen liegt die Ausbeute zwischen 38 % und 45 %]. Auch die Wahl des Molverhältnisses von 3:1 hat sich als optimal erwiesen, da eine Verminderung auf 2:1 die Ausbeute auf nahezu 0 % reduziert. Dagegen hat eine Steigerung des Arsenüberschuß auf 4:1 keinen entscheidenden Einfluß auf die Ausbeute. Bemerkenswert ist auch die Verminderung der Thermolysedauer von 2-3 h bei B. Rink auf nun 25 Minuten, was die hohe Reaktivität von (^tBuAs)₄ (**38**) belegt.

Die Aufarbeitung an einer mit neutralem A $_{\rm b}O_3$ gefüllten Säule ist in Abweichung von der bisher beschriebenen Aufarbeitung an Kieselgel erforderlich, da ($^{\rm t}BuAs$)₄ (**38**) nur durch Elution auf einer mit Aluminiumoxid (neutral) beschickten Säule vollständig von **45** abgetrennt werden kann. Da sowohl ($^{\rm t}BuAs$)₄ (**38**) als auch [Cp*Fe(η^5 -As₅)] (**45**) mit reinem Petrolether eluiert werden, ist eine Säulenlänge von min. 15 cm notwendig, um die vollständige Trennung beider Komponenten zu erreichen. ¹H-NMR saubere Fraktionen von **45** sind jedoch nur durch zweimalige säulenchromatographische Reinigung von [Cp*Fe(η^5 -As₅)] (**45**) erhältlich, da ($^{\rm t}BuAs$)₄ (**38**) noch in Spuren in der Fraktion von **45** vorliegt.

Abb. 60: Umsetzung von P_4 mit (^tBuAs)₄ (**38**).

Rührt man weißen Phosphor (**48**) mit einer dreifachen molaren Menge an ([†]BuAs)₄ (**38**) im Druckschlenkrohr bei 60 °C, so ist nach 30 Minuten im ³¹P-NMR-Spektrum der Rohlösung neben einem großen Überschuß an **48** bei $\delta = -521$ ppm ein sehr breites Signal bei $\delta = -461$ ppm detektierbar, bei dem es sich um das festkörper-NMR-Signal von P₄ handelt ^[66], der in einem relativ großem Überschuß vorliegt.

Weitere Umsetzungen bei verschiedenen Temperaturen, Molverhältnissen und Reaktionszeiten (vgl. dazu Kapitel 4.3.14) führten zu keiner Ergebnisveränderung.

3.6.6 Thermolyse von [Cp⁺Co(CO)₂] (39) und [Cp^{*}Fe(**h**⁵-As₅)] (45) in Toluol

Abb. 61: Thermolyse von $[Cp''Co(CO)_2]$ (39) und $[Cp^*Fe(\eta^5-As_5)]$ (45) in Toluol.

^[66] H. Sitzmann, persönliche Mitteilung.

[Cp*Fe(η⁵-As₅)] (**45**) wird mit einem vierfachem molaren Überschuß an [Cp⁺⁺Co(CO)₂] (**39**) in 50 ml Toluol gelöst und zunächst bei 60 °C gerührt. Das IR-Spektrum zeigt nach 90 Minuten keine signifikanten Veränderungen der Eduktbanden an, so daß die Lösung auf 110 °C aufgeheizt wird. Auch hier zeigt sich selbst nach 20 h Rühren unter Rückfluß keine Veränderung im IR-Spektrum von **39**. Bei einer Wellenzahl von $\bar{n} = 1770$ cm⁻¹ kann das Dimer [Cp⁺⁺Co(μ -CO)]₂ (**39a**) in geringen Mengen detektiert werden, das sich bei längerer Thermolyse aus [Cp⁺⁺Co(CO)₂] (**39**) bildet (vgl. dazu die Synthese von [Cp*Co(CO)₂] (**46**) durch *Rausch* und *Genetti* ^[67] in siedenden Methylenchlorid, bei der in ca. 10 % Ausbeute [Cp*Co(μ -CO)]₂ (**46a**) als Nebenprodukt erhalten wird). Daraufhin wird die Reaktion abgebrochen, das Lösungsmittel am Ölpumpenvakuum entfernt und der Rückstand säulenchromatographisch aufgearbeitet. Außer dem nicht umgesetzten Edukt **39** können jedoch keine weiteren Fraktionen eluiert werden.

Offensichtlich ist der gewählte Temperaturbereich zu niedrig, um eine Reaktion initiieren zu können. Die Cobalteinkernverbindung **39** benötigt höhere Reaktionstemperaturen als das dimere $[Cp*Co(\mu-CO)]_2$ (**46a**), welches schon bei 60 °C mit $[Cp*Fe(\eta^5-P_5)]$ (**19**) reagiert ^[68].

^[67] M. D. Rausch, R. A. Genetti, J. Org. Chem. 1970, 35, 3888.

^[68] G. Friedrich, *Dissertation*, Universität Kaiserslautern 1995.

3.6.7 Thermolyse von [Cp⁺Co(CO)₂] (39) und [Cp^{*}Fe(**h**⁵-As₅)] (45) in Dekalin

Abb. 62: Thermolyse von $[Cp''Co(CO)_2]$ (**39**) und $[Cp^*Fe(\eta^5-As_5)]$ (**45**) in Dekalin.

Die Umsetzung von $[Cp^{+}Co(CO)_2]$ (39) und $[Cp^*Fe(\eta^5-As_5)]$ (45) in Dekalin zeigt ein analoges Reaktionsverhalten wie die Umsetzung von 39 mit dem entsprechenden Cyclopentaphosphaferrocen ^[11]. Auch hier sind nach 100 Minuten Rühren unter Rückfluß im IR-Spektrum keine Eduktbanden mehr detektierbar. Mit einer sich anschließenden chromatographischen Aufarbeitung an einer mit Aluminiumoxid (neutral) und Petrolether gefüllten Säule kann mit reinem Petrolether als Laufmittel zunächst 39 zurückgewonnen werden. Durch Steigerung der Polarität (PE/Toluol im Verhältnis 40:1) können wenige Milligramm des gebildeten Cobalt-Dimers (39a) gewonnen werden. Eine weitere unbekannte Fraktion 47 ist mit einem Eluentenverhältnis PE/Toluol von 5:1 erhältlich. Eine graue Fraktion läßt sich selbst mit reinem Methylenchlorid als Solvenz nicht von der Säule eluieren. Hier könnte es sich um graues Arsen handeln.

3.6.7.1 Charakterisierung von 47

Eigenschaften

47 ist in allen gängigen Lösungsmitteln gut bis sehr gut löslich. Die Luftempfindlichkeit ist eher mäßig. Ein Lagerung unter Argonatmosphäre ist problemlos möglich.

Durch Abkühlen einer gesättigten n-Hexan-Lösung können Einkristalle erhalten werden, die jedoch ein multiples Verzwillingungsproblem beinhalten. Auch durch Wechsel der Lösungsmittel kann dieses Problem nicht beseitigt werden.

IR-Spektroskopie

47 zeigt im IR-Spektrum keine Carbonylbanden.

¹H-NMR-Spektroskopie

Im ¹H-NMR-Spektrum von **47** kann ein symmetrischer Signalsatz für den Cp⁺⁺-Liganden aufgefunden werden, da beide *tert*.-Butyl-Gruppen als ein Singulett erscheinen. Ebenso erscheinen zwei der Ringprotonen als ein breites Singulett. Da kein Signal für den [FeCp*]-Liganden gefunden wird, kann daraus geschlossen werden, daß [Cp*Fe(η^5 -As₅)] (**45**) nur als Arsenquelle gedient hat.

 Tabelle 41:
 ¹H-NMR-Daten der Verbindung 47 (400.13 MHz, CDCl₃).

Verbindung	d [ppm]	Zuordnung
	1.41 (s, 18H)	$2 \ge C_4 H_9$
47	4.58 (s, br., 2H)	2 H
	5.34 (s, br., 1H)	Н

Massenspektrometrie

Das EI-Massenspektrum (70 eV) von **47** zeigt als Molpeak ein Fragmention der rel. Masse 932.7 amu mit einer rel. Intensität von 2.34 %. Als Basispeak kann das Fragmention des Cp⁺⁻ Liganden aufgefunden werden. Dies deutet auf ein Molekül mit der Summenformel [{Cp⁺Co}₃As₃] hin. Weitere Fragmente können nicht mit letzter Sicherheit zugeordnet werden.

Strukturvorschlag

Auf Basis aller bisher vorliegenden analytischen Daten sollte **47** eine analoge Struktur wie **40** besitzen (vgl. Seite 88).

3.7 Weitere Umsetzungen

Cp* Cp* -CO Mo Mc Me 60 °C $Me-C \equiv$ ΞN 6 d N Fe Fe Cp* Cp* 2a

3.7.1 Thermolyse von[Cp*Mo(CO)(**mh**^{2:2}-P₂)₂FeCp*] (2a) in Acetonitril

Abb. 63: Thermolyse von $[Cp*Mo(CO)(\mu-\eta^{2:2}-P_2)_2FeCp*]$ (2a) in Acetonitril.

Um die isoelektronische Reihe der Verbindungen **3**, **7** und **X** weiter fortzusetzen, wird $[Cp*Mo(CO)(\mu-\eta^{2:2}-P_2)_2FeCp*]$ (**2a**) in ca. 50 ml Acetonitril gelöst und am Rückfluß gerührt. Da sich die IR-Bande innerhalb von 24 h nur unwesentlich verändert hat, wird der Ansatz weitere 6 Tage unter Rückfluß gerührt. Auch nach dieser Zeitspanne können im ³¹P-NMR-Spektrum keine neuen Signale detektiert werden. Die Reaktion wird daraufhin abgebrochen. Eventuell müssen höher siedende Nitrile zum Einsatz kommen, da Komplex **2** bei tiefen Reaktionstemperaturen relativ reaktionsträge ist (vgl. dazu die Synthese von **3** und **7**).
3.7.2 Thermolyse von [Cp*Mo(CO)(**mh**^{2:2}-P₂)₂FeCp*] (2a) mit [Cp*'Fe(**h**⁵-P₅)] (19a)

Abb. 64: Thermolyse von $[Cp*Mo(CO)(\mu-\eta^{2:2}-P_2)_2FeCp*]$ (**2a**) mit $[Cp*Fe(\eta^5-P_5)]$ (**19a**).

Äquimolare Mengen an $[Cp*Mo(CO)(\mu-\eta^{2:2}-P_2)_2FeCp*]$ (2a) und $[Cp*Fe(\eta^5-P_5)]$ (19a) werden bei ca. 190 °C in 50 ml Dekalin unter Rückfluß gerührt. Nach 50 Minuten ist die Eduktbande bei 1958 cm⁻¹ nicht mehr detektierbar. Im ³¹P-NMR der Rohlösung kann neben äußert geringen Mengen einer unbekannten Verbindung bzw. mehrerer Verbindungen nur $[Cp*Mo)_2(\mu-\eta^{6:6}-P_6)]$ (4a) und nicht umgesetztes Edukt 2a gefunden werden. Die Reaktion wird daraufhin abgebrochen und nicht weiter aufgearbeitet, da die geringen aufgefundenen Mengen an neuen Produkten eine Aufarbeitung als nicht sinnvoll erscheinen lassen.

4 Experimenteller Teil

4.1 Analysenmethoden

Elementaranalysen

Die CHN-Analysen wurden von Frau *B. Dusch* im Fachbereich Chemie der Universität Kaiserslautern mit dem Elementaranalyser 240 der Firma Perkin-Elmer durchgeführt.

Infrarotspektroskopie

Die IR-Spektren wurden am 16 PC FT-IR-Gerät der Firma Perkin-Elmer aufgenommen. Die Substanzen wurden als Lösungen gegen reines Lösungsmittel vermessen. Zur Charakterisierung der Absorptionsbanden und -intensitäten werden folgende Abkürzungen verwendet:

vs = sehr stark, s = stark, w = schwach, br = breit, sh = Schulter

Kernresonanzspektroskopie

Die NMR-Spektren wurden an den FT-NMR-Geräten AC 200, AMX 400 bzw. PMX 400 der Firma Bruker gemessen. Die Verbindungen wurden als Lösungen deuterierter Lösungsmittel unter Argonatmosphäre in 5 mm Röhrchen vermessen. Die chemischen Verschiebungen sind gemäß der δ -Skala angegeben, bei der ein negatives Vorzeichen eine Hochfeldverschiebung und ein positives Vorzeichen eine Tieffeldverschiebung bzgl. des jeweiligen Standards bedeutet.

Für die unterschiedlichen Kerne gelten folgende Meßfrequenzen und Standards:

³¹P-NMR: 161.97 MHz bzw. 81.02 MHz; 85 % Phosphorsäure extern
¹H-NMR: 400.14 MHz bzw. 200.13 MHz; TMS extern
¹³C-NMR: 100.61 MHz bzw. 50.3 MHz; TMS extern

Zur Charakterisierung der Signalgruppen wurden folgende Abkürzungen verwendet:

s = Singulett, d = Dublett, t = Triplett, q = Quartett, m = Multiplett, br = breit, p = pseudo

Massenspektrometrie

Die Massenspektren wurden von *Frau Dr. G. Hornung* am Massenspektrometer Finnigan MAT 90 des Fachbereich Chemie aufgenommen. Alle Messungen wurden bei einer Ionisierungsenergie von 70 eV und einer Quellentemperatur von 220 °C durchgeführt.

4.2 Ausgangsverbindungen

Alle nicht käuflichen bzw. nicht vorrätigen Ausgangsverbindungen wurden nach Literaturvorschrift hergestellt:

- 1) $[Cp*Fe(\eta^5-P_5)]^{[5,69,10]}$
- 2) $[Cp^{R}Mo(CO)(\mu-\eta^{2:2}-P_{2})_{2} FeCp^{R^{*}}]^{[9,10]}$
- 3) $[Cp^{R}Mo(CO)_{3}CH_{3}]^{[70,71]}$
- 4) $[Cp*Fe(\eta^{5}-As_{5})]^{[6,50]}$
- 5) $[Cp^{R}Fe(CO)_{2}]_{2}^{[72]}$
- 6) $[Cp''Co(CO)_2]^{[73]}$
- 7) $({}^{t}BuAsCb)^{[74]}$
- 8) $(^{t}BuAs)_{4}$ [75]
- 9) $(PhAs)_6^{[76,77]}$
- 9) (R''CP)^[78]

- ^[70] R. B. King, M. B. Bisnette, J. Organometal. Chem. **1967**, 8, 287.
- ^[71] D. Stein, *Dissertation*, Universität Kaiserslautern **1993** und dort zitierte Literatur.
- ^[72] D. Cathline, D. Astruc, Organometallics **1984**, 3, 1094.

- ^[75] M. Baudler, P. Bachmann, Z. Anorg. allg. Chem. **1982**, 485, 129.
- ^[76] J. W. B. Reesor, G. F. Wright, J. Org. Chem. **1957**, 22, 382.
- ^[77] P. S. Elmes, S. Middleton, B. O. West, Aust. J. Chem. **1970**, 23, 1559.

^[69] O. J. Scherer, T. Brück, G. Wolmershäuser, Chem. Ber. 1988, 121, 935.

^[73] S. A. Frith, J. L. Spencer, *Inorg. Synth.* **1985**, 23, 15.

^[74] A. Tzschach, W. Deyling, Z. Anorg. allg. Chem. **1965**, 336, 36.

 ^{[&}lt;sup>78]</sup> a) G. Becker, G. Gresser, W. Uhl, Z. Naturforsch. 1981, 36 b, 16; b) W. Rösch, U. Hees, M. Regitz, Chem. Ber. 1987, 120, 1645; W. Rösch, T. Allspach, U. Bergsträßer, M. Regitz in: Synthetic Methods of Organometallic and Inorganic Chemistry (Herrmann/Brauer) Vol. 3, G. Thieme Verlag, Stuttgart, 1996, S. 11.

 (R"CP): Wurde in einer Kooperation im Rahmen des Graduiertenkollegs "Phosphorchemie als Bindeglied verschiedener chemischer Disziplinen" von Dr. M. A. Hofmann aus dem Arbeitskreis von Prof. Dr. M. Regitz zur Verfügung gestellt.

(^tBuAs)₄ (**38**) wurde analog des in Literatur [73] angegebenen Syntheseverfahren hergestellt. Jedoch wurde die Durchführung und Aufarbeitung der Synthese in Abweichung von Literatur [73] leicht modifiziert ^[79].

4.3 Versuchsbeschreibungen

Alle nachfolgend beschriebenen Versuche wurden unter Argonatmosphäre (Argon: 99.998 % der Firma Messer Griesheim) in mehrmals ausgeheizten und evakuierten Glasgeräten unter Anwendung der Schlenktechnik durchgeführt. Die verwendeten Lösungsmittel wurden wie folgt absolutiert und unter Argon destilliert und aufbewahrt:

- Petrolether, Toluol, Xylol, Diethylether, Pentan, Dekalin, THF: Na/K-Legierung
- Dichlormethan, CDCh: P₄O₁₀
- Deuterobenzol: CaH₂

Das Entfernen der Lösungsmittel und das Trocknen der Substanzen erfolgte am Ölpumpenvakuum bei ca. $1.5 \ge 10^{-2}$ mbar.

Der benötigte weiße Phosphor wurde vor Zugabe zu den jeweiligen Reaktionspartnern ca. 20 min am Ölpumpenvakuum getrocknet. Das zur Säulenchromatographie verwendete Kieselgel (0.06-0.2 mm, Fa. Merck-Schuchardt) und Aluminiumoxid (neutral, basisch: Fa. Macherey-Nagel) wurde 12 Stunden bei 190 °C im Ölpumpenvakuum getrocknet, nach dem Abkühlen mit 2 % (Kieselgel) bzw. 4 % (Aluminiumoxid) destilliertem Wasser deaktiviert (Aktivitätsstufe II) und unter Argon aufbewahrt. Während des gesamten Trennvorgangs war die Säule wassergekühlt. Die Angaben zur Säulenlänge beziehen sich stets auf den Beginn des Säulenvorstoßes und der sich daraus ergebenden Füllhöhe mal Durchmesser der Säule.

Photolysen wurden in Duran-Glasgefäßen mit einer wassergekühlten Quecksilberhochdrucklampe TQ 150 der Firma Heraeus Quarzlampen GmbH Hanau durchgeführt. Die Emission

^[79] K. Mast, *Dissertation*, Universität Kaiserslautern 1998.

erfolgt in einem Wellenlängenbereich von ca. 220-500 nm, $\lambda_{max} = 366$ nm. Dabei wurde die Reaktionslösung mittels eines N₂-Stromes ständig durchmischt.

4.3.1 Synthese von $[Cp^{R}Mo(\mu-h^{4:2}-P_{3}CR'')(\mu-h^{2:2}-P_{2})FeCp^{R'}]$ (3a-e)

Allgemeine Vorschrift:

R"CP (1) wird mit einem geringen Überschuß zu $[Cp^RMo(CO)(\mu-\eta^{2.2}-P_2)_2FeCp^{R^{\circ}})]$ (2) gegeben, das zuvor in ca. 20 ml Toluol im Druckschlenkrohr gelöst wurde. Nach 30-45 Minuten (IR-Kontrolle) bei ca. 120 °C ist die IR-Bande von 2 bei $\overline{n} = 1954$ cm⁻¹ verschwunden, und das Lösungsmittel wird im Vakuum bei Raumtemperatur entfernt. Der Rückstand wird in ca. 8 ml Dichlormethan und ca. 1 g SiO₂ aufgeschlämmt und bis zur Rieselfähigkeit im Ölpumpenvakuum getrocknet. Die säulenchromatische Aufarbeitung (SiO₂II/Petrolether; 15 x 1.5 cm) ergibt mit Petrolether/Diethylether (100:1) 3 als braune Fraktion, die noch mit geringen Mengen an $[(Cp^RMo)_2P_6]$ (4) verunreinigt ist. Eine Trennung erfolgt durch Umkristallisieren einer gesättigten Lösung aus n-Hexan bei –30 °C.

Tabelle 42:	Reaktionsparameter für die Synthese der Verbindungen
	$[Cp^{R}Mo(\mu-\eta^{4:2}-P_{3}CR^{(\prime)})(\mu-\eta^{2:2}-P_{2})FeCp^{R^{\prime}}]$ (3a-e).

Produkt		Reaktionsansatz	Ausbeute	
$Cp^{R} = Cp^{*}$ $Cp^{R'} = Cp^{*}$ $R^{\prime\prime} = {}^{t}Bu$	3a	123.6 mg (0.22 mmol) 2a 62 ìl (0.44 mmol) 1a	127.5 mg (0.20 mmol) 90 % bez. auf 2a	
$Cp^{R} = Cp^{*}$ $Cp^{R'} = Cp^{*}$ $R^{''} = {}^{t}Bu$	3b	157.1 mg (0.27 mmol) 2b 51 ìl (0.35 mmol) 1a	131.1 mg (0.22 mmol) 81 % bez. auf 2b	
$Cp^{R} = Cp^{*}$ $Cp^{R'} = Cp^{*'}$ $R'' = {}^{t}Bu$	3с	286 mg (0.48 mmol) 2c 96 ìl (0.68 mmol) 1a	165 mg (0.25 mmol) 52 % bez. auf 2c	
$Cp^{R} = Cp^{*}$ $Cp^{R'} = Cp^{*}$ $R'' = Ad$	3d	56.9 mg (0.10 mmol) 2a 38 ìl (0.3 mmol) 1b	44.2 mg (0.06 mmol) 60 % bez. auf 2a	

$Cp^{R} = Cp^{\prime\prime\prime}$		164 mg (0.24 mmol) 2d	100.4 mg (0.14 mmol)
$Cp^{R'} = Cp^{*'}$	3e	104 mg (0.24 mmor) 20	109.4 mg (0.14mmol)
		41 il (0.29 mmol) 1a	58 % bez. auf 2d
$\mathbf{R}^{\prime\prime} = {}^{t}\mathbf{B}\mathbf{u}$			

Elementaranalyse: $C_{33}H_{55}FeMoP_5$ (**3e**): M = 758.41 g/mol

3e	C-Gehalt [%]	H-Gehalt [%]
Ber.:	52.26	7.31
Gef.:	52.42	7.32

4.3.2 Synthese von $[Cp*Mo(\mu-h^{4:2}-P_2C_2Ph_2)(\mu-h^{2:2}-P_2)FeCp^R]$ (7a,b)

Allgemeine Vorschrift:

[Cp*Mo(CO)(μ-η^{2:2}-P₂)₂FeCp^R] (**2**) und (PhC≡CPh) (**8**) werden in 50 ml Dekalin gelöst und 30 Minuten (IR-Kontrolle) bei ca. 190 °C gerührt. Nach dieser Zeit ist im IR-Spektrum die CO-Bande von **2** bei \mathbf{n} = 1958 cm⁻¹ nicht mehr detektierbar. Die Reaktion wird daraufhin abgebrochen und das Lösungsmittel destillativ im Vakuum entfernt. Der Rückstand wird in 8 ml Dichlormethan und 1g SiO₂ aufgeschlämmt und bis zur Rieselfähigkeit im Ölpumpenvakuum getrocknet. Auftragen des Reaktionsansatzes auf eine mit Petrolether und SiO₂ gefüllte Säule (15 x 1.5 cm) liefert bei einer Polarität von 100:1 (PE/Diethylether) ausschließlich eine braune Fraktion von [Cp*Mo(μ-η^{4:2}-P₂C₂Ph₂)(μ-η^{2:2}-P₂)FeCp^R] (**7**). Durch ³¹P-NMR-Spektroskopie kann neben der Verbindung **7** das Vorliegen der schon literaturbekannten Verbindung [Cp*₂Mo₂P₆] (**4a**) nachgewiesen werden. Eine Trennung der beiden Fraktionen durch Säulenchromatographie ist auch in diesem Fall nicht möglich. Eine Abtrennung erfolgt durch Umkristallisieren einer gesättigten n-Hexan-Lösung bei –30 °C.

 Tabelle 43:
 Reaktionsparameter f
 ür die Synthese der Verbindungen

 $[Cp*Mo(\mu-\eta^{4:2}-P_2C_2Ph_2)(\mu-\eta^{2:2}-P_2)FeCp^R]$ (7a,b).

Produkt	Reaktionsansatz	Ausbeute
$Cn^{R} - Cn^{*} (7a)$	216.3 mg (0.38 mmol) 2a	181.1 mg (0.25 mmol)
cp = cp (ra)	82.7 mg (0.46 mmol) 8	66 % bez. auf 2a
$Cn^{R} - Cn^{*} (7h)$	109 mg (0.19 mmol) 2b	88.6 mg (0.12 mmol)
Cp = Cp (70)	51.4 mg (0.29 mmol) 8	63 % bez. auf 2a

Elementaranalyse: $C_{34}H_{40}FeMoP_4$ (7a): M = 724.33 g/mol

7a	C-Gehalt [%]	H-Gehalt [%]
Ber.:	56.38	5.57
Gef.:	55.94	5.60

4.3.3 Synthese von [Cp*'Mo(μ -h^{4:2}-P₂C₈H₁₂)(μ -h^{2:2}-P₂)FeCp*] (10)

123.3 mg (0.20 mmol) $[Cp^*Mo(CO)(\mu-\eta^{2:2}-P_2)_2FeCp^*]$ (2c) und 129.4 mg (1.20 mmol) Cyclooctin werden in Dekalin bei ca. 190 °C 105 Minuten bis zum Verschwinden der Eduktbande bei $\bar{n} = 1958 \text{ cm}^{-1}$ gerührt. Das Lösungsmittel wird destillativ am Vakuum entfernt und der Rückstand in ca. 8 ml Dichlormethan und 1g SiO₂ aufgeschlämmt und bis zur Rieselfähigkeit im Ölpumpenvakuum getrocknet. Auftragen auf eine mit Petrolether und SiO₂ gefüllte Säule (15 x 1.5 cm) liefert mit einem Laufmittel aus PE/Diethylether ausschließlich eine braune Fraktion von $[Cp^*Mo(\mu-\eta^{4:2}-P_2C_8H_{12})(\mu-\eta^{2:2}-P_2)FeCp^*]$ (10). Durch Umkristallisieren in n-Hexan bei –30 °C wird die Abtrennung von $[(Cp^*Mo)_2P_6]$ (4b) erreicht.

Ausbeute 10: 46.8 mg (0.07 mmol), 35 % bez. auf 2c.

4.3.4 Synthese von [Cp*Mo(μ -**h**^{4:2}-P₂C₄O₄Me₂)(μ -**h**^{2:2}-P₂)FeCp*] (12)

133.5 mg (0.23 mmol) [Cp*Mo(CO)(μ - $\eta^{2:2}$ -P₂)₂FeCp*] (**2a**) und 30.7 μ l (0.25 mmol) DMAD (**11**) werden bei ca. 111 °C in Toluol gerührt. Nach 45 Minuten ist im Infrarotspektrum die Eduktbande von **2a** bei $\overline{n} = 1954$ cm⁻¹ verschwunden und die Produktbande von **12** maximal. Daraufhin wird die Reaktion abgebrochen und das Lösungsmittel am Vakuum entfernt. Die Aufarbeitung erfolgt hier durch mehrmaliges Extrahieren des Reaktionsrückstandes mit Methylenchlorid und anschließendes Abzentrifugieren der vereinigten Extrakte, da die säulenchromatographische Aufarbeitung hier nicht zum Erfolg führt. Bei -75 °C in

Methylenchlorid fällt ein pastöser Niederschlag von **12** aus, der noch mit geringen Mengen an $[(Cp*Mo)_2P_6]$ (**4a**) verunreinigt ist [³¹P-NMR]. Eine endgültige Abtrennung gelingt hier nicht, da selbst durch den Wechsel des Lösungsmittels keine Verbesserung der Trennung erfolgt. Zudem strebt die Löslichkeit - selbst in Methylenchlorid- nach einigen Tagen nahezu gegen null. Die Durchführung einer CHN-Analyse erweist sich aufgrund der Verunreinigungen deshalb als aussichtslos.

Ausbeute (Rohausbeute) 12: 27.5 mg (0.04 mmol), 17 % bez. auf 2a.

4.3.5 Synthese von $[Cp*Mo(\mu-h^{4:2}-P_2C_8H_{10})(\mu-h^{2:2}-P_2)FeCp*]$ (14)

123.3 mg (0.22 mmol) [Cp*Mo(CO)(μ - $\eta^{2:2}$ -P₂)₂FeCp*] (**2a**) und 24.8 mg (0.23 mmol) 1.7-Octadiin (**13**) werden in 50 ml Toluol gelöst und bei ca. 120 °C 45 Minuten im Druckschlenkrohr gerührt. Nach dieser Zeit ist die Eduktbande von **2a** nicht mehr im Infrarotspektrum detektierbar. Das Lösungsmittel wird im Vakuum bei Raumtemperatur entfernt und der Rückstand in ca. 8 ml Dichlormethan und 1 g SiO₂ aufgeschlämmt und bis zur Rieselfähigkeit im Ölpumpenvakuum getrocknet. Die säulenchromatographische Aufarbeitung (SiO₂II/PE; 15 x 1.5 cm) ergibt mit Petrolether/Diethylether (100:1) **14** als braune Fraktion, die noch mit geringen Mengen an [(Cp*Mo)₂P₆] (**4a**) verunreinigt ist. Eine Trennung erfolgt durch Umkristallisieren einer gesättigten Lösung aus n-Hexan bei –30 °C.

Ausbeute 14: 70.2 mg (0.11 mmol), 50 % bez. auf 2a.

4.3.6 Synthese von $[Cp*Mo(\mu_3-h^{4:2:1}-P_2C_2Ph_2){W(CO)_5}(\mu-h^{2:2}-P_2)FeCp*]$ (16) und 17

613.4 mg (1.74 mmol) [W(CO)₆] werden zunächst 30 Minuten in einer mit 50 ml THF befüllten Photolyseapparatur bestrahlt. Der sich dabei bildende Mono-thf-Komplex [W(CO)₅thf] **(15)** wird sofort zu 234.6 mg (0.32 mmol) [Cp*Mo(μ - $\eta^{4:2}$ -P₂C₂Ph₂)(μ - $\eta^{2:2}$ -P₂)FeCp*] **(7a)** gegeben. Der Ansatz wird 18 h über Nacht bei Raumtemperatur gerührt, damit sich alles an **7a** umsetzen kann. Die Lösung wird mit 1g SiO₂ versetzt und im Vakuum alles THF entfernt und anschließend bis zur Rieselfähigkeit getrocknet. Bei der sich anschließendenden Aufarbeitung an einer mit Kieselgel und Petrolether gefüllten Säule (SiO₂II/Petrolether; 15 x 1.5 cm) kann mit einem Petrolether/Diethylether Gemisch von 40:1 zunächst eine rotbraune Fraktion **16** eluiert werden. Mit reinem Diethylether als Elutionsmittel kann eine weitere dunkelbraune Fraktion **17** erhalten werden. Beide Fraktionen liegen nach dem Entfernen des Lösungsmittels als Feststoffe vor, die jedoch keinerlei Tendenzen zum Kristallisieren zeigen und dadurch eine weitere Reinigung bzw. Analytik erschwert.

Ausbeuten: **16**: 189.3 mg (0.18 mmol), 56 % bez. auf **7a 17**: ~ 6 mg

4.3.7 Synthese von $[Cp*Mo(\mu_3-h^{4:2:1}-P_3C^tBu){W(CO)_5}(\mu-h^{2:2}-P_2)FeCp*]$ (18)

267.5 mg (0.76 mmol) [W(CO)₆] werden zunächst 30 Minuten in einer mit 50 ml THF befüllten Photolyseapparatur bestrahlt. Der sich dabei bildende Mono-thf-Komplex [W(CO)₅thf] (**15**) wird sofort zu 63.4 mg (0.10 mmol) [Cp*Mo(μ - $\eta^{4:2}$ -P₃C^tBu)(μ - $\eta^{2:2}$ -P₂)FeCp*] (**3a**) gegeben. Der Ansatz wird 18 h über Nacht bei Raumtemperatur gerührt, damit sich alles an **3a** umsetzen kann. Die Lösung wird mit 1g SiO₂ versetzt und im Vakuum alles THF entfernt und anschließend bis zur Rieselfähigkeit getrocknet. Bei der sich anschließendenden Aufarbeitung an einer mit Kieselgel und Petrolether gefüllten Säule (SiO₂II/Petrolether; 15 x 1.5 cm) kann mit einem Petrolether/Ether Gemisch von 80:1 eine braune Fraktion **18** eluiert werden. Bis hin zu reinem Diethylether kann keine weitere Fraktion mehr erhalten werden.

Ausbeute: **18**: 76.8 mg (0.08 mmol), 80 % bez. auf **3a**.

4.3.8 Synthese von

$[{Cp'''Mo(CO)(\mu-h^{3:1}-P_3)}{Cp*Fe(CO)}{Cp*Fe(\mu_3-h^{4:1:1}-P_7Me)}] (21)$

AllgemeineVorschrift:

 $[Cp^{++}Mo(CO)_3Me]$ (20) und eine annähernd äquimolare Menge an $[Cp^*Fe(\eta^5-P_5)]$ (19) werden in 50 ml Xylol gelöst und 3.5 h (IR-Kontrolle) bei ca. 144 °C gerührt. Nach fünf Minuten erfolgt ein Farbumschlag von grün nach braun. Einher geht eine Gasentwicklung, die den Beginn der Reaktion anzeigt. Nach 3.5 h zeigt das IR-Spektrum bei den neu entstandenden CO-Banden keine weiteren Veränderungen mehr an. Die Reaktion wird daraufhin abgebrochen und das Lösungsmittel destillativ im Vakuum entfernt. Der Rückstand wird in ca. 8 ml Dichlormethan und 1g SiO₂ aufgeschlämmt und bis zur Rieselfähigkeit im Ölpumpenvakuum getrocknet. Auftragen auf eine mit Petrolether und AhO₃ (neutral) gefüllte Säule (20 x 1.5 cm) liefert bei einer Polarität von 80:1 (Petrolether/Diethylether) ausschließlich eine braune Fraktion von $[Cp^{++}Mo(\mu-\eta^{2:2}-P_2)_2FeCp^*]$ (2). Mit einem Gemisch von 40:1 (Petrolether/Diethylether) kann eine weitere braune Fraktion **A** erhalten werden. Durch weitere Steigerung der Polarität auf 15:1 (Petrolether/Diethylether) wird eine türkisblaue Fraktion **B** und sofort danach die moosgrüne Fraktion 21 eluiert (schlechte Trennung). Eine grau-blaue Fraktion **C** ist bei einer Polaritätsstufe von 5:1 (Petrolether/Diethylether) erhältlich. Eine weitere braune Fraktion **D** ist selbst mit reinem Diethylether nicht eluierbar.

Tabelle 44:Reaktionsparameter für die Synthese der Verbindungen $[{Cp'''Mo(CO)(\mu-\eta^{3:1}-P_3)}]{Cp*Fe(CO)}]{Cp*Fe(\mu_3-\eta^{4:1:1}-P_7Me)}]$ (21).

Verbindung	Ansatz	Produkt	
		2e : 207.8 mg (0.31 mmol),	
	28 % bez. auf 19		
	347.6 mg (1.01 mmol)	A : 70.3 mg	
21	19	B : 34.5 mg	
	464.7 mg (1.09 mmol)	21 : 16.2 mg (0.02 mmol),	
	20	1.8 % bez. auf 19	
		C : 13.8 mg	

4.3.9 Gezielte Synthese von

$$[{Cp'''Mo(CO)(\mu-h^{3:1}-P_3)}]{Cp*Fe(CO)}{Cp*Fe(\mu_3-h^{4:1:1}-P_7Me)}] (21)$$

230.4 mg (0.54 mmol) [Cp^{····}Mo(CO)₃Me] (**20**) und eine zweifache Menge an [Cp*Fe(η^5 -P₅)] (**19**) [355mg, 1.03 mmol] werden in 50 ml Xylol gelöst und 3.5 h (NMR- und IR-Kontrolle) bei ca. 144 °C gerührt. Nach fünf Minuten erfolgt ein Farbumschlag von grün nach braun. Einher geht eine Gasentwicklung, die den Beginn der Reaktion anzeigt. Nach 3.5 h zeigt das IR-Spektrum bei den neu entstandenden CO-Banden keine weiteren Veränderungen mehr an. Die Reaktion wird daraufhin abgebrochen und das Lösungsmittel destillativ am Vakuum entfernt. Der Rückstand wird in ca. 8 ml Dichlormethan und 1g SiO₂ aufgeschlämmt und bis zur Rieselfähigkeit im Ölpumpenvakuum getrocknet. Auftragen auf eine mit Petrolether und Al₂O₃ (neutral) gefüllte Säule (20 x 1.5 cm) liefert bei einer Polarität von 80:1 (Petrolether/Diethylether) ausschließlich eine braune Fraktion von [Cp^{···}Mo(μ - $H^{2:2}$ -P₂)₂FeCp*] (**2e**). Mit einem Gemisch von 40:1 (Petrolether/Diethylether) kann eine weitere braune Fraktion **A** erhalten werden. Durch weitere Steigerung der Polaritäten bis hin zu reinem Diethylether sind jedoch keine weiteren Fraktionen eluierbar. Rein optisch sind die schon bekannten Fraktionen **B**, **21**, **C** und **D** allerdings erkennbar.

4.3.10 Synthese von [Cp*'Mo(μ -**h**^{5:5}-P_mAs_nPh)FeCp*] (m = 5 – n; n = 1,2,3,4) (30)

Allgemeine Vorschrift:

 $[Cp^{*}Mo(CO)(\mu-\eta^{2:2}-P_2)_2FeCp^{*}]$ **(2b)** und cyclo-(PhAs)₆ (**29**) werden in 50 ml Dekalin gelöst und 15 Minuten (IR-Kontrolle) bei ca. 190 °C gerührt. Nach fünf Minuten erfolgt ein Farbumschlag von gelbbraun nach dunkelrot. Innerhalb von 15 Minuten ist im IR-Spektrum die CO-Bande von **2b** bei $\bar{n} = 1958 \text{ cm}^{-1}$ nicht mehr detektierbar. Die Reaktion wird daraufhin abgebrochen und das Lösungsmittel destillativ am Vakuum entfernt. Der Rückstand wird in ca. 8 ml Dichlormethan und 1g AbO₃ (neutral) aufgeschlämmt und bis zur Rieselfähigkeit im Ölpumpenvakuum getrocknet. Auftragen auf eine mit Petrolether und Al₂O₃ (neutral) gefüllte Säule (15 x 1.5 cm) liefert bei Elution mit einer Mischung von PE und Diethylether (100:1) ausschließlich eine rote Fraktion von [Cp*'Mo(μ - $\eta^{5:5}$ -P_mAs_nPh)FeCp*] (m = 5 – n; n = 1,2,3,4) (**30**). Durch ³¹P-NMR-Spektroskopie kann neben den Verbindungen **30** das Vorliegen der schon literaturbekannten Verbindung [Cp*'₂Mo₂P₆] (**4b**) nachgewiesen werden. Eine Trennung der beiden Fraktionen durch Säulenchromatographie ist auch in diesem Fall nicht möglich. Eine Auftrennung des Produktgemisches **30** durch Säulenchromatographie, Kristallisieren bzw. Sublimieren ist nicht möglich. **30** zersetzt sich bereits auf der Säule, wenn man statt Aluminiumoxid (neutral oder basisch) Kieselgel verwendet!

Tabelle 45: Reaktionsparameter für die Synthese der Verbindungen $[Cp^* Mo(\mu-\eta^{5:5}-P_mAs_nPh)FeCp^*] (m = 5 - n; n = 1,2,3,4)$ (30).

Produkt	Reaktionsansatz	Ausbeute	
	208.4 mg (0.35		
20	mmol) 2b	107.1	
30	255.4 mg (0.28	187.1 mg	
	mmol) 29		

4.3.11 Synthese von [{Cp''Fe(CO)₂}₂(µ-**h**^{1:1}-As₂Ph₂)] (36)

578.5 mg (1.0 mmol) [Cp''Fe(CO)₂]₂ (**35**) werden zusammen mit 188.1 mg (0.21 mmol) cyclo-(PhAs)₆ (**29**) gelöst und fünf Minuten in 50 ml Dekalin bei ca. 190 °C am Rückfluß gerührt. Nach dieser Zeitspanne ist ein Farbumschlag von braun in tiefrot erfolgt, und die verbrückende Carbonylbande von **35** bei $\bar{n} = 1772$ cm⁻¹ ist nicht mehr im IR-Spektrum detektierbar. Die Reaktion wird daraufhin abgebrochen und das Lösungsmittel am Vakuum abdestilliert. Der Rückstand wird in ca. 8 ml Dichlormethan und 1g AbO₃ (basisch) aufgeschlämmt und bis zur Rieselfähigkeit im Ölpumpenvakuum getrocknet. Auftragen auf eine mit Petrolether und AbO₃ (basisch) gefüllte Säule (15 x 1.5 cm) liefert mit Petrolether nacheinander insgesamt drei Fraktionen.

Fraktion 1: Ferrocen schwach gelb ca. 5 mgFraktion 2: 33.4 mg 35 als braune Fraktion36: 122.6 mg (0.07 mmol); 7 % bez. auf 35

Durch Erhöhen der Polaritäten bis hin zu reinem Diethylether können keine weiteren Fraktionen mehr erhalten werden.

Elementaranalyse: $C_{42}H_{52}Fe_2As_2O_4$ (36): M = 882.38 g/mol

36	C-Gehalt [%]	H-Gehalt [%]
Ber.:	57.17	5.94
Gef.:	56.71	5.98

4.3.12 Thermolyse von [Cp^(CO)2] (39) und cyclo-(PhAs)₆ (29) in Dekalin

Eine Lösung von 391.1 mg (1.34 mmol) [Cp''Co(CO)₂] (**39**) und 324.8 mg (0.36 mmol) cyclo-(PhAs)₆ (**29**) (50 ml Dekalin) wird bei ca. 190 °C Ölbadtemperatur 2.5 h gerührt. Nach diesem Zeitraum sind die Eduktbanden bei $\overline{n} = 1982 \text{ cm}^{-1}$ und $\overline{n} = 2050 \text{ cm}^{-1}$ verschwunden. Der Reaktionsansatz wird, nachdem das Dekalin im Vakuum abdestilliert wurde, mit ca. 8 ml Dichlormethan aufgeschlämmt, 1 g AbO₃ (neutral) zugesetzt und am Ölpumpenvakuum zur Trockne eingeengt. Das Gemisch wird auf eine Säule aufgetragen (Petrolether, AbO₃ (neutral), 1 x 15 cm), und mit Petrolether sind insgesamt drei Fraktionen erkennbar, die alle nacheinander mit Petrolether als Laufmittel eluiert werden können.

Bei einer äquimolaren Reaktionsführung wird nur Produkt 40 eluiert.

Fraktion 1: 20.1 mg; Farbe: türkis-blau $[Cp''Co(\mu-Co)]_2$ (**39a**) Fraktion 2: 71.3 mg; Farbe: braun; unbekanntes Produkt **40** Fraktion 3: 120 mg; Farbe: orange; unbekanntes Produkt **41**

Elementaranalyse: $C_{20}H_{26}CoAs_3O(41)$: M = 566 g/mol

41	C-Gehalt [%]	H-Gehalt [%]
Ber.:	42.4	4.6
Gef.:	53.47	5.41

Die vorliegende CHN-Analyse zeigt eine Abweichung bei den Kohlenstoffwerten von ca. 10 % und beim Wasserstoff von ca. 0.8 % und liegt damit völlig außerhalb der Grenzwerte.

4.3.13 Optimierung der Synthese von [Cp*Fe(h⁵-As₅)] (45)

Allgemeine Arbeitsvorschrift:

 $[Cp*Fe(CO)_2]_2$ (46) wird mit einem dreifachen molaren Überschuß an (^tBuAs)₄ (38) in 125 ml Dekalin bei ca. 190 °C thermolysiert. Man beobachtet nach ca. 10 Minuten einen Farbumschlag von dunkelrot nach dunkelbraun. Sofort nach Verschwinden der verbrückenden CO-Bande von 39 [IR-Kontrolle, ca. 25 Minuten] wird die Reaktion abgebrochen. Das Lösungsmittel wird unter reduziertem Druck abdestilliert, der Rückstand mit ca. 8 ml Dichlormethan aufgeschlämmt und schließlich mit 1 g SiO₂ versetzt. Im Ölpumpenvakuum wird das Gemisch bis zur Rieselfähigkeit getrocknet und auf eine Säule aufgetragen (AbO₃ (neutral), 15 x 2 cm, Petrolether). Mit reinem Petrolether erhält man zunächst eine gelbe Fraktion von nicht umgesetztem Edukt 38, durch weiteres Eluieren mit reinem Petrolether wird [Cp*Fe(η^5 -As₅)] (45) als grüne Fraktion erhalten, die nach Entfernen des Lösungsmittels als ein grün-brauner Feststoff vorliegt. Durch stufenweises Erhöhen der Polarität auf 20:1 (PE/Diethylether) kann noch [(Cp*Fe)₃As₆(H)] (47) isoliert werden, das sowohl in Lösung als auch in kristalliner Form eine braune Farbe besitzt.

Tabelle 46:Reaktionsparameter für die Synthese der Verbindungen $[Cp*Fe(\eta^5-As_5)]$ (45) und
 $[{Cp*Fe}_3As_6(H)]$ (47).

Reaktionsansatz	Produkte	Ausbeuten
		45 : 494 mg (0.87 mmol)
494 mg (1 mmol) 46	$[Cp*Fe(\eta^{5}-As_{5})]$ (45)	44 % bez. auf 46
1.58 g (3 mmol) 38	$[{Cp*Fe}_{3}As_{6}(H)]$ (47)	47: 138 mg (0.13 mmol)
		20 % bez. auf 46

[Cp*Fe(CO) ₂] ₂ (46) (mmol)	(^t BuAs) ₄ (38) (mmol)	Zeit (min)	Molver. (2) : (1)	Ausbeute (%) bez. auf 46	Bemerkung
1	2.02	60	2:1	0	zu geringer As- Überschuß
0.28	0.89	75	3.1:1	16	-
0.66	1.93	55	2.9:1	14	-
0.46	1.35	55	2.9:1	23	-
0.57	1.78	4.5 h (Xylol)	3.1:1	≤ 5	Eduktbanden noch nicht ganz verschwunden
1.19	3.26	40	2.7:1	28	term. CO Bande fast verschwunden
1.83	5.33	35	2.9:1	40	verbr. CO Bande verschwunden
0.99	2.97	25	3:1	54	verbr. CO Bande verschwunden
0.58	1.59	20	2.7:1	28	zu kurze Reaktionszeit
1.01	3.03	23	3:1	38	-
1	3	25	3:1	44	-
0.95	3.79	35	4.1:1	50	_

Tabelle 47:Versuchsparameter zur Syntheseoptimierung von $[Cp*Fe(\eta^5-As_5)]$ (40) in siedenden
Dekalin (ca. 190 °C).

4.3.14	Umsetzung von	weißem Phosphor	(48) mit (^t BuAs) ₄ (38)
--------	---------------	-----------------	---

P ₄ (48)	(^t BuAs) ₄ (38)	Zeit	LM	Temperatur	Molver.
mg (mmol)	mg (mmol)	(min)		[°C]	(2):(1)
139.8 (1.13)	162.3 (0.31)	30	Toluol	60	3.6 : 1
258.7 (2.09)	303.2 (0.57)	60	Toluol	60-120	3.7 : 1
173.5 (1.40)	205 (0.39)	5	Toluol	60	4:1
156.9 (1.27)	535.3 (1.01)	60	Xylol	150	1:1.3

Alle Umsetzungen werden im Druckschlenkrohr durchgeführt. Die ³¹P-NMR-Kontrolle wird direkt aus der Reaktionslösung heraus vorgenommen.

4.3.15 Thermolyse von [Cp[•]Co(CO)₂] (39) und [Cp^{*}Fe(**h**⁵-As₅)] (45) in Toluol

Eine Lösung von 267 mg (0.91 mmol) [Cp''Co(CO)₂] (**39**) und 121 mg (0.21 mmol) [Cp*Fe(η^{5} -As₅)] (**5**) in 50 ml Toluol wird zunächst bei 60 °C Ölbadtemperatur 1.5 h gerührt. Nach diesem Zeitraum sind die Eduktbanden unverändert. Anschließend wird das Ölbad auf 111 °C erhitzt und 20 h über Nacht unter Rückfluß gerührt. Die IR-Kontrolle ergibt, daß sich die Eduktbanden bei $\bar{n} = 2012 \text{ cm}^{-1}$ und $\bar{n} = 1950 \text{ cm}^{-1}$ nur geringfügig vermindert haben (\approx 10 %). Bei einer Wellenzahl von $\bar{n} = 1770 \text{ cm}^{-1}$ kann das Dimer [Cp''Co(μ -CO)]₂ (**39a**) in geringen Mengen detektiert werden. Andere Carbonylbanden haben sich nicht gebildet. Der Reaktionsansatz wird, nachdem das Toluol im Vakuum entfernt wurde, mit 8 ml Dichlormethan aufgeschlämmt, 1 g AbO₃ (neutral) zugesetzt und im Ölpumpenvakuum zur Trockne eingeengt. Das Gemisch wird auf eine Säule aufgetragen (Petrolether, AbO₃ (neutral), 1 x 15 cm) und mit Petrolether/Toluol 80:1 erhält man nicht umgesetztes Edukt **39** als braune Fraktion. Durch weitere Erhöhung der Polarität bis hin zu reinem Toluol sind keine weiteren Fraktionen eluierbar.

4.3.16 Thermolyse von [Cp⁺⁺Co(CO)₂] (39) und [Cp⁺Fe(**h**⁵-As₅)] (45) in Dekalin

Zu 124 mg (0.22 mmol) $[Cp*Fe(\eta^5-As_5)]$ (45), gelöst in 50 ml Dekalin, werden 139 mg (0.47 mmol) $[Cp^+Co(CO)_2]$ (39) gegeben und anschließend unter Rückfluß gerührt. Man beobachtet dabei einen Farbumschlag von braun nach dunkelbraun. Die Carbonylbanden von 39 sind nach 100 Minuten nicht mehr feststellbar (IR-Kontrolle). Das Lösungsmittel wird im Ölpumpenvakuum abdestilliert, das Gemisch mit ca. 8 ml Dichlormethan aufgeschlämmt und mit 1 g AbO₃ (neutral) versetzt. Im Ölpumpenvakuum wird die Lösung getrocknet und der Rückstand auf eine Säule aufgetragen (AbO₃ (neutral), 25 x 1 cm, Petrolether). Durch Eluieren mit Petrolether kann zunächst eine braune Fraktion von nicht umgesetzten Edukt 39 erhalten werden. Durch Steigerung der Polarität auf 40:1 (Petrolether/Toluol) können wenige Milligramm des Cobalt-Dimers 39a von der Säule eluiert werden. Eine weitere braune Fraktion einer unbekannten Verbindung 47 kann mit einem Elutionsverhältnis von 5:1 (Petrolether/Toluol) eluiert werden. Eine graue Fraktion kann selbst mit Methylenchlorid als Laufmittel nicht chromatographiert werden.

4.3.17 Thermolyse von[Cp*Mo(CO)(**mh**^{2:2}-P₂)₂FeCp*] (2a) in Acetonitril

76.2 mg (0.10 mmol) [Cp*Mo(CO)(μ - $\eta^{2:2}$ -P₂)₂FeCp*] (**2a**) werden zunächst 24 h in 50 ml Acetonitril am Rückfluß gerührt. Da sich die IR-Bande in diesem Zeitraum nur unwesentlich verändert hat, wird der Ansatz weitere 6 Tage am Rückfluß gerührt. Auch nach dieser Zeitspanne können im ³¹P-NMR-Spektrum keine neuen Signale detektiert werden. Die Reaktion wird daraufhin abgebrochen und nicht weiter aufgearbeitet.

4.3.18 Thermolyse von [Cp*Mo(CO)(**mh**^{2:2}-P₂)₂FeCp*] (2a) mit [Cp*'Fe(**h**⁵-P₅)] (19a)

100.4 mg (0.17 mmol) [Cp*Mo(CO)(μ - $\eta^{2:2}$ -P₂)₂FeCp*] (**2a**) werden mit 61.2 mg (0.17 mmol) [Cp*'Fe(η^5 -P₅)] (**19a**) vereinigt und bei ca. 190 °C in 50 ml Dekalin am Rückfluß gerührt. Nach 50 Minuten ist die Eduktbande bei $\mathbf{n} = 1958 \text{ cm}^{-1}$ nicht mehr detektierbar. Im ³¹P-NMR der Rohlösung kann -neben äußert geringen Mengen einer unbekannten Verbindung(en)- nur [Cp*Mo)₂(μ - $\eta^{6:6}$ -P₆)] (**4a**) bzw. Edukt **2a** gefunden werden. Die Reaktion wird daraufhin abgebrochen und nicht weiter aufgearbeitet.

5 Zusammenfassung

Abb. 65: Isolektronische Reihe der Verbindungen X, 3 und 7.

Die Heterobimetallcluster $[Cp^RMo(CO)(\mu-\eta^{2:2}-P_2)_2FeCp^{R^4}]$ (2) haben sich als nützliche Edukte erwiesen, um mit weißem Phosphor, Phosphaalkinen und Tolan eine ganze Reihe isovalenzelektronischer Komplexe (X, 3 und 7) aufzubauen.

Durch den Einsatz weiterer sterisch und elektronisch unterschiedlicher Alkine können die Komplexe **10**, **12** und **14** generiert werden. Dabei zeigt sich, daß die unterschiedlichen Substituenten am Alkin keinerlei Einfluß auf das Produktbild haben. Alle Reaktionen mit Alkinen laufen dabei stets regiospezifisch ab. Es kann daher immer nur ein einziges Regioisomeres nachgewiesen werden.

Erwähnenswert ist die Umsetzung von 1.7 Octadiin mit 2, bei der durch Einführung eines unsymmetischen Alkins die Symmetrie in den Komplexen 7, 10 und 12 aufgehoben wird. Dies zeigt sich in den ³¹P-NMR-Spektren, bei denen ein Übergang von einem "deceptive simple" AA'XX'-Spinsystem (7, 10 und 12) zu einem ABXY-System bei Verbindung 14 beobachtet werden kann.

Abb. 66: Umsetzung von 2 mit weiteren Alkinen.

Die Komplexierung von **3b** und **7a** mit [W(CO)₅thf] konnte mit Erfolg durchgeführt werden und man erhält die einfach Metallpentacarbonyl komplexierten Verbindungen **16** und **18**.

Abb. 67: Komplexierung von 7a und 3b.

Ein völlig überraschendes Ergebnis liefert die Syntheseoptimierung von Edukt $[Cp^{\prime\prime\prime}Mo(CO)(\mu-\eta^{2:2}-P_2)_2FeCp^*]$ (2), bei dem das Molybdän-Atom ein Tri-*tert*.-butyl-Cp-Ring trägt und das Eisen einen Pentamethyl-Cp-Ring. Hier werden durch Verkürzung der Reaktionszeit von 10 h auf 3.5 h neben Edukt 2 noch insgesamt vier weitere Fraktion erhalten, von denen eine bislang röntgenographisch charakterisiert werden konnte.

Abb. 68: Syntheseoptimierung von $[Cp'''Mo(CO)(\mu-\eta^{2:2}-P_2)_2FeCp^*]$ (2).

Erstmalig werden hier -meines Wissens nach- die in der Phosphorchemie sehr wichtigen Bausteine des Norbornadiens und des Tetrahedrans miteinander verknüpft.

Weiteres wichtiges Ergebnis dieser Umsetzung ist der Verbleib der Methylgruppe der Molybdän-Einkerverbindung [Cp^{···}Mo(CO)₃Me] (**20**). Dieser konnte hier zum ersten Mal aufgeklärt werden.

Von den drei übrigen Fraktionen konnten bislang keine strukturrelevanten Informationen erhalten werden. Jedoch deuten die ³¹P-NMR-Spektren auf sehr komplexe Strukturen hin, deren Aufklärung noch aussteht.

Ein überraschendes Ergebnis liefert die Umsetzung von 2 mit cyclo-(PhAs)₆ (29). Hier kann eine ganze Serie von Arsaphospholen 30 der allgemeinen Zusammensetzung P_nAs_m (m = 5 – n; n = 4,3,2,1) synthetisiert werden. Eine Trennung des Gemisches ist jedoch nicht möglich. Dennoch gelingt eine röntgenographische Charakterisierung dieser Verbindungsklasse.

Abb. 69: Synthese der Arsaphosphole [Cp*'Mo(μ - η ^{5:5}-P_mAs_nPh)FeCp*] (m = 5 - n; n = 1,2,3,4) (**30**).

Der Einsatz des Cp⁺-Liganden bei der Eisendimer-Verbindung **35** zeigt keine Unterschiede in der Reaktivität gegenüber der entsprechenden Cp-Verbindung. In beiden Fällen kann das Eisen-Diarsan Derivat **36** isoliert werden.

Abb. 70: Synthese von $[{Cp''Fe(CO)_2}_2(\mu-\eta^{2:2}-As_2Ph_2)]$ (36).

Für die Umsetzung des Cobalt-Monomers $[Cp''Co(CO)_2]$ (**39**) mit cyclo-(PhAs)₆ (**29**) konnten die Strukturvorschläge **40** und **41** erarbeitet werden. Setzt man **39** mit ([†]BuAs)₄ (**38**) um so erhält man ausschließlich Verbindung **47** die mit **40** identisch ist.

Abb. 71: Synthese von [{Cp''Co}₃(μ_3 - $\eta^{3:3:3}$ -As₃)] (**40**) und [{Cp''(CO)Co}Ph(\eta^2-As₃)] (**41**).

6 Literatur

- [1] T. J. Kealy, P. L. Pauson, *Nature* (London) **1951**, 168, 1039.
- [2] S. A. Miller, J. A. Tebboth, J. F. Tremaine, J. Chem. Soc. 1952, 632.
- [3] G. Wilkinson, M. Rosenblum, M. C. Whiting, R. B. Woodward, J. Am. Chem. Soc. 1952, 74, 2125.
- [4] E. O. Fischer, W. Pfab, Z. Naturforsch. 1952, 7b, 377.
- [5] O. J. Scherer, T. Brück, Angew. Chem. 1987, 99, 59; Angew. Chem. Int. Ed. Engl. 1987, 26, 59.
- [6] O. J. Scherer, C. Blath, G. Wolmershäuser, J. Organomet. Chem. 1990, 387, C21.
- [7] a. O. J. Scherer, *Acc. Chem. Res.* 1999, 32, 751 (Neueste Übersicht).
 b. K. H. Whitmire, *Adv. Organometallic Chem.* 1998, 42, 1.
 c. O. J. Scherer, *Angew. Chem.* 1990, 102, 1137; *Angew. Chem. Int. Ed. Engl.* 1990, 29, 1104.

d. M. Scheer, E. Herrmann, Z. Chem. 1990, 30, 41.

- [8] M. Detzel, *Dissertation*, Universität Kaiserslautern 1995.
- [9] O. J. Scherer, C. Hofmann, G. Wolmershäuser, J. Organomet. Chem. 1998, 559, 219.
- [10] E. Hauck, *Dissertation*, Universität Kaiserslautern 1995.
- [11] O. J. Scherer, S. Weigel, G. Womershäuser, *Chem. Eur. J.* **1998**, 4, 1910.
- [12] O. J. Scherer, H. Sitzmann, G. Wolmershäuser, *Angew. Chem.* 1985, 97, 358; *Angew. Chem. Int. Ed. Engl.* 1985, 24, 351.
- [13] O. J. Scherer, H. Sitzmann, G. Wolmershäuser, *Angew. Chem.* 1989, 101, 214; *Angew. Chem. Int. Ed. Engl.* 1989, 28, 212.
- [14] J. E. Davies, L. Kerr, M. Mays, P. Raithby, P. K. Tompkin, A. D. Woods, *Angew. Chem.* 1998, 110, 1473; *Angew. Chem. Int. Ed. Engl.* 1998, 37, 1428.
- [15] J. E. Davies, M. J. Mays, P. R. Raithby, G. P. Shields, P. K. Tompkin, A. D. Woods, J. Chem. Soc., Dalton Trans. 2000, 125.
- [16] S. Umbarkar, P. Sekar, M. Scheer, J. Chem. Soc. Dalton Trans. 2000, 1135.
- [17] C. Hofmann, *Dissertation*, Universität Kaiserslautern **1997**.
- [18] M. Hesse, H. Meier, B. Zeeh, *Spektroskopische Methoden in der organischen Chemie*,
 5. Auflage, Georg-Thieme-Verlag Stuttgart 1995.
- [19] J. Hahn in J. G. Verkade, L. D. Quin (eds.), *Phosphorus-31NMR-Spectroscopy in Stereochemical Analysis*, VCH Publishers Inc., Deerfield Beach Florida **1987**, 331.
- [20] E. G. Finer, R. K. Harris, *Mol. Phys.* **1967**, 13, 65.

- [21] R. Laatikainen, M. Niemetz, *Perch-Programm Version* **1994**, Universität Kuopio Finnland.
- [22] A. P. Ginsberg, W. E. Lindsell, K. J. McCullough, C. R. Sprinkle, A. J. Welch, J. Am. Chem. Soc. 1986, 108, 403.
- [23] R. Hoffman, Angew. Chem. 1982, 94, 725; Angew. Chem. Int. Ed. Engl. 1982, 21, 711.
- [24] K. P. Huber, G. Herzberg, "Constants of Diatomic Molecules", van Nostrand, New York 1979.
- [25] M. Regitz, O. J. Scherer, *Multiple Bonds and Low Coordination in Phosphorus Chemistry*, Georg Thieme Verlag Stuttgart 1990.
- [26] L. R. Maxwell, S. B. Hendricks, V. M. Mosley, J. Chem. Phys. 1935, 3, 699.
- [27] D. E. C. Corbridge, *"The Structural Chemistry of Phosphorus"*, Elsevier Amsterdam **1974** und z. B. D. I. Arnold, F. A. Cotton, F. E. Kühn, *Inorg. Chem.* **1996**, 35, 5764.
- [28] L. E. Bogan, T. B. Rauchfuss, A. L. Rheingold, *Inorg. Chem.* **1985**, 24, 3722.
- [29] M. E. Garcia, J. C. Jeffrey, P. Sherwood, F. G. A. Stone, *J. Chem. Soc. Dalton Trans.* 1988, 2443.
- [30] M. Detzel, T. Mohr, O. J. Scherer, G. Wolmershäuser, *Angew. Chem.* 1994, 106, 1142;
 Angew. Chem. Int. Ed. Engl. 1994, 33, 1110.
- [31] P. Diehl, R. K. Harris, R. G. Jones, *Progr. NMR Spectrosc.* **1967**, 3, 1.
- [32] R. J. Abraham, *The Analysis of High Resolution NMR Spectra*, Elsevier, Amsterdam **1971**.
- [33] PD Dr. K. Karaghiosoff, persönliche Mitteilung.
- [34] C. Elschenbroich, A. Salzer, *Organometallchemie*, Teubner-Verlag 3. Auflage 1993.
- [35] D. M. P. Mingos, Acc. Chem. Res. 1984, 17, 311.
- [36] K. Wade, Adv. Inorg. Radiochem. 1976, 18, 1.
- [37] C. E. McFarlane, D. S. Rycroft, J. Chem. Soc. Dalton Trans. 1976, 1616.
- [38] D. Seyferth, J. S. Merola, R. S. Hendersom, *Organometallics* **1982**, 1, 859.
- [39] O. J. Scherer, G. Schwarz, G. Wolmershäuser, Z. Anorg. allg. Chem. 1996, 622, 951.
- [40] L. Weber, O. Sommer, H. G. Stammler, B. Neumann, Z. Anorg. allg. Chem. 1996, 622, 543.
- [41] O. J. Scherer, H. Sitzmann, G. Wolmershäuser, *Angew. Chem.* 1985, 97, 358; *Angew. Chem. Int. Ed. Engl.* 1985, 24, 351.
- [42] W. Hönle, H. G. v. Schnering, G. Fritz, H. Schneider, Z. Anorg. Allg. Chem. 1990, 584, 51.
- [43] G. Fritz, K. D. Hoppe, W. Hönle, D. Weber, H. G. von Schnering, Organomet. Chem. 1983, 249, 63.

- [44] S. Charles, J. Danis, J. Fettinger, B. Eichhorn, *Inorg. Chem.* 1997, 36, 3772 und dort zitierte Literatur.
- [45] U. Bolle, W. Tremel, J. Chem. Soc. Chem. Commun. 1991, 217.
- [46] L. Goh, R. C. S. Wong, E. Sinn, J. Chem. Soc. Chem. Commun. 1990, 1484.
- [47] L. Goh, C. K. Chu, R. C. S. Wong, T. W. J. Hambley, J. Chem. Soc., Dalton Trans.
 1989, 1951.
- [48] O. J. Scherer, G. Berg, G. Wolmershäuser, Chem. Ber. 1996, 129, 53.
- [49] R. Ahlrichs, D. Fenske, K. Fromm, H. Krautscheid, O. Treutler, *Chem. Eur. J.* 1996, 2, 238.
- [50] O. J. Scherer, H. Sitzmann, G. Wolmershäuser, *J. Organomet. Chem.* 1986, 309, 77.
 Modifizierte Synthese: K. Mast, *Diplomarbeit*, Universität Kaiserslautern 1996.
- [51] A. J. Dimaio, A. L. Rheingold, *Chem. Rev.* **1990**, 90, 169.
- [52] K. Mast, J. Meiers, O. J. Scherer, G. Wolmershäuser, Z. Anorg. allg. Chem. 1999, 625, 70.
- [53] C. K. F. v. Hänisch, C. Üffing, M. A. Junker, A. Ecker, B. O. Kneisel, H. Schnöckel, Angew. Chem. 1996, 108, 3003; Angew. Chem. Int. Ed. Engl. 1996, 35, 2875.
- [54] G. Schwarz, *Dissertation*, Universität Kaiserslautern **1994**.
- [55] H. Slodzyk, *Dissertation*, Universität Kaiserslauterm 1993.
- [56] K. B. Dillon, F. Mathey, J. F. Nixon, *Phosphorus, The Carbon Copy*; Wiley, Chichester **1998**.
- [57] A. Dreinsfeld, L. Nyulázi, P. v. Ragué Schleyer, Inorg. Chem. 1998, 37, 4413.
- [58] F. G. Cloke, P. B. Hitchcock, P. B. Hunnable, P. Nixon, J. F. Nyulázi, E. Niecke, V. Thelen, *Angew. Chem.* 1998, 110, 8; *Angew. Chem. Int. Ed. Engl.* 1998, 378, 1083.
- [59] V. Caliman, P. B. Hitchcock, J. F. Nixon, J. Chem. Soc. Chem. Commun. 1995, 1661.
- [60] A. L. Rheingold, M. J. Foley, P. J. Sullivan, *Organometallics* **1982**, 1, 1429.
- [61] F. Donohue, J. Acta Crystallogr. 1962, 15, 708.
- [62] J. Legendre, C. Girard, M. Huber, Bull. Soc. Chim. Fr. 1971, 1998.
- [63] D. Brown, G. Bushnell, Acta Crystallogr. 1967, 22, 296.
- [64] O. J. Scherer, K. Pfeiffer, G. Wolmershäuser, *Chem. Ber.* 1992, 125, 2367.
- [65] B. Rink, *Dissertation*, Universität Kaiserslautern **1994**.
- [66] H. Sitzmann, *Dissertation*, Universität Kaiserslautern **1985**, 42.
- [67] M. D. Rausch, R. A. Genetti, J. Org. Chem. 1970, 35, 3888.
- [68] G. Friedrich, *Dissertation*, Universität Kaiserslautern 1995.
- [69] O. J. Scherer, T. Brück, G. Wolmershäuser, *Chem. Ber.* 1988, 121, 935.

- [70] R. B. King, M. B. Bisnette, J. Organometal. Chem. 1967, 8, 287.
- [71] D. Stein, *Dissertation*, Universität Kaiserslautern 1993 und dort zitierte Literatur.
- [72] D. Cathline, D. Astruc, Organometallics 1984, 3, 1094.
- [73] S. A. Frith, J. L. Spencer, *Inorg. Synth.* 1985, 23, 15.
- [74] A. Tzschach, W. Deyling, Z. Anorg. allg. Chem. 1965, 336, 36.
- [75] M. Baudler, P. Bachmann, Z. Anorg. allg. Chem. 1982, 485, 129.
- [76] J. W. B. Reesor, G. F. Wright, J. Org. Chem. 1957, 22, 382.
- [77] P. S. Elmes, S. Middleton, B. O. West, Aust. J. Chem. 1970, 23, 1559.
- [78] a) G. Becker, G. Gresser, W. Uhl, Z. Naturforsch. 1981, 36 b, 16; b) W. Rösch, U. Hees, M. Regitz, Chem. Ber. 1987, 120, 1645; W. Rösch, T. Allspach, U. Bergsträßer, M. Regitz in: Synthetic Methods of Organometallic and Inorganic Chemistry (Herrmann/Brauer) Vol. 3, G. Thieme-Verlag, Stuttgart, 1996, S. 11.
- [79] K. Mast, *Dissertation*, Universität Kaiserslautern 1998.

7 Anhang

Angaben zu den Kristallstrukturanalysen

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung werden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H und CH₂-Gruppen) des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

A Kristalldaten und Parameter der Kristallstrukturanalyse von [Cp^{···}Mo(μ -h^{4:2}-P₃C^tBu)(μ -h^{2:2}-P₂)FeCp^{*·}] (3e) (Intern: 9926)

Summenformel	C ₃₃ H ₅₅	FeMoP ₅	
Molmasse	758.41		
Temperatur	293(2)	K	
Strahlung	ΜοΚα		
Wellenlänge	0.7107	3 Å	
Scanmodus	Phi-Os	zillation	
Kristallsystem	Monok	lin	
Raumgruppe	$P2_1/n$		
Zelldimensionen	a = 20.	3020(10) Å	$\alpha = 90^{\circ}$
	<i>b</i> = 9.2	295(5) Å	$\beta = 110.378(6)^{\circ}$
	c = 20.	3719(11) Å	$\gamma = 90^{\circ}$
Zellvolumen	3578.3	(3) $Å^{3}$	
Formeleinheiten pro Zelle Z	4		
Berechnete Dichte	1.408 1	Mg/m^3	
Absorptionskoeffizient	1.001 r	nm ⁻¹	
Kristallgröße	0.24 x	0.20 x 0.14 mm	
Gemessener θ-Bereich	2.82 bi	s 25.68°	
Anzahl der gemessenen Refle	xe	48673	
Unabhängige Reflexe	6784 (I	Rint = 0.0642)	
Absorptionskorrektur	Numer	risch	
Max. und min. Transmission	0.8946	und 0.8005	
Diffraktometer	Stoe IP	DS	
Strukturlösung	Direkte	e Methoden	
Strukturlösungsprogramm	SHELZ	XS-97 (Sheldrick, 199	0)
Strukturverfeinerung	Vollma	atrix Least-Squares ge	gen F ²
Strukturverfeinerungsprogram	nm	SHELXL-97 (Sheldri	ick, 1997)
Daten / Restraints / Parameter	•	6784 / 0 / 378	
Endgültige R-Werte $[I>2\sigma(I)]$		R1 = 0.0291, wR2 = 0	0.0602
R-Werte (alle Daten)	R1 = 0	.0510, wR2 = 0.0643	
Wichtungsschema	w=1/[o	$5^{2}(\text{Fo}^{2}) + (0.0356\text{P})^{2} + 0.0356\text{P})^{2} + 0.00356\text{P}^{2}$.0000P] mit P= $(Fo^2+2Fc^2)/3$
GooF (alle Daten)	0.889	-	
Größtes Maximum und Minin	num	0.443 und -0.483 $e^{A^{-}}$	3

Tabelle A2: Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 3e. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U(eq)
			· · · · · · · · · · · · · · · · · · ·	
Mo(1)	7618(1)	8805(1)	236(1)	28(1)
Fe(1)	8947(1)	7891(1)	1080(1)	31(1)
P(1)	7986(1)	6384(1)	845(1)	48(1)
P(2)	8367(1)	6814(1)	40(1)	50(1)
P(3)	8756(1)	9595(1)	222(1)	37(1)
P(4)	8217(1)	11297(1)	548(1)	38(1)
P(5)	8162(1)	8751(1)	1538(1)	34(1)
C(1)	7990(1)	10564(3)	1237(1)	35(1)
C(2)	6743(1)	9920(3)	-785(1)	36(1)
C(3)	6908(1)	8506(3)	-989(1)	36(1)
C(4)	6704(1)	7493(3)	-561(1)	36(1)
C(5)	6401(1)	8189(3)	-123(1)	34(1)
C(6)	6461(1)	9686(3)	-239(1)	35(1)
C(7)	9585(1)	6951(3)	2038(1)	38(1)
C(8)	9724(1)	6293(3)	1470(1)	38(1)
C(9)	9974(1)	7371(3)	1118(1)	41(1)
C(10)	10005(1)	8708(4)	1481(2)	42(1)
C(11)	9761(1)	8446(3)	2049(2)	43(1)
C(12)	7670(2)	11599(3)	1650(2)	43(1)
C(13)	8256(2)	12686(4)	2014(2)	74(1)
C(14)	7027(2)	12438(5)	1197(2)	80(1)
C(15)	7476(2)	10840(4)	2221(2)	71(1)
C(21)	6640(2)	11412(3)	-1148(2)	47(1)
C(22)	7201(2)	11815(4)	-1454(2)	68(1)
C(23)	6618(2)	12649(3)	-656(2)	60(1)
C(24)	5897(2)	11388(4)	-1727(2)	75(1)
C(31)	7118(2)	7959(4)	-1613(2)	49(1)
C(32)	6553(2)	8420(5)	-2313(2)	72(1)
C(33)	7124(2)	6297(4)	-1629(2)	63(1)
C(34)	7841(2)	8481(4)	-1609(2)	59(1)
C(51)	5956(1)	7506(3)	263(2)	43(1)
C(52)	6049(2)	8285(5)	945(2)	77(1)
C(53)	5192(2)	7663(5)	-217(2)	71(1)
C(54)	6111(2)	5905(4)	401(3)	88(2)
C(71)	9361(2)	6209(4)	2581(2)	57(1)
C(81)	9670(2)	4700(4)	1297(2)	59(1)
C(91)	10219(2)	7130(5)	513(2)	57(1)
C(92)	10973(2)	6648(6)	738(2)	89(2)
C(101)	10325(2)	10109(4)	1361(2)	65(1)
C(111)	9774(2)	9531(4)	2606(2)	67(1)

Tabelle A3:	Bindungslängen [Å] ur	nd -winkel [°] für 3e.

Mo(1)-C(4)	2.334(2)		
Mo(1) - C(6)	2.353(3)		
Mo(1)-C(5)	2.388(3)	C(4)-MO(1)-C(6)	56.96(10)
Mo(1)-C(3)	2.423(2)	C(4)-MO(1)-C(5)	34.55(10)
Mo(1)-P(3)	2.4308(7)	C(6)-MO(1)-C(5)	34.69(9)
Mo(1)-C(2)	2.443(3)	C(4)-MO(1)-C(3)	35.01(9)
Mo(1)-P(5)	2.4947(7)	C(6)-MO(1)-C(3)	57.66(10)
Mo(1)-P(2)	2.5043(8)	C(5)-MO(1)-C(3)	58.44(9)
Mo(1)-C(1)	2.509(3)	C(4)-MO(1)-P(3)	132.52(7)
Mo(1)-P(1)	2.5391(8)	C(6)-MO(1)-P(3)	135.12(7)
Mo(1)-P(4)	2.5753(8)	C(5)-Mo(1)-P(3)	162.46(7)
Mo(1)-Fe(1)	2.7779(5)	C(3)-MO(1)-P(3)	104.44(7)
Fe(1)-C(8)	2.103(3)	C(4)-MO(1)-C(2)	57.30(9)
Fe(1)-C(9)	2.114(3)	C(6)-MO(1)-C(2)	34.72(9)
Fe(1)-C(7)	2.116(3)	C(5)-MO(1)-C(2)	58.08(9)
Fe(1)-C(10)	2.151(3)	C(3)-MO(1)-C(2)	34.51(9)
Fe(1)-C(11)	2.149(3)	P(3)-Mo(1)-C(2)	106.06(7)
Fe(1)-P(5)	2.2527(8)	C(4)-MO(1)-P(5)	132.83(7)
Fe(1)-P(2)	2.2635(9)	C(6)-Mo(1)-P(5)	116.96(7)
Fe(1)-P(3)	2.2815(9)	C(5)-Mo(1)-P(5)	110.40(7)
Fe(1)-P(1)	2.3067(9)	C(3)-Mo(1)-P(5)	167.70(7)
P(1)-P(2)	2.0806(14)	P(3)-Mo(1)-P(5)	87.00(2)
P(1)-P(5)	2.5586(11)	C(2)-MO(1)-P(5)	146.67(7)
P(2)-P(3)	2.6721(12)	C(4)-MO(1)-P(2)	83.59(7)
P(3)-P(4)	2.1465(11)	C(6)-Mo(1)-P(2)	139.73(7)
P(4)-C(1)	1.759(3)	C(5)-Mo(1)-P(2)	113.42(7)
P(5)-C(1)	1.775(3)	C(3)-Mo(1)-P(2)	85.93(7)
C(1)-C(12)	1.555(4)	P(3)-Mo(1)-P(2)	65.54(3)
C(2)-C(6)	1.434(4)	C(2)-MO(1)-P(2)	118.40(7)
C(2)-C(3)	1.444(4)	P(5)-Mo(1)-P(2)	94.93(3)
C(2)-C(21)	1.542(4)	C(4)-Mo(1)-C(1)	147.40(9)
C(3) - C(4)	1.434(4)	C(6)-Mo(1)-C(1)	94.91(9)
C(3) - C(31)	1.559(4)	C(5)-MO(1)-C(1)	112.90(9)
C(4) - C(5)	1.403(4)	C(3)-MO(1)-C(1)	144.45(9)
C(5)-C(6)	1.414(4)	P(3)-Mo(1)-C(1)	78.32(6)
C(5)-C(51)	1.527(4)	C(2)-MO(1)-C(1)	110.10(9)
C(7) - C(8)	1.418(4)	P(5)-Mo(1)-C(1)	41.54(6)
C(7) - C(11)	1.424(4)	P(2)-MO(1)-C(1)	125.22(6)
C(7) - C(71)	1.500(4)	C(4) - MO(1) - P(1)	84.86(7)
C(8) - C(9)	1.419(4)	C(6) - Mo(1) - P(1)	125.91(7)
C(8) - C(81)	1.507(4)	C(5) - MO(1) - P(1)	92.10(7)
C(9) - C(10)	1.429(4)	C(3)-MO(1)-P(1)	111.77(7)
C(9) - C(91)	1.498(4)	P(3) - Mo(1) - P(1)	98.66(3)
C(10) - C(11)	1.428(4)	C(2) - MO(1) - P(1)	142.13(7)
C(10) - C(101)	1.505(4)	P(5) - MO(1) - P(1)	61.09(3)
C(11) - C(111)	1.506(4)	P(2) - MO(1) - P(1)	48.72(3)
C(12) - C(14)	1.522(5)	C(1) - MO(1) - P(1)	102.60(7)
C(12) = C(15)	1.524(5)	C(4) - MO(1) - P(4)	145.67(7)
C(12) = C(13)	1.535(5)	C(6) - MO(1) - P(4) C(E) Mo(1) - D(4)	90.40(7)
C(21) = C(22)	1.523(5) 1 E20(E)	C(3) - MO(1) - P(4)	129.01(7)
C(21) - C(23)	1.550(5) 1.559(4)	C(3) - MO(1) - P(4) D(2) Mo(1) - D(4)	114.01(7)
C(21) - C(22)	1 534(5)	$\frac{P(3)-P(4)}{P(2)-P(4)}$	20.00(3) 20 EQ(7)
C(31) = C(33)	1.53 = (3)	$\mathbb{C}(2) = \mathbb{P}(2) = \mathbb{P}(4)$ $\mathbb{D}(5) = \mathbb{P}(4)$	76 00.00(7)
C(31) - C(34)	1 542(4)	$P(2) = M_{O}(1) = P(4)$	115 70(2)
C(51) - C(54)	1,517(5)	$C(1) - M_{O}(1) - D(4)$	40 46(6)
C(51) - C(52)	1.516(5)	$P(1) - M_O(1) - P(4)$	129,20(3)
C(51)-C(53)	1.526(4)	C(4) - Mo(1) - Fe(1)	129.68(7)
C(91)-C(92)	1.505(5)	C(6) - Mo(1) - Fe(1)	167.20(7)
		C(5)-Mo(1)-Fe(1)	142.67(7)

C(3)-Mo(1)-Fe(1)	134.75(7)	Fe(1)-P(2)-P(3)	54.30(3)
P(3)-Mo(1)-Fe(1)	51.43(2)	Mo(1)-P(2)-P(3)	55.90(2)
C(2)-Mo(1)-Fe(1)	156.47(7)	P(4)-P(3)-Fe(1)	103.69(4)
P(5)-Mo(1)-Fe(1)	50.235(19)	P(4)-P(3)-Mo(1)	68.15(3)
P(2)-Mo(1)-Fe(1)	50.422(19)	Fe(1)-P(3)-Mo(1)	72.16(2)
C(1)-Mo(1)-Fe(1)	74.97(6)	P(4)-P(3)-P(2)	126.04(4)
P(1)-Mo(1)-Fe(1)	51.182(19)	Fe(1)-P(3)-P(2)	53.68(3)
P(4)-Mo(1)-Fe(1)	81.09(2)	Mo(1)-P(3)-P(2)	58.55(3)
C(8)-Fe(1)-C(9)	39.33(11)	C(1)-P(4)-P(3)	105.61(10)
C(8)-Fe(1)-C(7)	39.28(11)	C(1)-P(4)-Mo(1)	67.75(9)
C(9)-Fe(1)-C(7)	66.01(11)	P(3)-P(4)-Mo(1)	61.17(3)
C(8)-Fe(1)-C(10)	65.41(12)	C(1)-P(5)-Fe(1)	105.78(9)
C(9)-Fe(1)-C(10)	39.12(12)	C(1)-P(5)-Mo(1)	69.67(9)
C(7)-Fe(1)-C(10)	65.40(11)	Fe(1)-P(5)-Mo(1)	71.42(2)
C(8)-Fe(1)-C(11)	65.42(11)	C(1)-P(5)-P(1)	129.91(9)
C(9)-Fe(1)-C(11)	65.60(11)	Fe(1)-P(5)-P(1)	56.87(3)
C(7)-Fe(1)-C(11)	38.99(12)	Mo(1)-P(5)-P(1)	60.31(3)
C(10)-Fe(1)-C(11)	38.80(11)	C(12)-C(1)-P(4)	118.1(2)
C(8)-Fe(1)-P(5)	129.51(8)	C(12)-C(1)-P(5)	117.5(2)
C(9)-Fe(1)-P(5)	153.53(8)	P(4)-C(1)-P(5)	124.27(16)
C(7)-Fe(1)-P(5)	93.26(8)	C(12)-C(1)-MO(1)	140.57(19)
C(10)-Fe(1)-P(5)	118.39(9)	P(4)-C(1)-Mo(1)	71.78(9)
C(11)-Fe(1)-P(5)	87.94(8)	P(5)-C(1)-Mo(1)	68.79(9)
C(8)-Fe(1)-P(2)	97.07(8)	C(6)-C(2)-C(3)	106.4(2)
C(9)-Fe(1)-P(2)	96.86(8)	C(6)-C(2)-C(21)	118.8(3)
C(7) - Fe(1) - P(2)	129.39(9)	C(3)-C(2)-C(21)	132.5(3)
C(10) - Fe(1) - P(2)	129.37(8)	C(6) - C(2) - MO(1)	69.19(14)
C(11)-Fe(1)-P(2)	161.29(9)	C(3)-C(2)-Mo(1)	71.99(14)
P(5)-Fe(1)-P(2)	109.30(3)	C(21)-C(2)-MO(1)	136.11(18)
C(8)-Fe(1)-P(3)	132.68(8)	C(4) - C(3) - C(2)	105.6(2)
C(9) - Fe(1) - P(3)	95.00(9)	C(4) - C(3) - C(31)	120.2(3)
C(7) - Fe(1) - P(3)	151.06(8)	C(2)-C(3)-C(31)	133.2(3)
C(10) - Fe(1) - P(3)	86.00(8)	C(4) - C(3) - MO(1)	69.08(14)
C(11)-Fe(1)-P(3)	114.24(9)	C(2) - C(3) - Mo(1)	73.50(14)
P(5)-Fe(1)-P(3)	96.80(3)	C(31)-C(3)-MO(1)	130.03(18)
P(2)-Fe(1)-P(3)	72.02(3)	C(5)-C(4)-C(3)	111.8(2)
C(8)-Fe(1)-P(1)	97.17(8)	C(5)-C(4)-Mo(1)	74.84(15)
C(9)-Fe(1)-P(1)	128.53(9)	C(3)-C(4)-Mo(1)	75.91(14)
C(7)-Fe(1)-P(1)	98.42(8)	C(4) - C(5) - C(6)	105.0(2)
C(10) - Fe(1) - P(1)	161.97(9)	C(4) - C(5) - C(51)	127.5(3)
C(11)-Fe(1)-P(1)	131.23(9)	C(6) - C(5) - C(51)	126.2(3)
P(5)-Fe(1)-P(1)	68.26(3)	C(4) - C(5) - Mo(1)	70.61(14)
P(2)-Fe(1)-P(1)	54.15(4)	C(6) - C(5) - Mo(1)	71.29(15)
P(3)-Fe(1)-P(1)	110.51(3)	C(51)-C(5)-MO(1)	132.51(18)
C(8)-Fe(1)-Mo(1)	152.39(8)	C(5)-C(6)-C(2)	110.9(3)
C(9)-Fe(1)-Mo(1)	145.52(8)	C(5)-C(6)-Mo(1)	74.02(15)
C(7) - Fe(1) - Mo(1)	147.83(8)	C(2)-C(6)-Mo(1)	76.09(15)
C(10)-Fe(1)-Mo(1)	138.98(9)	C(8)-C(7)-C(11)	108.0(3)
C(11)-Fe(1)-Mo(1)	140.06(8)	C(8)-C(7)-C(71)	127.1(3)
P(5)-Fe(1)-Mo(1)	58.35(2)	C(11)-C(7)-C(71)	124.6(3)
P(2)-Fe(1)-Mo(1)	58.51(2)	C(8)-C(7)-Fe(1)	69.87(15)
P(3)-Fe(1)-Mo(1)	56.41(2)	C(11)-C(7)-Fe(1)	71.78(16)
P(1)-Fe(1)-Mo(1)	59.05(2)	C(71)-C(7)-Fe(1)	128.4(2)
P(2)-P(1)-Fe(1)	61.86(3)	C(7) - C(8) - C(9)	108.6(3)
P(2)-P(1)-Mo(1)	64.77(3)	C(7) - C(8) - C(81)	126.1(3)
Fe(1)-P(1)-Mo(1)	69.76(2)	C(9)-C(8)-C(81)	125.1(3)
P(2)-P(1)-P(5)	104.65(4)	C(7) - C(8) - Fe(1)	70.85(16)
Fe(1) - P(1) - P(5)	54.87(3)	C(9) - C(8) - Fe(1)	70.77(16)
Mo(1) - P(1) - P(5)	58.60(2)	C(81) - C(8) - Fe(1)	127.67(19)
P(1)-P(2)-Fe(1)	63,98(3)	C(8) - C(9) - C(10)	107.7(3)
P(1)-P(2)-Mo(1)	66.51(3)	C(8) - C(9) - C(91)	126.2(3)
Fe(1) - P(2) - Mo(1)	71.07(3)	C(10) - C(9) - C(91)	126.0(3)
P(1)-P(2)-P(3)	104.30(4)	C(8) - C(9) - Fe(1)	69.90(15)

C(10)-C(9)-Fe(1)	71.83(16)
C(91)-C(9)-Fe(1)	127.48(19)
C(11)-C(10)-C(9)	107.9(3)
C(11)-C(10)-C(101)	124.7(3)
C(9)-C(10)-C(101)	126.9(3)
C(11)-C(10)-Fe(1)	70.53(15)
C(9)-C(10)-Fe(1)	69.05(15)
C(101)-C(10)-Fe(1)	132.1(2)
C(7)-C(11)-C(10)	107.9(3)
C(7)-C(11)-C(111)	126.5(3)
C(10)-C(11)-C(111)	125.3(3)
C(7)-C(11)-Fe(1)	69.23(15)
C(10)-C(11)-Fe(1)	70.66(15)
C(111)-C(11)-Fe(1)	131.0(2)
C(14)-C(12)-C(15)	107.6(3)
C(14)-C(12)-C(13)	108.5(3)
C(15)-C(12)-C(13)	107.0(3)
C(14)-C(12)-C(1)	114.7(3)
C(15)-C(12)-C(1)	113.5(3)
C(13)-C(12)-C(1)	105.3(3)
C(22)-C(21)-C(23)	106.4(3)
C(22)-C(21)-C(2)	114.7(3)
C(23)-C(21)-C(2)	112.5(2)
C(22)-C(21)-C(24)	111.0(3)
C(23)-C(21)-C(24)	105.4(3)
C(2)-C(21)-C(24)	106.5(3)
C(33)-C(31)-C(32)	105.4(3)
C(33)-C(31)-C(34)	107.3(3)
C(32)-C(31)-C(34)	108.6(3)
C(33)-C(31)-C(3)	110.4(3)
C(32)-C(31)-C(3)	109.7(3)
C(34)-C(31)-C(3)	115.1(2)
C(54)-C(51)-C(52)	109.9(3)
C(54)-C(51)-C(5)	112.1(3)
C(52)-C(51)-C(5)	111.6(3)
C(54)-C(51)-C(53)	108.1(3)
C(52)-C(51)-C(53)	108.5(3)
C(5)-C(51)-C(53)	106.4(3)
C(9)-C(91)-C(92)	112.8(3)

	U ₁₁	U ₂₂	U ₃₃	U 23	U ₁₃	U ₁₂
 Mo(1)	27(1)	29(1)	28(1)	0(1)	9(1)	-2(1)
Fe(1)	26(1)	38(1)	28(1)	-1(1)	8(1)	0(1)
P(1)	36(1)	32(1)	65(1)	8(1)	4(1)	-2(1)
P(2)	40(1)	53(1)	45(1)	-17(1)	1(1)	12(1)
P(3)	34(1)	50(1)	31(1)	3(1)	15(1)	-3(1)
P(4)	47(1)	34(1)	38(1)	2(1)	19(1)	-7(1)
P(5)	37(1)	36(1)	32(1)	4(1)	17(1)	3(1)
C(1)	39(2)	34(2)	34(1)	-3(1)	16(1)	-2(1)
C(2)	28(1)	40(2)	34(2)	6(1)	4(1)	-4(1)
C(3)	28(1)	44(2)	31(1)	-4(1)	5(1)	-4(1)
C(4)	30(1)	32(2)	41(2)	-2(1)	7(1)	-4(1)
C(5)	25(1)	36(2)	40(2)	4(1)	11(1)	0(1)
C(6)	32(1)	34(2)	41(2)	3(1)	14(1)	4(1)
C(7)	28(1)	55(2)	28(1)	4(1)	5(1)	2(1)
C(8)	26(1)	46(2)	37(1)	2(1)	5(1)	7(1)
C(9)	28(1)	58(2)	35(2)	0(1)	9(1)	4(1)
C(10)	28(1)	54(2)	40(2)	1(2)	6(1)	-6(1)
C(11)	30(1)	58(2)	35(2)	-9(1)	4(1)	-3(1)
C(12)	58(2)	34(2)	43(2)	-6(1)	24(1)	3(1)
C(13)	94(3)	61(2)	76(3)	-33(2)	41(2)	-16(2)
C(14)	91(3)	82(3)	67(2)	-11(2)	27(2)	40(2)
C(15)	102(3)	61(3)	75(2)	-5(2)	63(2)	6(2)
C(21)	46(2)	45(2)	44(2)	15(2)	8(1)	1(1)
C(22)	83(3)	64(2)	61(2)	16(2)	29(2)	-12(2)
C(23)	71(2)	39(2)	66(2)	18(2)	18(2)	5(2)
C(24)	63(2)	68(3)	69(2)	21(2)	-9(2)	10(2)
C(3L)	42(2)	67(2)	33(2)	-9(2)	9(1)	-7(2)
C(32)	65(2)	105(3)	32(2)	-8(2)	2(2)	-5(2)
C(33)	63(2)	72(2)	53(2)	-29(2)	18(2)	-9(2)
C(34)	55(2)	87(3)	42(2)	-11(2)	26(2)	-10(2)
C(51)	34(2)	43(2)	56(2)	8(2)	20(1) 46(2)	$-\perp(\perp)$
C(52)	78(3)	106(3)	64(2)	-4(2)	46(2)	-29(2)
C(53)	37(2)	94(3)	83(3)	15(2)	$Z \perp (Z)$	-IU(2)
C(54)	76(3)	53(Z) 75(2)	159(5)	39(3)	71(3)	5(2)
C(71)	54(Z) 52(2)	/5(Z) E1(2)	44(2)	18(2)	20(2)	5(2)
C(OI)	55(2)	$D \perp (\angle)$	04(2)	- 1 (Z)	$\pm \cup (\angle)$	$\pm \cup (\angle)$
C(91)	41(Z)	92(3) 140(E)	44(Z)	-⊥(∠) 12(2)	∠⊥(⊥) 22(2)	/(Z)
C(92)	$0 \cup (\angle)$	$\pm 4 \delta (5)$	00(∠) 72(2)	-13(3) 2(2)	3∠(∠) 12(2)	4(3) 20(2)
C(TUT)	40(Z) 62(2)	ひソ(<i>4</i>) フロ(2)	/ S (Z) 5 / (2)	ン(∠) - 28(2)	⊥∠(∠) 12(2)	$- \angle \cup (\angle)$
	05(2)	19(3)	54(2)	-20(2)	13(Z)	-0(2)

Tabelle A4: Anisotrope Auslenkungsparameter [Å² x 10³] für 3e. Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [(ha^{*})²U₁₁ + ... + 2hka^{*}b^{*}U₁₂]

	х	У	Z	U(eq)
н(Д)	6765	6496	-573	43
н(б)	6334	10421	5	42
н(13д)	8368	13239	1668	111
н(13в)	8666	12172	2302	111
н(13C)	8000	13327	2302	111
н(14л)	6645	11778	002	120
П(14R) Ч(14R)	7134	12934	833	120
н(14С) ч(14С)	6896	12121	1481	120
п(14C) п(15л)	7216	11544	2470	106
H(15A)	7990	10240	2479	106
H(15C)	7002	10149	2013	106
н(IJC) ц(ЭЭЛ)	7110	10149	_1628	100
H(22A) U(22D)	7102	11151	-1030	102
н(226) ч(22С)	7105	11766	-1023	102
H(22C) $H(22\lambda)$	7050	12727	-201	102
H(23A)	6266	12/3/	-291	90
П(23D) П(23C)	6506	12520	-455	90
H(23C)	0000 E017	10000	-915	90
H(24A)	5017 5616	11260	-1903	112
H(24B)	5540	10506	-1514	
H(24C)	5868	10596	-2042	
H(3ZA)	6617	/886	-2690	107
H(32B)	6596	9438	-2385	107
H(32C)	6094	8221	-2297	107
H(33A)	0004	5937	-1086	94
H(33B)	7455	5939	-1198	94
H(33C)	/258 9205	5975	-2013	94
H(34A)	8205	7940	-1207	00
H(34B)	/895	9492	-1493	88
H(34C)	/8/2	8335	-2063	88
H(5ZA)	5749	/054	1105 0F1	115
H(52B)	5929	9209	001 1051	115
H(52C)	0000 5117	0207	1251	107
H(JJA)	5117	7124	-040	107
П(33Б) П(53С)	1000	7007	-330	107
H(SSC)	4000	7297 E701	15	122
H(54A)	0092	5761 5410	700	132
H(54B)	6033	5412	-34	132
H(54C)	50U/ 0124	5506 E 21 1	020 2207	132
H(71A)	9134	5311	2397	00
н(/16) ц(71с)	9041	6022	2705	00
H(/LC)	9700	0022	2909	00
П(ОІА) П(ОІД)		4249	1010	00
H(OIB)	9527	4578	1462	00
л(отс) ц(отс)	70165	420U 2000	1403 010	00
ם (ATE) מוס (מו	TOTOD	6402	240	60
	2255 11070	040Z	200 1006	124
П(УZA) Ц(ООР)	11100	1303	TUZQ	134 134
	11020	0408 E764	332 1001	134 134
$\Pi(\mathcal{Y}\mathcal{L}\mathcal{C})$	1006F	5/04		134
H(LUA)	10011	10147	1448 005	<i>۲</i> ۲
	10004	10162	885 1672	<i>۲</i> ۲
H(LUC)		COCO COTUT	10/3 0707	۶/ ۱۰۱
п(ца) п(ца)	941 / 0607	727U 10107	2/9/	
$\Pi(IIB)$	שטע / 10006	LU403 0F11	2404	101
H(IIC)	TUZZO	9511	2912	TOT

Tabelle A5: H-Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 3e.

$\begin{array}{ll} B & Kristalldaten \ und \ Parameter \ der \ Kristallstrukturanalyse \ von \\ & [Cp*Mo(\textbf{mh}^{4:2}-P_2C_2P_2)(\textbf{mh}^{2:2}-P_2)FeCp*] \ (7a) \ (Intern: \ 2007) \end{array}$

Tabelle B1: Kristalldaten und Strukturverfeinerung für 7a.

Summenformel	$C_{34}H_{40}FeMoP_4$	
Molmasse	724.33	
Temperatur	293(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Phi-Oszillation	
Kristallsystem	Triklin	
Raumgruppe	P1	
Zelldimensionen	a = 12.7454(11) Å	$\alpha = 112.953(9)^{\circ}$
	b = 16.9892(13) Å	$\beta = 98.222(10)^{\circ}$
	c = 17.6695(14) Å	$\gamma = 104.770(9)^{\circ}$
Zellvolumen	3278.0(5) Å ³	•
Formeleinheiten pro Zelle Z	4	
Berechnete Dichte	1.468 Mg/m^3	
Absorptionskoeffizient	1.043 mm ⁻¹	
Kristallgröße	0.50 x 0.30 x 0.20 mm	
Gemessener θ-Bereich	2.72 bis 26.02°	
Anzahl der gemessenen Refle	xe 47027	
Unabhängige Reflexe	11989 (Rint = 0.0494)	
Absorptionskorrektur	Empirisch (MULABS/PLA	FON 98)
Max. und min. Transmission	0.6613 und 0.5953	
Diffraktometer	Stoe IPDS	
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SHELXS-97 (Sheldrick, 199	90)
Strukturverfeinerung	Vollmatrix Least-Squares ge	egen F ²
Strukturverfeinerungsprogram	m SHELXL-97 (Sheld	rick, 1997)
Daten / Restraints / Parameter	11989 / 151 / 837	
Endgültige R-Werte $[I>2\sigma(I)]$	R1 = 0.0246, wR2 =	0.0594
R-Werte (alle Daten)	R1 = 0.0349, WR2 = 0.0620	2 2
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0370P)^2+0]$	0.0000P] mit P=(Fo ² +2Fc ²)/3
GooF (alle Daten)	0.955	2
Größtes Maximum und Minin	num 0.528 und -0.556 eÅ	-3
Tabelle B2:

Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 7a. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U(eq)
Mo(1)	1886(1)	7615(1)	3722(1)	33(1)
Fe(1)	373(1)	7652(1)	4664(1)	35(1)
P(1)	-136(1)	7461(1)	3284(1)	50(1)
P(2)	918(1)	8745(1)	4220(1)	51(1)
P(3)	556(1)	6338(1)	3778(1)	38(1)
P(4)	2275(1)	8352(1)	5256(1)	40(1)
C(1)	2730(2)	7379(2)	4906(1)	36(1)
C(2)	1989(2)	6514(1)	4273(1)	35(1)
C(11)	3939(2)	7552(2)	5308(1)	43(1)
C(12)	4385(2)	8091(2)	6185(2)	56(1)
C(13)	5492(3)	8227(2)	6583(2)	78(1)
C(14)	6150(2)	7840(2)	6119(3)	81(1)
C(15)	5723(2)	7311(2)	5261(2)	73(1)
C(16)	4630(2)	7166(2)	4858(2)	56(1)
C(21)	2283(2)	5669(2)	3987(1)	39(1)
C(22)	2857(2)	5470(2)	4588(2)	51(1)
C(23)	3082(3)	4669(2)	4343(2)	64(1)
C(24)	2716(3)	4032(2)	3492(2)	71(1)
C(25)	2120(3)	4202(2)	2904(2)	66(1)
C(26)	1906(2)	5012(2)	3142(1)	48(1)
C(31)	285(2)	7797(2)	5915(2)	50(1)
C(32)	-115(2)	8427(2)	5728(2)	50(1)
C(33)	-1051(2)	7932(2)	5000(2)	49(1)
C(34)	-1228(2)	6988(2)	4720(2)	50(1)
C(35)	-395(2)	6906(2)	5296(2)	48(1)
C(36)	1186(3)	8013(3)	6690(2)	79(1)
C(37)	333(3)	9437(2)	6280(2)	77(1)
C(38)	-1/66(2)	8339(2)	4620(2)	72(1)
C(39)	-2155(2)	6211(2)	3997(2)	/3(1) 72(1)
C(40)	-304(3)	6056(2)	5318(2)	/∠(⊥)
C(41)	3159(2)	7288(2)	2869(1) 2221(1)	$4 \perp (\perp)$
C(42)	$2 \perp 2 \circ (2)$ 1061(2)	7151(2)	2321(1)	43(1)
C(43)	1901(2)	8669(2)	23/2(1)	44(1)
C(44)	2004(2)	0000(2)	3201(1)	42(1) 41(1)
C(45)	3017(2)	6602(2)	3477(1)	$4 \perp (\perp)$ 56(1)
C(40)	142(2)	6289(2)	2090(2)	55(1) 65(1)
C(48)	1075(2)	8198(2)	2090(2)	63(1)
C(49)	3122(2)	9677(2)	3679(2)	62(1)
C(50)	4753(2)	8725(2)	4124(2)	57(1)
Mo(2)	-4169(1)	8079(1)	10364(1)	35(1)
Fe(2)	-5818(1)	6608(1)	9055(1)	35(1)
P(5)	-5775(1)	6943(1)	10443(1)	55(1)
P(6)	-6243(1)	7804(1)	9981(1)	55(1)
P(7)	-4153(1)	6555(1)	9665(1)	40(1)
P(8)	-4956(1)	7875(1)	8932(1)	40(1)
C(5)	-3520(2)	7888(2)	9105(1)	37(1)
С(б)	-3171(2)	7317(2)	9407(1)	37(1)
C(51)	-2815(2)	8519(2)	8824(1)	41(1)
C(52)	-2163(2)	8219(2)	8278(2)	49(1)
C(53)	-1568(2)	8768(2)	7964(2)	61(1)
C(54)	-1632(2)	9617(2)	8168(2)	67(1)
C(55)	-2295(2)	9919(2)	8681(2)	60(1)
C(56)	-2884(2)	9380(2)	9014(2)	47(1)
C(61)	-1975(2)	7309(2)	9569(1)	42(1)

C(62)	-1801(2)	6509(2)	9483(2)	56(1)
C(63)	-726(3)	6452(2)	9597(2)	77(1)
C(64)	196(2)	7187(3)	9786(2)	79(1)
C(65)	47(2)	7981(2)	9865(2)	69(1)
C(66)	-1021(2)	8056(2)	9775(2)	52(1)
C(71A)	-5911(9)	5506(10)	7932(9)	55(3)
C(72A)	-6454(9)	6026(5)	7708(4)	53(2)
C(73A)	-7370(8)	6052(7)	8079(7)	53(2)
C(74A)	-7376(8)	5536(9)	8546(6)	52(2)
C(75A)	-6469(9)	5202(7)	8467(7)	54(2)
C(76A)	-4977(5)	5226(7)	7605(5)	120(4)
C(77A)	-6217(10)	6390(5)	7072(3)	131(4)
C(78A)	-8208(7)	6493(5)	7925(6)	120(4)
C(79A)	-8301(6)	5311(6)	8940(5)	110(3)
C(80A)	-6324(8)	4523(4)	8760(5)	111(3)
C(71B)	-5968(19)	5270(18)	8047(19)	54(7)
C(72B)	-6108(15)	5824(13)	7668(12)	48(5)
C(73B)	-7031(14)	6099(9)	7866(10)	41(4)
C(74B)	-7497(10)	5662(12)	8342(11)	32(3)
C(75B)	-6843(15)	5139(14)	8450(14)	48(5)
C(76B)	-5181(12)	4746(10)	7921(12)	118(7)
C(77B)	-5468(14)	6052(11)	7098(8)	113(6)
C(78B)	-7571(15)	6618(9)	7496(10)	104(5)
C(79B)	-8546(10)	5696(12)	8613(11)	108(6)
C(80B)	-7115(19)	4583(12)	8915(11)	133(7)
C(81)	-2608(2)	9430(2)	11269(1)	44(1)
C(82)	-2594(2)	8768(2)	11572(1)	44(1)
C(83)	-3563(2)	8588(2)	11864(1)	48(1)
C(84)	-4190(2)	9119(2)	11722(1)	49(1)
C(85)	-3611(2)	9641(2)	11354(1)	47(1)
C(86)	-1637(2)	9972(2)	11084(2)	65(1)
C(87)	-1641(2)	8419(2)	11700(2)	63(1)
C(88)	-3780(3)	8039(2)	12348(2)	75(1)
C(89)	-5198(2)	9228(2)	12051(2)	76(1)
C(90)	-3926(3)	10356(2)	11191(2)	72(1)

Tabelle B3: Bindungslängen [Å] und -winkel [°] für 7a.

Mo(1)-C(45)	2.364(2)	C(45)-C(50)	1.506(3)
Mo(1)-C(43)	2.371(2)	Mo(2)-C(82)	2.362(2)
Mo(1)-C(44)	2.374(2)	Mo(2)-C(84)	2.370(2)
Mo(1)-C(42)	2.379(2)	Mo(2)-C(83)	2.379(2)
Mo(1) - C(41)	2.391(2)	Mo(2)-C(85)	2.381(2)
Mo(1) - P(4)	2.4121(6)	$M_{0}(2) - C(81)$	2.384(2)
MO(1)-C(1)	2.435(2)	MO(2) - P(7)	2.4022(7)
MO(1) - P(3) MO(1) - Q(2)	2.4353(7)	MO(2) = C(5)	2.410(2)
MO(1) = C(2) MO(1) = P(2)	2.444(2) 2.4868(7)	MO(2) - C(0) MO(2) - D(8)	2.429(2) 2.4367(6)
$M_{O}(1) = P(1)$	2.4000(7) 2.4977(7)	$M_{O}(2) - P(5)$	2.4928(8)
$M_{O}(1) - Fe(1)$	2,7193(4)	$M_{O}(2) - P(6)$	2.5052(7)
Fe(1)-C(34)	2.102(2)	Mo(2) - Fe(2)	2.7272(6)
Fe(1)-C(33)	2.098(2)	Fe(2)-C(75B)	2.221(19)
Fe(1)-C(32)	2.116(2)	Fe(2)-C(74B)	2.156(15)
Fe(1)-C(31)	2.148(2)	Fe(2)-C(71A)	2.091(13)
Fe(1)-C(35)	2.144(2)	Fe(2)-C(73B)	2.127(13)
Fe(1)-P(3)	2.2651(7)	Fe(2)-C(73A)	2.140(9)
Fe(1)-P(2)	2.2765(8)	Fe(2)-C(72A)	2.122(6)
Fe(1)-P(4)	2.2845(7)	Fe(2)-C(74A)	2.107(11)
Fe(1)-P(1)	2.3020(7)	Fe(2)-C(72B)	2.204(18)
P(1)-P(2)	2.0872(11)	Fe(2)-C(71B)	2.21(3)
P(1)-P(3)	2.6676(9)	Fe(2)-C(75A)	2.069(10)
P(3) - C(2)	1.803(2)	Fe(2) - P(8)	2.2613(7)
P(4) - C(1)	1.802(2)	Fe(2) - P(7)	2.2782(6)
C(1) - C(2)	1.418(3) 1 E02(2)	P(5) - P(6)	2.0959(11)
C(1) = C(11) C(2) = C(21)	1.503(3)	P(0) - P(0) P(7) - C(6)	2.0010(10)
C(2) = C(21) C(11) = C(12)	1.490(3) 1.392(3)	P(8) - C(5)	1.802(2) 1.805(2)
C(11) - C(16)	1.388(3)	C(5) - C(6)	1.407(3)
C(12) - C(13)	1.401(4)	C(5) - C(51)	1.501(3)
C(13) - C(14)	1.365(5)	C(6)-C(61)	1.515(3)
C(14) - C(15)	1.361(5)	C(51)-C(52)	1.395(3)
C(15)-C(16)	1.383(4)	C(51)-C(56)	1.397(3)
C(21)-C(26)	1.389(3)	C(52)-C(53)	1.383(4)
C(21)-C(22)	1.400(3)	C(53)-C(54)	1.371(4)
C(22)-C(23)	1.377(4)	C(54)-C(55)	1.370(4)
C(23)-C(24)	1.386(4)	C(55)-C(56)	1.395(4)
C(24)-C(25)	1.364(4)	C(61)-C(62)	1.386(4)
C(25)-C(26)	1.384(4)	C(61)-C(66)	1.396(3)
C(31) - C(32)	1.420(4)	C(62) - C(63)	1.390(4)
C(31) - C(35)	1.416(4)	C(63) - C(64)	1.366(5)
C(31) - C(36)	1.508(4)	C(64) - C(65)	1.365(5)
C(32) = C(33) C(32) = C(37)	1.410(4) 1.502(4)	C(05) - C(00) $C(71\lambda) - C(72\lambda)$	1.393(4) 1.395(9)
C(32) = C(37) C(33) = C(34)	1.302(4) 1.426(4)	C(71A) - C(72A)	1.300(9) 1.433(10)
C(33) - C(38)	1, 507(4)	C(71A) - C(76A)	1,433(10) 1,500(8)
C(34) - C(35)	1,436(4)	C(72A) - C(73A)	1.420(8)
C(34) - C(39)	1.493(4)	C(72A) - C(77A)	1.510(7)
C(35)-C(40)	1.492(4)	C(73A)-C(74A)	1.418(9)
C(41)-C(42)	1.423(3)	C(73A)-C(78A)	1.504(8)
C(41)-C(45)	1.434(3)	C(74A)-C(75A)	1.413(9)
C(41)-C(46)	1.493(3)	C(74A)-C(79A)	1.494(8)
C(42)-C(43)	1.417(3)	C(75A)-C(80A)	1.475(8)
C(42)-C(47)	1.494(3)	C(71B)-C(72B)	1.382(15)
C(43)-C(44)	1.425(3)	C(71B)-C(75B)	1.423(14)
C(43)-C(48)	1.502(3)	C(71B)-C(76B)	1.488(13)
C(44)-C(45)	1.419(3)	C(72B)-C(73B)	1.412(12)
C(44)-C(49)	1.503(3)	C(72B)-C(77B)	1.486(13)

C(73B)-C(74B)	1.421(13)		C(44)-MO(1)-P(1)	105.36(6)
C(73B)-C(78B)	1.518(12)		C(42)-MO(1)-P(1)	95.21(6)
C(74B)-C(75B)	1.408(13)		C(41)-MO(1)-P(1)	129.84(6)
C(74B)-C(79B)	1.490(12)		P(4)-Mo(1)-P(1)	100.90(2)
C(75B)-C(80B)	1.485(13)		C(1)-MO(1)-P(1)	125.09(5)
C(81)-C(82)	1.424(4)		P(3)-Mo(1)-P(1)	65.46(2)
C(81)-C(85)	1.425(3)		C(2)-Mo(1)-P(1)	108.27(5)
C(81)-C(86)	1.501(4)		P(2)-Mo(1)-P(1)	49.51(3)
C(82)-C(83)	1.414(3)		C(45)-Mo(1)-Fe(1)	153.23(6)
C(82)-C(87)	1.507(3)		C(43)-Mo(1)-Fe(1)	130.22(6)
C(83)-C(84)	1.415(3)		C(44)-Mo(1)-Fe(1)	133.44(6)
C(83)-C(88)	1.495(4)		C(42)-Mo(1)-Fe(1)	145.66(6)
C(84)-C(85)	1.416(4)		C(41) - Mo(1) - Fe(1)	168.71(6)
C(84)-C(89)	1.507(3)		P(4) - Mo(1) - Fe(1)	52.458(18)
C(85)-C(90)	1.488(4)		C(1) - Mo(1) - Fe(1)	75.11(5)
	. ,		P(3) - Mo(1) - Fe(1)	51.778(17)
C(45) - Mo(1) - C(4)	3)	58.13(8)	C(2) - Mo(1) - Fe(1)	74.64(5)
C(45) - MO(1) - C(4)	4)	34.85(8)	P(2) - Mo(1) - Fe(1)	51.625(18)
C(43) - MO(1) - C(4)	4)	34 94(8)	P(1) - MO(1) - Fe(1)	52.157(17)
C(45) - MO(1) - C(4)	2)	58 23(8)	C(34) - Fe(1) - C(33)	39 70(10)
C(43) - MO(1) - C(4)	.2)	34 70(8)	C(34) - Fe(1) - C(32)	65,99(10)
C(44) - MO(1) - C(4)	.2)	57 95(8)	C(33) - Fe(1) - C(32)	39 11(10)
C(45) - MO(1) - C(4)	1)	35 09(8)	C(34) - Fe(1) - C(31)	65 48(10)
C(43) - MO(1) - C(4)	1)	57.00(8)	$C(33) - F_{2}(1) - C(31)$	65 38(10)
C(43) MO(1) C(4)	1)	57 85(8)	$C(32) - F_{2}(1) - C(31)$	38 90(10)
C(42) - Mo(1) - C(4)	1)	34 70(8)	C(32) = Fe(1) - C(31)	30.50(10)
C(4E) - Mo(1) - D(4)		102 42(6)	$C(33) - F_{2}(1) - C(35)$	66 01(10)
C(43) - MO(1) - P(4)	.)	129.42(0)	$C(32) - F_{2}(1) - C(35)$	65 41(10)
C(43) - MO(1) - P(4)	.)	109 56(6)	$C(32) = F_{0}(1) - C(35)$	38 53(10)
C(44) - MO(1) - P(4)	.)	161.50(0)	C(31) = FC(1) = D(3)	02 22(7)
C(42) - MO(1) - P(4)	:)	101.09(0)	C(34) - Fe(1) - F(3) C(32) = Fo(1) - F(3)	93.22(7) 120.62(9)
C(41) - MO(1) - P(4)	:)	120.91(0)	C(33) - Fe(1) - P(3)	150.02(0)
C(43) - MO(1) - C(1)	- /	95.20(7)	C(32) - Fe(1) - P(3)	151.70(0)
C(43) - MO(1) - C(1)	.)	133.07(7)	C(31) - FC(1) - F(3) C(25) - FO(1) - D(3)	P6 21(7)
C(44) - MO(1) - C(1)	.)	123.40(0)	C(35) - Fe(1) - P(3)	120.0E(9)
C(42) - MO(1) - C(1)	.)	130.20(8)	C(34) - Fe(1) - F(2) C(32) = Fo(1) - F(2)	130.05(0)
C(41) - MO(1) - C(1)	-)	90.90(7)	C(33) - F = C(1) - F(2) C(32) - F = C(1) - F(2)	97.39(7)
P(4) = MO(1) = C(1)	• •	43.03(5)	C(32) - FC(1) - F(2) C(31) - FO(1) - D(2)	120,29(9)
C(45) - MO(1) - P(3)))	140.03(0)	C(3I) - FC(I) - F(Z)	129.30(0)
C(43) - MO(1) - P(3)	5) . \	129.68(6)	C(35) - Fe(1) - P(2)	110.07(2)
C(44) - MO(1) - P(3)	5) . \	104.01(6)	P(3) = Fe(1) = P(2)	110.87(3)
C(42) - MO(1) - P(3)	5) . \	109.13(6)	C(34) - Fe(1) - P(4)	150.62(7)
C(41) - MO(1) - P(3))	117.41(6)	C(33) - Fe(1) - P(4)	134.52(7)
P(4) - MO(1) - P(3)		85.84(Z)	C(32) - Fe(1) - P(4)	96.77(7)
C(1) - MO(1) - P(3)		/0./5(5)	C(31) - Fe(1) - P(4)	86.05(7)
C(45) - MO(1) - C(2)	() \\	111.05(8)	C(35) - Fe(1) - P(4)	112.48(7)
C(43) - MO(1) - C(2)	() 	147.22(8)	P(3) = Fe(1) = P(4)	93.03(3)
C(44) - MO(1) - C(2)	() 	145.85(7)	P(2) - Pe(1) - P(4)	/3.40(3)
C(42) - MO(1) - C(2)	?) 	112.52(8)	C(34) - Fe(1) - P(1)	97.91(7)
C(41) - MO(1) - C(2)	2)	95.01(7)	C(33) - Fe(1) - P(1)	96.49(7)
P(4) - MO(1) - C(2)		70.75(5)	C(32) - Fe(1) - P(1)	127.95(8)
C(1) - Mo(1) - C(2)		33.78(7)	C(31)-Fe(1)-P(1)	161.30(7)
P(3) - MO(1) - C(2)		43.37(5)	C(35) - Fe(1) - P(1)	131.49(7)
C(45) - Mo(1) - P(2)	2)	112.39(6)	P(3)-Fe(1)-P(1)	71.47(3)
C(43) - MO(1) - P(2)	() \\	85.76(6)	P(2) - Fe(1) - P(1)	54.24(3)
C(44) - Mo(1) - P(2)	()	82.30(6)	P(4)-Fe(1)-P(1)	111.28(3)
C(42) - Mo(1) - P(2)	2)	118.49(6)	C(34) - Fe(1) - Mo(1)	146.18(7)
C(41) - Mo(1) - P(2)	2)	139.42(6)	C(33) - Fe(1) - Mo(1)	152.36(7)
P(4)-Mo(1)-P(2)		67.60(2)	C(32)-Fe(1)-Mo(1)	147.23(7)
C(1)-Mo(1)-P(2)		110.32(5)	C(31)-Fe(1)-Mo(1)	139.74(7)
P(3)-Mo(1)-P(2)		98.89(2)	C(35)-Fe(1)-Mo(1)	138.97(7)
C(2)-Mo(1)-P(2)		124.91(5)	P(3)-Fe(1)-Mo(1)	57.634(19)
C(45)-Mo(1)-P(1)	.)	138.70(6)	P(2)-Fe(1)-Mo(1)	58.912(19)
C(43) - Mo(1) - P(1)	.)	81.83(6)	P(4) - Fe(1) - Mo(1)	56.844(18)

P(1)-Fe(1)-Mo(1)	58.962(19)	C(34)-C(33)-Fe(1)	70.30(13)
P(2)-P(1)-Fe(1)	62.26(3)	C(38)-C(33)-Fe(1)	126.57(18)
P(2)-P(1)-Mo(1)	64.97(3)	C(33)-C(34)-C(35)	107.7(2)
Fe(1)-P(1)-Mo(1)	68.88(2)	C(33)-C(34)-C(39)	126.9(3)
P(2)-P(1)-P(3)	103.05(3)	C(35)-C(34)-C(39)	125.2(3)
Fe(1)-P(1)-P(3)	53.62(2)	C(33)-C(34)-Fe(1)	70.00(13)
Mo(1)-P(1)-P(3)	56.143(19)	C(35)-C(34)-Fe(1)	71.83(13)
P(1)-P(2)-Fe(1)	63.50(3)	C(39)-C(34)-Fe(1)	126.85(18)
P(1)-P(2)-Mo(1)	65.52(3)	C(31)-C(35)-C(34)	107.4(2)
Fe(1)-P(2)-Mo(1)	69.46(2)	C(31)-C(35)-C(40)	124.6(3)
C(2)-P(3)-Fe(1)	100.34(7)	C(34)-C(35)-C(40)	127.7(3)
C(2)-P(3)-Mo(1)	68.57(7)	C(31)-C(35)-Fe(1)	70.90(14)
Fe(1)-P(3)-Mo(1)	70.59(2)	C(34)-C(35)-Fe(1)	68.66(14)
C(2)-P(3)-P(1)	126.13(8)	C(40)-C(35)-Fe(1)	130.34(18)
Fe(1)-P(3)-P(1)	54.91(2)	C(42)-C(41)-C(45)	107.8(2)
Mo(1)-P(3)-P(1)	58.40(2)	C(42)-C(41)-C(46)	123.5(2)
C(1)-P(4)-Fe(1)	100.20(7)	C(45)-C(41)-C(46)	127.4(2)
C(1)-P(4)-Mo(1)	68.87(6)	C(42)-C(41)-MO(1)	72.19(12)
Fe(1)-P(4)-Mo(1)	70.70(2)	C(45)-C(41)-MO(1)	71.43(12)
C(2)-C(1)-C(11)	122.92(19)	C(46)-C(41)-Mo(1)	132.17(17)
C(2)-C(1)-P(4)	121.22(15)	C(43)-C(42)-C(41)	108.07(19)
C(11)-C(1)-P(4)	115.84(15)	C(43)-C(42)-C(47)	125.9(2)
C(2)-C(1)-Mo(1)	73.43(12)	C(41)-C(42)-C(47)	125.6(2)
C(11)-C(1)-Mo(1)	131.07(15)	C(43)-C(42)-MO(1)	72.34(12)
P(4)-C(1)-Mo(1)	67.50(7)	C(41)-C(42)-MO(1)	73.11(12)
C(1)-C(2)-C(21)	124.25(18)	C(47)-C(42)-Mo(1)	126.02(17)
C(1)-C(2)-P(3)	121.79(16)	C(44)-C(43)-C(42)	108.3(2)
C(21)-C(2)-P(3)	113.89(15)	C(44)-C(43)-C(48)	125.1(2)
C(1)-C(2)-Mo(1)	72.79(12)	C(42)-C(43)-C(48)	125.9(2)
C(21)-C(2)-Mo(1)	135.59(14)	C(44)-C(43)-Mo(1)	72.64(13)
P(3)-C(2)-Mo(1)	68.07(7)	C(42)-C(43)-Mo(1)	72.96(12)
C(12)-C(11)-C(16)	117.6(2)	C(48)-C(43)-Mo(1)	127.95(17)
C(12)-C(11)-C(1)	118.9(2)	C(43)-C(44)-C(45)	108.0(2)
C(16)-C(11)-C(1)	123.4(2)	C(43)-C(44)-C(49)	126.0(2)
C(11)-C(12)-C(13)	120.1(3)	C(45)-C(44)-C(49)	125.5(2)
C(14) - C(13) - C(12)	120.7(3)	C(43) - C(44) - MO(1)	72.42(13)
C(15)-C(14)-C(13)	119.7(3)	C(45) - C(44) - MO(1)	72.21(13)
C(14) - C(15) - C(16)	120.4(3)	C(49) - C(44) - MO(1)	126.96(17)
C(15)-C(16)-C(11)	121.5(3)	C(44) - C(45) - C(41)	107.79(19)
C(26) - C(21) - C(22)	117.5(2)	C(44) - C(45) - C(50)	123.8(2)
C(26) - C(21) - C(2)	122.0(2)	C(41) - C(45) - C(50)	127.7(2)
C(22) - C(21) - C(2)	120.16(19)	C(44) - C(45) - MO(1)	72.94(12)
C(23) - C(22) - C(21)	121.2(2)	C(41) - C(45) - MO(1)	/3.48(12)
C(22) = C(23) = C(24)	120.1(2)	C(50) - C(45) - MO(1)	120.08(10)
C(25) = C(24) = C(25)	129.4(3)	C(82) - MO(2) - C(84)	2/.0/(0) 2/.70/0)
C(24) = C(25) = C(26)	120.8(3)	C(82) - MO(2) - C(83)	34.70(8)
C(23) = C(20) = C(21) C(22) = C(21) = C(25)	108 5(2)	C(82) - MO(2) - C(85)	59.10(0)
C(32) - C(31) - C(33)	106.3(2)	C(82) - MO(2) - C(83)	24.67(0)
C(32) = C(31) = C(30)	120.7(3)	C(84) - MO(2) - C(85)	54.07(9)
C(33) = C(31) = C(30)	124.3(3)	C(83) - MO(2) - C(83)	37.90(9)
C(32) - C(31) - Fe(1) C(35) - C(31) - Fe(1)	7056(13)	C(82) - MO(2) - C(81) C(84) - MO(2) - C(81)	57.51(8)
$C(36) - C(31) - F_{e}(1)$	131 26(18)	C(83) - Mo(2) - C(81)	57.51(0)
C(33) - C(32) - C(31)	108 2(2)	$C(85) - M_{O}(2) - C(81)$	34 79(8)
C(33) - C(32) - C(37)	127.2(3)	$C(82) - M_O(2) - P(7)$	102.63(6)
C(31) - C(32) - C(37)	124, 3(3)	$C(84) - M_{O}(2) - P(7)$	139 11(7)
C(33)-C(32)-Fe(1)	69,74(13)	$C(83) - M_O(2) - P(7)$	108.06(6)
C(31) - C(32) - Fe(1)	71 78(13)	$C(85) - M_{O}(2) - P(7)$	160 64(6)
C(37)-C(32)-Fe(1)	128.73(19)	$C(81) - M_O(2) - P(7)$	127,82(6)
C(32)-C(33)-C(34)	108.1(2)	$C(82) - M_0(2) - C(5)$	109.21(8)
C(32)-C(33)-C(38)	125.4(2)	$C(84) - M_0(2) - C(5)$	146.31(9)
C(34)-C(33)-C(38)	126.4(3)	C(83) - MO(2) - C(5)	143.86(8)
C(32)-C(33)-Fe(1)	71.15(13)	C(85) - MO(2) - C(5)	111.68(9)
, . ,	· · ·	, . ,	. ,

C(81)-Mo(2)-C(5)	93.40(8)	C(74B)-Fe(2)-C(74A)	13.7(4)
P(7) - Mo(2) - C(5)	70.87(6)	C(71A)-Fe(2)-C(74A)	66.1(4)
C(82) - MO(2) - C(6)	93.44(7)	C(73B)-Fe(2)-C(74A)	51.5(4)
C(84) - MO(2) - C(6)	150.85(7)	C(73A)-Fe(2)-C(74A)	39.0(3)
C(83) - MO(2) - C(6)	121.68(8)	C(72A)-Fe(2)-C(74A)	65.5(3)
C(85) - MO(2) - C(6)	128.88(8)	C(75B) - Fe(2) - C(72B)	62.1(6)
C(81) - MO(2) - C(6)	97.19(8)	C(74B) - Fe(2) - C(72B)	63.3(5)
P(7) - Mo(2) - C(6)	43.80(6)	C(71A) - Fe(2) - C(72B)	23.9(5)
C(5) - MO(2) - C(6)	33.76(7)	C(73B) - Fe(2) - C(72B)	38.0(4)
C(82) - MO(2) - P(8)	147.70(7)	C(73A) - Fe(2) - C(72B)	52.5(4)
C(84) - MO(2) - P(8)	131,20(6)	C(72A) - Fe(2) - C(72B)	16.3(3)
C(83) - MO(2) - P(8)	165.80(6)	C(74A) - Fe(2) - C(72B)	70.3(5)
C(85) - MO(2) - P(8)	10972(6)	C(75B) - Fe(2) - C(71B)	37 4(5)
C(81) - MO(2) - P(8)	117 09(6)	C(74B) - Fe(2) - C(71B)	62,9(6)
$P(7) - M_{O}(2) - P(8)$	85 59(2)	C(71A) - Fe(2) - C(71B)	13 2(5)
C(5) - MO(2) - P(8)	43 67(5)	C(73B) - Fe(2) - C(71B)	62,8(6)
C(6) - MO(2) - P(8)	70.84(5)	$C(73\Delta) - Fe(2) - C(71B)$	69 4(6)
$C(82) = M_{O}(2) = P(5)$	$113 \ 44(7)$	C(72A) - Fe(2) - C(71B)	49 4(6)
C(84) - MO(2) - P(5)	87 05(7)	$C(74\lambda) - Fe(2) - C(71B)$	60 6(6)
$C(83) - M_O(2) - P(5)$	83 58(7)	$C(72R) - F_{\Theta}(2) - C(71R)$	36.5(4)
C(85) - MO(2) - P(5)	11952(7)	$C(75B) - E_{\Theta}(2) - C(75A)$	50.5(4) 11 5(5)
C(03) - MO(2) - P(3) C(91) - MO(2) - D(5)	140.62(6)	C(73B) - Fe(2) - C(75A)	17.9(5)
D(7) - MO(2) - P(3)	67 51(2)	C(74B) - Fe(2) - C(75A)	47.9(3)
P(7) = MO(2) = P(5) C(5) = MO(2) = D(5)	125 12(5)	$C(72R) - F_{C}(2) - C(75A)$	40.3(3)
C(5) - MO(2) - P(5)	125.15(5)	C(73B) = Fe(2) = C(75A)	66.0(2)
D(9) - MO(2) - P(5)	98 62(3)	$C(72\lambda) - F_{C}(2) - C(75\lambda)$	66.0(3)
P(0) - MO(2) - P(3) Q(22) Mo(2) D(6)	90.02(3) 140 E1(6)	$C(74\lambda) = Fe(2) - C(75\lambda)$	20.0(3)
C(02) - MO(2) - P(0)	140.51(0)	C(72R) = Fe(2) - C(75A)	59.5(5) EQ 0(E)
C(04) = MO(2) = P(0) C(03) = MO(2) = D(6)	107 30(6)	C(71P) - FC(2) - C(75A)	28.9(5)
C(03) - MO(2) - P(0)	107.30(0)	C(7EP) = Fe(2) = C(75A)	20.0(0)
C(05) - MO(2) - P(0)	90.00(0) 101.01(6)	C(75B) - Fe(2) - P(8)	149.9(5) 125.0(5)
C(01) = MO(2) = P(0) D(7) = MO(2) = D(6)	100 75(2)	C(74B) - Fe(2) - P(8)	125.9(5)
P(7) - MO(2) - P(6)	100.75(3)	C(72R) = Fe(2) = P(8)	106.3(4)
C(5) = MO(2) = P(6)	100.33(5)	C(73B) - Fe(2) - P(8)	90.5(4)
C(0) - MO(2) - P(0) $D(0) MO(2) - P(0)$	125.12(5)	C(73A) - Fe(2) - P(8)	100.0(3)
P(0) - MO(2) - P(0) D(E) MO(2) - D(E)	05.10(2)	C(72A) - Fe(2) - P(8)	04.20(17)
P(3) - MO(2) - P(0) C(22) Mo(2) = Eo(2)	49.50(5)	C(74A) - Fe(2) - P(8)	139.0(3)
C(82) - MO(2) - Fe(2)	132.05(0)	C(72B) - Fe(2) - P(0) C(71B) = Fo(2) - P(0)	00.3(4) 110 7(E)
C(04) - MO(2) - Fe(2)	132.14(0)	C(7ER) = Fe(2) = P(8)	116.7(5)
C(83) - MO(2) - Fe(2)	134.47(7)	C(75A) - Fe(2) - P(8)	146.4(3)
C(85) - MO(2) - Fe(2)	146.91(6)	C(75B) - Fe(2) - P(7)	99.6(4)
C(81) - MO(2) - Fe(2) D(7) Me(2) = Fe(2)	107.73(0)	C(74B) - Fe(2) - P(7)	137.0(5)
P(7) - MO(2) - Fe(2)	52.270(17)	C(72R) = Fe(2) = P(7)	88.5(3)
C(5) - MO(2) - Fe(2)	74.90(5)	C(73B) - Fe(2) - P(7)	143.0(5)
C(6) - MO(2) - Fe(2) D(0) = Mo(2) - Fe(2)	75.23(5)	C(73A) - Fe(2) - P(7)	152.9(2)
P(8) - MO(2) - Fe(2) P(5) = Mo(2) - Fe(2)	51.567(18)	C(72A) - Fe(2) - P(7)	121.2(4)
P(5) - MO(2) - Fe(2) P(5) - Mo(2) - Fe(2)	51.584(19)	C(74A) - Fe(2) - P(7)	125.2(3)
P(b) - MO(Z) - Fe(Z)	52.124(19)	C(72B) - Fe(2) - P(7)	105.3(5)
C(75B) - Fe(2) - C(74B)	37.5(4)	C(7IB) - Fe(2) - P(7)	83.6(6)
C(75B) - Fe(2) - C(71A)	47.4(6)	C(75A) - Fe(2) - P(7)	89.8(3)
C(74B) - Fe(2) - C(71A)	65.1(5)	P(8) - Fe(2) - P(7)	92.81(3)
C(75B) - Fe(2) - C(73B)	63.4(5)	P(6) - P(5) - Fe(2)	63.47(3)
C(74B) - Fe(2) - C(73B)	38.7(4)	P(6) - P(5) - MO(2)	65.51(3)
C(7LA) - Fe(2) - C(73B)	55.4(4)	Fe(2) - P(5) - MO(2)	69.52(2)
C(75B) - Fe(2) - C(73A)	58.0(5)	P(5) - P(6) - Fe(2)	62.18(3)
C(74B) - Fe(2) - C(73A)	25.3(4)	P(5) - P(6) - MO(2)	64.90(3)
C(/1A) - Fe(2) - C(/3A)	65.3(4)	Fe(2) - P(6) - MO(2)	68.90(2)
C(73B) - Fe(2) - C(73A)	16.8(3)	P(5) - P(6) - P(8)	102.93(3)
C(75B) - Fe(2) - C(72A)	65.8(5)	Fe(2) - P(6) - P(8)	53.57(2)
C(74B) - Fe(2) - C(72A)	55.4(4)	MO(2) - P(6) - P(8)	56.178(19)
C(72A) - Fe(2) - C(72A)	38.4(3)	C(6) - P(7) - Fe(2)	100.68(7)
C(73B) - Fe(2) - C(72A)	22.9(4)	C(6) - P(7) - Mo(2)	68.89(7)
C(73A) - Fe(2) - C(72A)	38.9(2)	Fe(2) - P(7) - Mo(2)	71.22(2)
C('/5B)-Fe(2)-C(74A)	28.1(5)	C(5)-P(8)-Fe(2)	100.38(8)

$C(5)-P(8)-M_{O}(2)$	67.56(7)	C(72B)-C(71B)-C(75B)	108.9(11)
Fe(2)-P(8)-Mo(2)	70.86(2)	C(72B)-C(71B)-C(76B)	126.1(18)
C(5)-P(8)-P(6)	125.49(7)	C(75B)-C(71B)-C(76B)	124.0(17)
Fe(2)-P(8)-P(6)	55.18(2)	C(72B)-C(71B)-Fe(2)	71.4(13)
Mo(2)-P(8)-P(6)	58.66(2)	C(75B)-C(71B)-Fe(2)	71.6(12)
C(6)-C(5)-C(51)	126.36(19)	C(76B)-C(71B)-Fe(2)	131.9(18)
C(6)-C(5)-P(8)	122.30(17)	C(71B)-C(72B)-C(73B)	108.2(11)
C(51)-C(5)-P(8)	111.18(15)	C(71B)-C(72B)-C(77B)	127.1(17)
C(6)-C(5)-MO(2)	73.63(12)	C(73B)-C(72B)-C(77B)	124.6(17)
C(51)-C(5)-Mo(2)	134.84(14)	C(71B)-C(72B)-Fe(2)	72.1(14)
P(8)-C(5)-Mo(2)	68.77(7)	C(73B)-C(72B)-Fe(2)	68.0(8)
C(5)-C(6)-C(61)	124.3(2)	C(77B)-C(72B)-Fe(2)	128.6(12)
C(5)-C(6)-P(7)	120.54(16)	C(74B)-C(73B)-C(72B)	107.8(9)
C(61)-C(6)-P(7)	115.15(16)	C(74B)-C(73B)-C(78B)	125.1(16)
C(5)-C(6)-Mo(2)	72.61(12)	C(72B)-C(73B)-C(78B)	126.1(17)
C(61)-C(6)-Mo(2)	131.35(13)	C(74B)-C(73B)-Fe(2)	71.7(8)
P(7)-C(6)-Mo(2)	67.31(7)	C(72B)-C(73B)-Fe(2)	74.0(9)
C(52)-C(51)-C(56)	117.5(2)	C(78B)-C(73B)-Fe(2)	128.7(10)
C(52)-C(51)-C(5)	120.3(2)	C(73B)-C(74B)-C(75B)	107.8(9)
C(56)-C(51)-C(5)	121.8(2)	C(73B)-C(74B)-C(79B)	125.6(16)
C(51)-C(52)-C(53)	121.3(3)	C(75B)-C(74B)-C(79B)	126.5(16)
C(54)-C(53)-C(52)	120.4(3)	C(73B)-C(74B)-Fe(2)	69.5(8)
C(53)-C(54)-C(55)	119.7(3)	C(75B)-C(74B)-Fe(2)	73.8(10)
C(54)-C(55)-C(56)	120.5(3)	C(79B)-C(74B)-Fe(2)	125.9(11)
C(51)-C(56)-C(55)	120.5(2)	C(71B)-C(75B)-C(74B)	107.2(10)
C(62)-C(61)-C(66)	117.0(2)	C(71B)-C(75B)-C(80B)	131.2(17)
C(62)-C(61)-C(6)	119.0(2)	C(74B)-C(75B)-C(80B)	121.6(16)
C(66)-C(61)-C(6)	123.9(2)	C(71B)-C(75B)-Fe(2)	71.0(13)
C(61)-C(62)-C(63)	121.6(3)	C(74B)-C(75B)-Fe(2)	68.7(10)
C(62)-C(63)-C(64)	120.5(3)	C(80B)-C(75B)-Fe(2)	125.2(14)
C(65)-C(64)-C(63)	119.1(3)	C(82)-C(81)-C(85)	107.9(2)
C(64)-C(65)-C(66)	121.1(3)	C(82)-C(81)-C(86)	126.3(2)
C(61)-C(66)-C(65)	120.6(3)	C(85)-C(81)-C(86)	124.5(2)
C(72A)-C(71A)-C(75A)	108.3(6)	C(82)-C(81)-Mo(2)	71.71(12)
C(72A)-C(71A)-C(76A)	126.3(11)	C(85)-C(81)-Mo(2)	72.49(13)
C(75A)-C(71A)-C(76A)	125.2(11)	C(86)-C(81)-Mo(2)	131.86(16)
C(72A)-C(71A)-Fe(2)	72.0(5)	C(83)-C(82)-C(81)	108.2(2)
C(75A)-C(71A)-Fe(2)	69.0(6)	C(83)-C(82)-C(87)	124.1(2)
C(76A) - C(71A) - Fe(2)	129.3(9)	C(81)-C(82)-C(87)	127.0(2)
C(71A)-C(72A)-C(73A)	108.9(6)	C(83)-C(82)-Mo(2)	73.30(12)
C(71A)-C(72A)-C(77A)	125.4(11)	C(81)-C(82)-Mo(2)	73.37(12)
C(73A)-C(72A)-C(77A)	125.2(11)	C(87)-C(82)-Mo(2)	126.59(16)
C(71A)-C(72A)-Fe(2)	69.6(6)	C(84)-C(83)-C(82)	107.6(2)
C(73A)-C(72A)-Fe(2)	71.2(4)	C(84)-C(83)-C(88)	126.8(2)
C(77A)-C(72A)-Fe(2)	131.7(5)	C(82)-C(83)-C(88)	125.0(2)
C(74A)-C(73A)-C(72A)	107.3(7)	C(84)-C(83)-Mo(2)	72.34(13)
C(74A)-C(73A)-C(78A)	128.2(10)	C(82)-C(83)-Mo(2)	72.00(12)
C(72A)-C(73A)-C(78A)	124.3(11)	C(88)-C(83)-Mo(2)	127.73(19)
C(74A)-C(73A)-Fe(2)	69.2(5)	C(83)-C(84)-C(85)	109.0(2)
C(72A)-C(73A)-Fe(2)	69.9(4)	C(83)-C(84)-C(89)	124.7(3)
C(78A)-C(73A)-Fe(2)	129.8(6)	C(85)-C(84)-C(89)	125.6(2)
C(73A)-C(74A)-C(75A)	108.3(6)	C(83)-C(84)-MO(2)	73.00(13)
C(73A)-C(74A)-C(79A)	123.0(10)	C(85)-C(84)-Mo(2)	73.07(13)
C(75A)-C(74A)-C(79A)	128.3(11)	C(89)-C(84)-MO(2)	128.09(18)
C(73A)-C(74A)-Fe(2)	71.7(5)	C(84)-C(85)-C(81)	107.3(2)
C(75A)-C(74A)-Fe(2)	68.8(6)	C(84)-C(85)-C(90)	125.8(2)
C(79A)-C(74A)-Fe(2)	131.3(7)	C(81)-C(85)-C(90)	126.5(3)
C(74A)-C(75A)-C(71A)	107.2(6)	C(84)-C(85)-MO(2)	72.26(13)
C(74A)-C(75A)-C(80A)	122.9(10)	C(81)-C(85)-MO(2)	72.72(13)
C(71A)-C(75A)-C(80A)	128.9(11)	C(90)-C(85)-MO(2)	126.04(17
C(74A)-C(75A)-Fe(2)	71.7(6)		
C(71A)-C(75A)-Fe(2)	70.7(7)		
C(80A) - C(75A) - Fe(2)	131.8(6)		

	U ₁₁	U ₂₂	U ₃₃	U 23	U ₁₃	U ₁₂
	25(1)		20/1)	14/1)	0(1)	
MO(1) Eo(1)	35(1) 20(1)	3∠(⊥) 22(1)	32(1)	14(1)	9(1) 14(1)	$\perp \perp (\perp)$ 14(1)
ге(1) D(1)	39(1)	52(1)	37(1)	14(1) 22(1)	14(1)	14(1)
P(I)	43(1)	09(1) 17(1)	40(1)	32(1)	12(1)	24(1)
P(Z)	39(1)	$\frac{4}{2}$ (1)	30(1)	34(1)	SI(I)	30(1)
P(3)	30(1)	30(1)	39(1)	9(1)	9(1)	9(1) 11(1)
P(4)	44(1)	32(1)	35(1) 21(1)	1(1)	0(1) 0(1)	$\perp \perp (\perp)$ 14(1)
C(1)	40(1)	39(1)	$3 \perp (\perp)$ 3 2 (1)	10(1)	O(⊥) 12(1)	14(1)
C(2)	42(1)	33(1)	33(1) 45(1)	13(1)	I J (I)	14(1) 0(1)
C(11)	$4 \angle (\perp)$	40(1) 49(2)	45(1) 40(1)	23(1)	5(1) 4(1)	9(1)
C(12)	50(1) 72(2)	40(Z) 62(2)	49(1) 67(2)	19(1)	-4(1)	9(I) 0(2)
C(13)	/2(2)	02(2)	0/(2)	ZO(Z) E1(2)	-24(2)	0(2)
C(14)	47(2)	02(2)	100(3)	51(2)	-9(2)	15(2)
C(15)	40(2)	90(2) 72(2)	IOO(2)	27(2)	20(2)	30(2)
C(10)	40(1)	75(2)	30(2)	30(1)	1 + (1)	24(1) 19(1)
C(21)	40(1)	50(1)	42(1)	20(1)	20(1)	10(1)
C(22)	89(2)	50(2)	42(1)	43(2)	19(1)	$\frac{2}{46}(2)$
C(23)	11E(2)	65(Z) E4(2)	$\frac{0}{2}$	+3(2)	29(2)	40(2)
C(24)	113(2) 102(2)	54(2)	72(2) 19(1)	52(2)	43(2)	24(2)
C(25)	$\pm 0 \mathbb{Z}(\mathbb{Z})$	50(2)	40(1) 20(1)	14(1)	20(1)	39(2)
C(20)	50(2)	41(1) 55(2)	30(1)	14(1)	10(1)	24(1) 25(1)
C(31)	59(1)	33(2)	43(1)	23(1) 16(1)	24(1) 29(1)	23(1)
C(32)	02(2)	42(1)	40(1)	10(1) 29(1)	29(1) 31(1)	22(1) 28(1)
C(33)	45(1)	52(2) 51(2)	53(1)	20(1)	25(1)	20(1) 14(1)
C(35)	59(1)	44(1)	55(1) 56(1)	28(1)	31(1)	23(1)
C(35)	86(2)	108(3)	50(1)	41(2)	21(2)	35(2)
C(30)	107(2)	45(2)	69(2)	9(1)	40(2)	30(2)
C(38)	64(2)	91(2)	97(2)	58(2)	38(2)	48(2)
C(39)	52(2)	67(2)	72(2)	16(2)	17(1)	-1(1)
C(40)	95(2)	63(2)	93(2)	52(2)	54(2)	39(2)
C(41)	45(1)	43(1)	42(1)	21(1)	21(1)	16(1)
C(42)	52(1)	43(1)	31(1)	15(1)	15(1)	9(1)
C(43)	47(1)	52(2)	42(1)	28(1)	16(1)	16(1)
C(44)	47(1)	36(1)	46(1)	21(1)	19(1)	11(1)
C(45)	38(1)	42(1)	42(1)	19(1)	14(1)	9(1)
C(46)	67(2)	56(2)	60(2)	30(1)	35(1)	31(1)
C(47)	75(2)	54(2)	44(1)	11(1)	13(1)	6(1)
C(48)	68(2)	78(2)	61(2)	47(2)	15(1)	28(2)
C(49)	69(2)	42(2)	78(2)	28(1)	31(1)	16(1)
C(50)	44(1)	57(2)	62(2)	26(1)	9(1)	7(1)
Mo(2)	35(1)	34(1)	35(1)	12(1)	6(1)	14(1)
Fe(2)	31(1)	32(1)	40(1)	15(1)	8(1)	10(1)
P(5)	53(1)	58(1)	49(1)	22(1)	19(1)	8(1)
P(6)	38(1)	54(1)	59(1)	10(1)	13(1)	19(1)
P(7)	41(1)	36(1)	47(1)	21(1)	9(1)	16(1)
P(8)	35(1)	38(1)	45(1)	21(1)	3(1)	12(1)
C(5)	38(1)	34(1)	32(1)	10(1)	7(1)	11(1)
C(6)	40(1)	34(1)	32(1)	9(1)	8(1)	14(1)
C(51)	37(1)	38(1)	38(1)	14(1)	1(1)	6(1)
C(52)	51(1)	44(1)	45(1)	18(1)	13(1)	11(1)
C(53)	51(1)	71(2)	61(2)	34(1)	18(1)	12(1)
C(54)	51(2)	73(2)	78(2)	48(2)	12(1)	1(1)
C(55)	54(2)	42(2)	73(2)	31(1)	-2(1)	2(1)
C(56)	45(1)	37(1)	50(1)	18(1)	4(1)	8(1)
C(61)	40(1)	46(1)	34(1)	11(1)	7(1)	19(1)

Tabelle B4: Anisotrope Auslenkungsparameter [Ų x 10³] für 7a.Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [$(ha^*)^2 U_{11} + ... + 2hka^*b^*U_{12}$]

C(62)	50(1)	53(2)	60(2)	17(1)	10(1)	27(1)
C(63)	64(2)	77(2)	78(2)	12(2)	7(2)	48(2)
C(64)	48(2)	96(3)	65(2)	3(2)	4(1)	40(2)
C(65)	37(1)	84(2)	56(2)	10(2)	4(1)	13(1)
C(66)	41(1)	54(2)	45(1)	11(1)	3(1)	11(1)
C(71A)	41(3)	47(9)	54(4)	б(4)	11(3)	8(4)
C(72A)	69(8)	38(5)	35(3)	9(3)	11(4)	3(4)
C(73A)	42(4)	48(4)	49(5)	8(3)	-6(3)	15(3)
C(74A)	43(4)	58(5)	44(4)	22(3)	6(3)	3(3)
C(75A)	45(6)	33(3)	56(4)	9(3)	-9(4)	1(4)
C(76A)	60(3)	127(7)	84(4)	-40(4)	23(3)	27(4)
C(77A)	194(9)	89(5)	41(3)	27(3)	-1(4)	-38(5)
C(78A)	108(5)	93(5)	114(5)	10(4)	-41(4)	60(4)
C(79A)	74(4)	107(6)	99(5)	22(4)	44(4)	-20(3)
C(80A)	143(6)	39(3)	119(5)	37(3)	-27(5)	11(4)
C(71B)	47(10)	23(10)	63(12)	-6(6)	-10(7)	21(8)
C(72B)	36(7)	43(11)	40(6)	-7(6)	17(5)	11(5)
C(73B)	43(11)	34(5)	41(9)	11(5)	1(6)	20(8)
C(74B)	20(4)	34(8)	31(7)	11(5)	0(4)	4(4)
C(75B)	36(10)	23(5)	64(7)	23(5)	-22(7)	-11(7)
C(76B)	75(7)	69(8)	137(11)	-26(6)	-19(7)	50(6)
C(77B)	108(9)	105(10)	67(7)	9(6)	42(7)	-23(7)
C(78B)	116(10)	81(8)	87(8)	31(6)	-38(7)	36(7)
C(79B)	57(6)	101(10)	100(9)	-6(7)	34(6)	-1(6)
C(80B)	166(13)	85(9)	114(9)	63(8)	-10(9)	-14(9)
C(81)	43(1)	38(1)	32(1)	5(1)	1(1)	9(1)
C(82)	43(1)	44(1)	34(1)	8(1)	-2(1)	19(1)
C(83)	60(1)	47(2)	33(1)	14(1)	12(1)	20(1)
C(84)	49(1)	49(2)	41(1)	10(1)	13(1)	23(1)
C(85)	56(1)	35(1)	40(1)	7(1)	2(1)	19(1)
C(86)	60(2)	53(2)	53(2)	10(1)	7(1)	0(1)
C(87)	63(2)	73(2)	45(1)	14(1)	-1(1)	41(1)
C(88)	101(2)	81(2)	55(2)	39(2)	24(2)	32(2)
C(89)	67(2)	89(2)	65(2)	15(2)	31(2)	39(2)
C(90)	92(2)	49(2)	66(2)	18(1)	2(2)	35(2)

	x	У	Z	U(eq)
H(12)	3947	8362	6507	67
H(13)	5783	8585	7169	93
H(14)	6886	7937	6388	97
H(15)	6169	7045	4945	87
H(16)	4352	6802	4272	68
H(22)	3091	5886	5162	61
H(23)	3481	4555	4749	76
Н(24)	2875	3494	3324	86
H(25)	1855	3769	2335	79
H(26)	1503	5117	2731	58
H(36A)	1700	8622	6900	118
H(36B)	1589	7594	6537	118
H(36C)	843	7963	7126	118
H(3/A)	1125	9/39	5944	115
H(3/B)	12	9633	6506	115
H(3/C)	-2214	9565	0/41 /020	109
П(ЗОА)	-2314	7022	4930	100
H(30B)	-2145	7923	4032	108
н(Зос) н(Зол)	-1295	5900	4050	110
H(39R)	-2750	5731	3718	110
H(39C)	-2431	6411	3595	110
H(40A)	472	6095	5419	109
H(40B)	-734	5544	4781	109
H(40C)	-592	5982	5768	109
H(46A)	3326	6101	2776	83
H(46B)	4489	6878	3070	83
H(46C)	3785	6387	2110	83
H(47A)	648	6254	1457	97
H(47B)	1492	5779	1639	97
H(47C)	1675	6278	1062	97
H(48A)	881	8679	2484	95
H(48B)	417	7662	1791	95
H(48C)	1362	8381	1689	95
H(49A)	3646	9951	3438	93
H(49B)	3439	9929	4285	93
H(49C)	2432	9795	3569	93
H(50A)	5187	9189	4002	86
H(50B)	5142	8303	4098	86
H(50C)	4655	8997	4686	86
H(52)	-2127	7639	8121 7612	59 72
H(53) H(54)	-1226	0006	7013	73
H(54) H(55)	-2354	10489	8808	71
H(56)	-3327	9595	9366	56
H(62)	-2.419	5998	9345	67
н(63)	-633	5909	9544	93
H(64)	915	7148	9860	95
H(65)	670	8479	9982	83
Н(66)	-1100	8610	9853	63
H(76A)	-5291	4695	7064	181
H(76B)	-4554	5092	8005	181
H(76C)	-4488	5712	7536	181
H(77A)	-5427	6544	7105	196
H(77B)	-6426	6923	7202	196
H(77C)	-6646	5935	6506	196

abelle B5:	
I-Atomkoordinaten [x 10^4] und äquivalente isotrope Auslenkungsparameter [Å ² x 10^3] für	7a.

H(78A)	-8708	6123	7360	180
H(78B)	-7816	7083	7980	180
H(78C)	-8636	6553	8337	180
H(79A)	-8536	5828	9183	164
H(79B)	-8034	5155	9380	164
H(79C)	-8929	4806	8510	164
H(80A)	-6399	4707	9331	167
H(80B)	-5590	4478	8751	167
H(80C)	-6890	3943	8387	167
H(76D)	-5508	4199	7394	177
H(76E)	-5048	4592	8386	177
H(76F)	-4480	5108	7903	177
H(77D)	-4771	5937	7177	170
H(77E)	-5313	6682	7234	170
H(77F)	-5907	5683	6514	170
H(78D)	-8060	6206	6935	156
H(78E)	-6994	7083	7463	156
H(78F)	-8000	6892	7858	156
H(79D)	-8734	6194	8575	162
H(79E)	-8427	5779	9192	162
H(79F)	-9152	5137	8247	162
H(80D)	-7623	3985	8519	199
H(80E)	-7464	4864	9343	199
H(80F)	-6434	4541	9181	199
H(86A)	-1453	10608	11449	97
H(86B)	-1842	9861	10498	97
H(86C)	-995	9794	11188	97
H(87A)	-1314	8642	12300	94
H(87B)	-1078	8626	11449	94
H(87C)	-1926	7766	11434	94
H(88A)	-3398	8416	12943	113
H(88B)	-3506	7541	12132	113
H(88C)	-4576	7808	12279	113
H(89A)	-5688	8645	11953	114
H(89B)	-5597	9480	11757	114
H(89C)	-4950	9628	12652	114
H(90A)	-4722	10137	10926	107
H(90B)	-3521	10504	10819	107
H(90C)	-3739	10890	11722	107

Tabelle C1: Kristalldaten und Strukturverfeinerung für 36.

Summenformel	$C_{42}H_{52}$	$As_2Fe_2O_4$	
Molmasse	882.38		
Temperatur	293(2)	Κ	
Strahlung	ΜοΚα		
Wellenlänge	0.7107	3 Å	
Scanmodus	Phi-Os	zillation	
Kristallsystem	Monok	lin	
Raumgruppe	$P2_1/c$		
Zelldimensionen	a = 11.	.1714(10) Å	$\alpha = 90^{\circ}$
	b = 20.	.5941(12) Å	$\beta = 106.634(9)^{\circ}$
	c = 18.	8369(14) Å	$\gamma = 90^{\circ}$
Zellvolumen	4152.4	(5) Å ³	
Formeleinheiten pro Zelle Z	4		
Berechnete Dichte	1.411	Mg/m^3	
Absorptionskoeffizient	2.318 r	nm ⁻¹	
Kristallgröße	0.57 x	0.16 x 0.05 mm	
Gemessener θ-Bereich	2.74 bi	s 26.02°	
Anzahl der gemessenen Refle	xe	58525	
Unabhängige Reflexe	7910 (Rint = 0.1400)	
Absorptionskorrektur	Analyt	isch (ABST/PLATON	V 98)
Max. und min. Transmission	0.827 ı	und 0.469	
Diffraktometer	Stoe IF	PDS .	
Strukturlösung	Direkt	e Methoden	
Strukturlösungsprogramm	SHEL	XS-97 (Sheldrick, 199	0)
Strukturverfeinerung	Vollma	atrix Least-Squares ge	gen F ²
Strukturverfeinerungsprogram	nm	SHELXL-97 (Sheldri	ick, 1997)
Daten / Restraints / Parameter	•	7910 / 0 / 463	
Endgültige R-Werte $[I>2\sigma(I)]$		R1 = 0.0392, wR2 = 0	0.0660
R-Werte (alle Daten)	$\mathbf{R}1=0$.0944, wR2 = 0.0761	
Wichtungsschema	w=1/[c	$5^{2}(\text{Fo}^{2}) + (0.0260\text{P})^{2} + 0.0260\text{P})^{2} + 0.0260$.0000P] mit P= $(Fo^2+2Fc^2)/3$
GooF (alle Daten)	0.786	^	2
Größtes Maximum und Minir	num	0.368 und -0.438 eÅ ⁻	3

Tabelle C2: Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 36. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U(eq)
	1000/20		2002/1	
As(1)	1703(1)	6707(1)	3893(1)	42(1)
As(2)	2910(1)	7333(1)	3220(1)	42(1)
Fe(1)	794(1)	5824(1)	3034(1)	38(1)
Fe(2)	3884(1)	8193(1)	4098(1)	41(1)
0(1)	1913(3)	4861(2)	4150(2)	75(1)
0(2)	3032(3)	5735(2)	2536(2)	75(1)
0(3)	1603(3)	8354(2)	4533(2)	80(1)
O(4)	3042(3)	9132(2)	2917(3)	91(1)
C(01)	1469(4)	5254(2)	3723(3)	50(1)
C(02)	2137(4)	5792(2)	2724(3)	48(1)
C(03)	2503(4)	8273(2)	4359(3)	50(1)
C(04)	3361(4)	8752(2)	3373(3)	57(1)
C(1)	-499(3)	5649(2)	1981(2)	39(1)
C(2)	-844(4)	5300(2)	2529(2)	42(1)
C(3)	-1092(3)	5739(2)	3063(2)	39(1)
C(4)	-887(3)	6367(2)	2821(2)	38(1)
C(5)	-499(3)	6324(2)	2181(2)	39(1)
C(6)	5808(4)	8212(2)	4138(3)	44(1)
C(7)	5554(4)	8665(2)	4656(2)	43(1)
C(8)	5104(4)	8339(2)	5185(3)	44(1)
C(9)	5057(4)	7664(2)	4984(3)	44(1)
C(10)	5500(3)	7597(2)	4364(3)	45(1)
C(11)	-312(4)	5378(2)	1276(3)	52(1)
C(12)	421(5)	5840(3)	920(3)	79(2)
C(12)	-1622(5)	5010(3)	725(3)	72(2)
C(13)	242(5)	JZ77(J) A719(D)	1/2J(3)	79(2)
C(14)	3148(4)	6340(2)	4637(2)	70(Z) 42(1)
C(15)	2127(4)	6365(2)	5271(2)	F2(1)
C(10)	3127(4) 4104(6)	61/2(2)	5371(3)	30(1)
C(17)	4104(0)	5143(3)	5947(3)	72(2)
C(10)	5137(5)	5091(3)	5/9/(4)	77(Z) 67(2)
C(19)	5190(5)	5040(2)	JUO7(J)	07(2)
C(20)	4210(4)	0002(2)	4512(3)	33(1)
C(25)	1430(4)	7717(2)	2509(3)	44(1)
C(26)	1415(4)	7697(3)	1760(3)	66(I) 01(0)
C(27)	397(5)	7925(3)	1210(3)	81(2)
C(28)	-614(5)	8191(3)	1386(4)	86(2)
C(29)	-596(5)	8218(3)	2107(4)	76(2)
C(30)	393(4)	7984(2)	2660(3)	58(1)
C(31)	-1659(4)	5574(2)	3688(3)	49(1)
C(32)	-3070(5)	5626(3)	3389(3)	88(2)
C(33)	-1349(5)	4871(2)	3959(3)	73(2)
C(34)	-1191(6)	6031(3)	4345(3)	87(2)
C(61)	6493(4)	8341(2)	3560(3)	54(1)
C(62)	7865(4)	8192(3)	3943(4)	83(2)
C(63)	6373(5)	9048(3)	3305(3)	82(2)
C(64)	6023(6)	7905(3)	2885(4)	97(2)
C(81)	4917(4)	8603(2)	5892(3)	55(1)
C(82)	4507(7)	9309(3)	5800(4)	94(2)
C(83)	3992(5)	8204(3)	6175(3)	79(2)
C(84)	6189(5)	8557(3)	6477(3)	90(2)

Tabelle C3: Bindungslängen [Å] und -winkel [°] für 36.

As(1)-C(15)	1.961(4)		C(6)-C(7)	1.435(6)	
As(1)-Fe(1)	2.4520(8)		C(6)-C(61)	1.524(6)	
As(1)-As(2)	2.4620(6)		C(7)-C(8)	1.409(6)	
As(2)-C(25)	1.965(4)		C(8)-C(9)	1.437(6)	
As(2)-Fe(2)	2.4545(8)		C(8)-C(81)	1.507(6)	
Fe(1)-C(01)	1.752(5)		C(9)-C(10)	1.399(6)	
Fe(1)-C(02)	1.760(5)		C(11)-C(14)	1.530(6)	
Fe(1)-C(2)	2.104(4)		C(11)-C(12)	1.530(7)	
Fe(1)-C(5)	2.098(4)		C(11)-C(13)	1.546(6)	
Fe(1) - C(3)	2.131(4)		C(15)-C(16)	1.391(6)	
Fe(1) - C(1)	2.124(4)		C(15)-C(20)	1.403(6)	
Fe(1)-C(4)	2.123(4)		C(16)-C(17)	1.378(7)	
Fe(2) - C(04)	1.754(5)		C(17)-C(18)	1.366(7)	
Fe(2)-C(03)	1.756(5)		C(18)-C(19)	1.360(8)	
Fe(2) - C(7)	2.100(4)		C(19)-C(20)	1.375(6)	
Fe(2) - C(9)	2.105(4)		C(25) - C(30)	1.391(6)	
Fe(2) - C(6)	2.129(4)		C(25) - C(26)	1.405(7)	
Fe(2) - C(8)	2.132(4)		C(26) - C(27)	1.382(7)	
Fe(2) - C(10)	2.121(4)		C(27) - C(28)	1.3/(8)	
O(1) - C(01)	1.150(5)		C(28) - C(29)	1.355(8)	
O(2) - C(02)	1.158(5)		C(29) - C(30)	1.369(7)	
O(3) = C(03)	1.155(5)		C(31) - C(34)	1.524(7)	
O(4) - C(04)	1.141(6)		C(31) - C(32)	1.518(6)	
C(1) - C(2)	1.400(6)		C(31) - C(33)	1.541(0)	
C(1) - C(5)	1.439(5) 1 E11(6)		C(61) - C(64)	1.521(7) 1 E29(7)	
C(1) = C(11)	1.511(0) 1.427(6)		C(61) - C(63)	1.520(7) 1.526(7)	
C(2) - C(3)	1.437(0) 1.412(E)		C(01) - C(02)	1.520(7)	
C(3) = C(4) C(3) = C(21)	1.412(5) 1.526(6)		C(01) - C(02) C(01) - C(02)	1.520(7) 1.520(7)	
C(3) - C(31) C(4) - C(5)	1 396(6)		C(81) - C(83)	1.530(7) 1.529(7)	
C(4) = C(10)	1 408(6)		C(01) $C(03)$	1.525(7)	
0,0,0,10,	1.100(0)				
C(15)-As(1)-Fe((1)	106.64(12)	C(1) - Fe(1) - C(4)	1)	65.41(15)
C(15)-As(1)-As(1)	(2)	96.30(12)	C(01) - Fe(1) - As	5(1)	89.95(15)
Fe(1)-As(1)-As((2)	103.45(3)	C(02)-Fe(1)-A	5(1)	90.93(14)
C(25) - As(2) - Fe(2)	106.98(12)	C(2)-Fe(1)-As	(1)	145.21(12)
C(25)-As(2)-As((1)	94.96(13)	C(5)-Fe(1)-As	(1)	101.92(11)
Fe(2)-As (2) -As $(2$	(1)	103.49(3)	C(3) - Fe(1) - As	(1)	105.65(11)
C(01) - Fe(1) - C(0))2)	89.6(2)	C(1)-Fe(1)-As	(⊥)	141.69(11)
C(01) - Fe(1) - C(2)	2)	97.14(18)	C(4)-Fe(1)-As	(1) (02)	84.91(11)
C(02) - Fe(1) - C(2)	2) - \	122.99(18)	C(04) - Fe(2) - C C(04) = Fe(2) - C	(03)	91.9(2)
C(01) - Fe(1) - C(5)) -)	102.15(18)	C(04) - Fe(2) - C(04)	(7)	97.79(19)
C(02) = Fe(1) = C(5))	103.30(19)	C(03) - Fe(2) - C(03) - Fe(2) - C(03)	(7)	122.80(19)
C(2) = Fe(1) = C(3))) \	02.20(10)	C(04) - Fe(2) - C(02) = C(02) = C(02)	(9)	101.00(10)
C(01) = Fe(1) = C(3)	5) 2)	90.29(10) 161 E4(10)	C(03) - Fe(2) - C	(9)	103.0(2)
C(02) = Fe(1) = C(2))	101.54(19)	C(7) - FE(2) - C(3)	(ϵ)	07.07(10)
C(2) = Fe(1) = C(3)		39.00(15) 65 95(16)	C(04) - Fe(2) - C(02) = C(02) = C(02)	(0)	97.07(19) 161.2(2)
C(3) = Fe(1) = C(3)		107.65(10)	C(03) - Fe(2) - C	(0)	101.3(2)
C(01) = re(1) - C(1)	- /)	12/.00(10) 95 79/10)	C(1) = Fe(2) = C(0)	5)	55.00(10) 65 67/17)
C(02) = re(1) = C(1)	L /	38 67(16)	C(9) - re(2) - C(0) C(04) - re(2) - C(0)	(8)	120 28/10)
C(2) = E(1) - C(1) C(5) - E(1) - C(1)		39 85(15)	C(07) - FC(2) - C(03) - C(03) - FC(2) - FC(2) - C(03) - FC(2) - FC(2) - C(03) - FC(2) - FC(2	(8)	95 1(2)
C(3) = Fe(1) = C(1)		66 19(16)	C(03) - FC(2) - C(3)	3)	38 91/161
C(01) - Fe(1) - C(2)	1)	131,48(19)	C(7) Fe(2) C(0 C(9) - Fe(2) - C(3	3)	39 63(15)
C(02) - Fe(1) - C(2)	-, 1)	138.55(19)	C(6) - Fe(2) - C(3)	3)	66.54(17)
C(2) = Fe(1) = C(4)	- /	64 95(15)	$C(04) = F_{2}(2) = C(14)$	(10)	129 4(2)
C(5) - Fe(1) - C(4)		38.64(15)	C(03)_Fe(2)_C	(10)	138 2(2)
C(3)-Fe(1)-C(4)		38.77(15)	C(7) - Fe(2) - C(2)	LO)	64.84(16)
		/		,	

C(9)-Fe(2)-C(10)	38.65(16)
C(6) - Fe(2) - C(10)	38 71(15)
C(0) = C(2) = C(10)	50.71(13)
C(8) - Fe(2) - C(10)	05.04(17)
C(04) - Fe(2) - As(2)	87.97(16)
C(03)-Fe(2)-As(2)	90.07(14)
C(7) - Fe(2) - As(2)	146.11(12)
$C(9) = E_0(2) = \lambda_C(2)$	10248(12)
C(y) - Fe(z) - AS(z)	102.40(12)
C(6) - Fe(2) - As(2)	106.58(12)
C(8)-Fe(2)-As(2)	141.91(11)
C(10)-Fe(2)-As(2)	85.70(12)
O(1) - C(01) - Fe(1)	176.9(5)
$O(2) C(02) E_0(1)$	176 1(4)
O(2) - C(02) - Fe(1)	170.1(4)
O(3) - C(03) - Fe(2)	177.0(4)
O(4) - C(04) - Fe(2)	177.7(4)
C(2)-C(1)-C(5)	106.5(4)
C(2) - C(1) - C(11)	126.5(4)
C(5) - C(1) - C(11)	126.7(4)
C(3) - C(1) - C(11)	120.7(4)
C(2) - C(1) - Fe(1)	69.9(2)
C(5)-C(1)-Fe(1)	69.1(2)
C(11)-C(1)-Fe(1)	131.0(3)
C(1) - C(2) - C(3)	1099(4)
C(1) C(2) E(3)	-71 A(2)
C(1) - C(2) - Fe(1)	71.4(2)
C(3) - C(2) - Fe(1)	71.2(2)
C(4)-C(3)-C(2)	105.6(4)
C(4)-C(3)-C(31)	126.5(4)
C(2) - C(3) - C(31)	127.2(4)
$C(4) - C(3) - E_{C}(1)$	70.2(2)
C(4) C(5) Fe(1)	70.3(2)
C(2) - C(3) - Fe(1)	69.1(2)
C(31)-C(3)-Fe(1)	132.1(3)
C(5)-C(4)-C(3)	109.9(4)
C(5) - C(4) - Fe(1)	69.7(2)
$C(3) - C(4) - E_{0}(1)$	$70 \ 9(2)$
C(3) - C(4) - FE(1)	100.9(2)
C(4) - C(5) - C(1)	108.0(4)
C(4) - C(5) - Fe(1)	71.7(2)
C(1)-C(5)-Fe(1)	71.1(2)
C(10) - C(6) - C(7)	105.5(4)
C(10) - C(6) - C(61)	126.0(4)
Q(7) Q(6) Q(61)	107.6(4)
C(7) - C(6) - C(61)	12/.0(4)
C(10)-C(6)-Fe(2)	70.3(2)
C(7)-C(6)-Fe(2)	69.1(2)
C(61)-C(6)-Fe(2)	133.4(3)
C(8) - C(7) - C(6)	1105(4)
Q(0) = Q(7) = Q(0)	71 0(2)
C(8) - C(7) - Fe(2)	/1.0(2)
C(6) - C(7) - Fe(2)	71.3(2)
C(7) - C(8) - C(9)	105.5(4)
C(7)-C(8)-C(81)	128.4(4)
C(9) - C(8) - C(81)	125.4(4)
$C(7) - C(8) - E_{C}(2)$	60 2(2)
C(7) - C(8) - Fe(2)	09.3(3)
C(9) - C(8) - Fe(2)	69.2(2)
C(81)-C(8)-Fe(2)	133.4(3)
C(10)-C(9)-C(8)	108.8(4)
C(10) - C(9) - Fe(2)	71 3(2)
C(2) $C(2)$ $E(2)$	71.2(2)
C(8) - C(9) - FE(2)	/1.2(2)
C(9) - C(10) - C(6)	109.8(4)
C(9)-C(10)-Fe(2)	70.1(2)
C(6)-C(10)-Fe(2)	71.0(2)
C(1)-C(11)-C(14)	111.1(4)
C(1) - C(11) - C(12)	112 A(A)
$C(\pm) = C(\pm\pm) = C(\pm\pm)$	100 P(4)
C(14) - C(11) - C(12)	109.7(4)
C(1)-C(11)-C(13)	107.3(4)
C(14)-C(11)-C(13)	108.0(4)
C(12)-C(11)-C(13)	108.2(5)
C(16) - C(15) - C(20)	116 0(4)
$C(\pm 0)$ $C(\pm 0)$ $C(\pm 0)$	TTO:0(4)

C(16)-C(15)-As(1)	116.9(3)
C(20)-C(15)-As(1)	127.1(4)
C(15)-C(16)-C(17)	122.4(5)
C(16)-C(17)-C(18)	119.2(6)
C(19)-C(18)-C(17)	120.7(5)
C(18)-C(19)-C(20)	120.0(5)
C(19)-C(20)-C(15)	121.6(5)
C(30) - C(25) - C(26)	116.1(4)
C(30)-C(25)-As(2)	127.4(4)
C(26) - C(25) - As(2)	116.4(3)
C(25) - C(26) - C(27)	121.1(5)
C(28) - C(27) - C(26)	120.7(6)
C(29) - C(28) - C(27)	118.6(5)
C(28) - C(29) - C(30)	121.7(6)
C(25)-C(30)-C(29)	121.7(6)
C(3)-C(31)-C(34)	111.5(4)
C(3)-C(31)-C(32)	108.3(4)
C(34)-C(31)-C(32)	109.7(4)
C(3)-C(31)-C(33)	111.1(4)
C(34)-C(31)-C(33)	108.6(4)
C(32)-C(31)-C(33)	107.4(4)
C(6)-C(61)-C(64)	111.8(4)
C(6)-C(61)-C(63)	111.9(4)
C(64)-C(61)-C(63)	108.8(5)
C(6)-C(61)-C(62)	105.6(4)
C(64)-C(61)-C(62)	109.7(5)
C(63)-C(61)-C(62)	109.0(4)
C(8)-C(81)-C(82)	111.0(4)
C(8)-C(81)-C(84)	106.2(4)
C(82)-C(81)-C(84)	109.2(5)
C(8)-C(81)-C(83)	113.1(4)
C(82)-C(81)-C(83)	110.0(4)
C(84)-C(81)-C(83)	107.3(5)

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Δg(1)	44(1)	40(1)	39(1)	-4(1)	7(1)	-2(1)
$\Delta_{S}(2)$	43(1)	40(1)	41(1)	-3(1)	8(1)	-1(1)
$F_{P}(1)$	40(1)	37(1)	35(1)	-1(1)	8(1)	-1(1)
Fe(2)	43(1)	36(1)	42(1)	-1(1)	10(1)	-2(1)
O(1)	67(2)	50(1) 64(2)	84(3)	28(2)	7(2)	8(2)
O(2)	58(2)	100(3)	74(3)	_22(2)	32(2)	-3(2)
O(2)	50(2) 60(2)	103(3)	81(3)	_27(2)	27(2)	4(2)
0(3)	82(3)	73(3)	104(4)	27(2) 45(2)	5(2)	14(2)
C(01)	40(2)	/3(3) /2(2)	E7(4)	1(2)	10(2)	1(2)
C(01)	40(3)	42(2)	57(4) 4E(2)	-1(2)	10(2)	-1(2)
C(02)	52(3)	43(2)	45(3)	-11(2)	10(2) 15(2)	-8(2)
C(03)	52(3)	42(2)	57(4) 65(4)	-10(2)	15(2)	-4(2)
C(04)	53(3)	46(3)	05(4) 25(2)	Z(3)	9(2)	0(2)
C(1)	37(2)	44(Z) 20(2)	35(3)	- / (Z)	7(2)	-5(2)
C(Z)	44(Z) 20(2)	39(2)	39(3)	-5(2)	7(2)	-5(2)
C(3)	38(2)	45(2)	32(3)	エ(乙) 「(乙)	6(2)	-1(2)
C(4)	32(2)	45(2)	33(3)	-5(2)	6(2)	4(2)
C(5)	43(2)	42(2)	32(3)	0(2)	8(2)	2(2)
C(6)	43(2)	42(2)	45(3)	-1(2)	10(2)	-5(2)
C(7)	50(2)	35(2)	41(3)	-3(2)	8(2)	-9(2)
C(8)	40(2)	42(2)	44(3)	-4(2)	5(2)	-8(2)
C(9)	39(2)	43(2)	45(3)	5(2)	5(2)	-6(2)
C(10)	39(2)	41(2)	50(3)	-2(2)	5(2)	-2(2)
C(11)	51(3)	68(3)	35(3)	-12(2)	8(2)	1(2)
C(12)	104(4)	97(4)	48(4)	-11(3)	42(3)	-14(3)
C(13)	72(4)	103(4)	44(4)	-24(3)	11(3)	9(3)
C(14)	80(4)	81(4)	71(5)	-22(3)	17(3)	26(3)
C(15)	56(3)	34(2)	30(3)	2(2)	6(2)	-13(2)
C(16)	58(3)	66(3)	50(4)	4(2)	18(3)	-14(2)
C(17)	90(4)	84(4)	36(4)	12(3)	8(3)	-16(3)
C(18)	77(4)	74(4)	62(5)	16(3)	-8(3)	2(3)
C(19)	57(3)	66(3)	62(4)	1(3)	-6(3)	7(2)
C(20)	56(3)	47(3)	49(4)	2(2)	6(2)	5(2)
C(25)	50(2)	41(2)	40(3)	3(2)	11(2)	-5(2)
C(26)	56(3)	86(4)	60(4)	12(3)	24(3)	3(3)
C(27)	75(4)	120(5)	42(4)	31(3)	7(3)	4(3)
C(28)	72(4)	98(5)	76(5)	35(4)	1(3)	12(3)
C(29)	64(3)	89(4)	63(5)	10(3)	2(3)	22(3)
C(30)	57(3)	66(3)	47(4)	-3(2)	11(2)	7(2)
C(31)	55(3)	62(3)	33(3)	1(2)	16(2)	-8(2)
C(32)	59(3)	149(6)	64(5)	25(4)	29(3)	3(3)
C(33)	78(4)	83(4)	65(4)	28(3)	31(3)	-9(3)
C(34)	133(5)	96(4)	45(4)	-17(3)	45(4)	-34(4)
C(61)	57(3)	60(3)	53(4)	-5(2)	26(2)	-12(2)
C(62)	59(3)	98(4)	102(6)	2(4)	38(3)	6(3)
C(63)	88(4)	89(4)	80(5)	15(3)	44(3)	-11(3)
C(64)	120(5)	110(5)	77(5)	-31(4)	51(4)	-44(4)
C(81)	65(3)	57(3)	43(3)	-6(2)	17(2)	-9(2)
C(82)	152(6)	70(4)	72(5)	-16(3)	51(4)	-1(4)
C(83)	86(4)	106(4)	51(4)	-11(3)	30(3)	-19(3)
C(84)	92(4)	128(5)	43(4)	-13(3)	8(3)	-29(4)

Tabelle C4: Anisotrope Auslenkungsparameter [Å² x 10³] für 36.Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [$(ha^*)^2 U_{11} + ... + 2hka^*b^*U_{12}$]

х

lente isotrop	e Auslenkungspara	ameter [A ² x 10
У	Z	U(eq)
4850	2546	50
6752	3053	45
6670	1927	47
9111	4643	51
7328	5225	52
7206	4136	54
6251	827	118
5659	461	118
5901	1249	118
4982	935	111
5100	270	111
5686	628	111
4768	1759	117

Tabelle C5:	
H-Atomkoordinaten [x 10 ⁴] und äquivalente isotrope Auslenkungsparameter [Å	Å ² x 10 ³] für 36

H(2)	-904	4850	2546	50
н(4)	-994	6752	3053	45
H(5)	-279	6670	1927	47
H(7)	5671	9111	4643	51
H(9)	4778	7328	5225	52
H(10)	5579	7206	4136	54
H(12A)	-1	6251	827	118
ц(12д)	477	5659	461	118
$\Pi(12D)$	1045	5055 E001	101	110
H(12C)	1245	1000 1000	1249	111
H(13A)	-2093	490Z	220	
H(13B)	-1536	5100	270	
H(13C)	-2049	5080	028	
H(14A)	1157	4/68	1/59	
H(14B)	425	4549	955	
H(14C)	-141	4422	1613	117
H(16)	2429	6538	5478	69
H(17)	4061	6163	6432	86
H(18)	5807	5750	6184	92
H(19)	5900	5670	4991	80
H(20)	4262	6023	4029	63
Н(26)	2095	7527	1631	79
H(27)	395	7899	717	97
H(28)	-1294	8348	1016	103
H(29)	-1271	8399	2231	91
H(30)	365	8005	3148	69
H(32A)	-3300	6070	3268	132
H(32B)	-3447	5476	3757	132
H(32C)	-3355	5364	2951	132
H(33A)	-1605	4579	3545	110
H(33B)	-1784	4766	4316	110
H(33C)	-466	4831	4184	110
H(34A)	-305	5980	4550	131
H(34B)	-1599	5930	4716	131
H(34C)	-1374	6472	4184	131
H(62A)	8160	8468	4368	125
H(62B)	8349	8268	3604	125
H(62C)	7949	7746	4097	125
H(63A)	5513	9144	3060	122
H(63B)	6863	9118	2969	122
H(63C)	6667	9328	3728	122
H(64A)	6166	7459	3032	146
H(64B)	6461	8007	2528	146
H(64C)	5144	7976	2668	146
H(82A)	5140	9565	5680	141
H(82B)	4380	9464	6254	141
H(82C)	3740	9344	5408	141
н(837)	3164	8263	5849	118
ц(83D)	4017	8316	5651	110
	TUL / 1011	7752	6100	110 110
	741 771	011E	0100	12F
п(о4А) ц(д/р)	04/1 6110	0110	6015	125
п(04В) ц(94С)	6700	0/04	6221	125
п(04С)	0/02	0040	0221	TSD

Tabelle D1: Kristalldaten und Strukturverfeinerung für 21.

Summenformel	$C_{48}H_{58}$	$Fe_2MoO_2P_{10}$	
Molmasse	1184.2	8	
Temperatur	293(2)	Κ	
Strahlung	ΜοΚα		
Wellenlänge	0.7107	3 Å	
Scanmodus	Phi- R	otation	
Kristallsystem	Triklin	l	
Raumgruppe	P1		
Zelldimensionen	a = 12	.3244(13) Å	$\alpha = 85.415(12)^{\circ}$
	<i>b</i> = 13	.0658(12) Å	$\beta = 79.723(12)^{\circ}$
	c = 20.	453(2) Å	$\gamma = 62.881(10)^{\circ}$
Zellvolumen	2884.4	$(5) Å^{3}$	•
Formeleinheiten pro Zelle Z	2		
Berechnete Dichte	1.364	Mg/m^3	
Absorptionskoeffizient	1.022 1	nm ⁻¹	
Kristallgröße	0.60 x	0.40 x 0.30 mm	
Gemessener θ-Bereich	1.99 bi	s 25.90°	
Anzahl der gemessenen Refle	xe	30325	
Unabhängige Reflexe	10417	(Rint = 0.1049)	
Absorptionskorrektur	Empiri	sch (DELABS/PLAT	ON 99)
Max. und min. Transmission	0.791	und 0.392	
Diffraktometer	Stoe IF	PDS	
Strukturlösung	Direkt	e Methoden	
Strukturlösungsprogramm	SHEL	XS-97 (Sheldrick, 199	0)
Strukturverfeinerung	Vollma	atrix Least-Squares ge	gen F ²
Strukturverfeinerungsprogram	nm	SHELXL-97 (Sheldr	ick, 1997)
Daten / Restraints / Parameter	:	10417 / 132 / 573	
Endgültige R-Werte $[I>2\sigma(I)]$	l	R1 = 0.0836, wR2 =	0.2247
R-Werte (alle Daten)	$\mathbf{R}1=0$.1240, wR2 = 0.2461	
Wichtungsschema	w=1/[c	$5^{2}(\text{Fo}^{2}) + (0.0942\text{P})^{2} + 1$	6.3551P] mit P= $(Fo^2 + 2Fc^2)/3$
GooF (alle Daten)	1.083		2
Größtes Maximum und Minir	num	0.825 und -0.807 eÅ ⁻	3

Der Kristall war vielfach verzwillingt. Es wurden nur die Reflexe eines der Individuen integriert. Die mäßige Qualität der Strukturbestimmung ist auf die Kristallfehler zurückzuführen. Die aus den Ergebnissen der RSA abgeleiteten Werte sind daher vorsichtig zu interpretieren. In der asymmetrischen Einheit befinden sich zusätzlich 3 teilweise fehlgeordnete Cyclohexanmoleküle auf Inversionszentren Die Wasserstoffatome des Komplexes wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2fache Wert (Cp-H) des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

Tabelle D2:

Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 21. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U(eq)
				26(1)
Mo(1)	2843(1)	3232(1)	3031(1)	36(1)
Fe(1)	1261(1)	-182(1)	3125(1)	43(1)
Fe(2)	-432(1)	4819(1)	2058(1)	46(1)
P(1)	3090(3)	4494(3)	2058(2)	61(1)
P(2)	1495(2)	4229(2)	2182(1)	46(1)
P(3)	3196(2)	2859(3)	1794(1)	57(1)
P(4)	1440(2)	2304(2)	3077(1)	39(1)
P(5)	-442(2)	3528(2)	2861(1)	43(1)
P(6)	-1174(2)	2290(3)	2821(2)	56(1)
P(7)	-591(2)	1177(3)	3687(1)	55(1)
P(8)	1093(3)	1173(2)	3855(1)	50(1)
P(9)	2024(2)	882(2)	2380(1)	46(1)
P(10)	353(3)	852(3)	2231(1)	53(1)
O(1)	715(7)	5433(7)	3746(4)	75(2)
O(2)	-1554(8)	6709(7)	3002(5)	84(3)
C(01)	1498(9)	4602(9)	3493(5)	49(2)
C(02)	-1064(10)	5915(10)	2654(5)	58(3)
C(03)	-1256(10)	4172(10)	3688(5)	60(3)
C(1)	3705(7)	2558(9)	4020(4)	44(2)
C(2)	4203(8)	1035(8)	3565(5)	44(2)
C(3)	4950(8)	1820(9)	3000(5) 2007(E)	4/(2)
C(4)	4848(8)	2913(9)	3087(5) 2702(E)	44(2)
C(5)	4079(9)	3439(9)	3702(5)	4/(Z) FF(2)
C(0)	1314(9)	-1700(9)	2007(0)	55(3)
C(7)	2514(9)	-1//(9)	2/02(5)	5Z(Z)
C(8)	2889(10)	-1011(9)	32/8(5) 2014(E)	54(3)
C(9)	1920(12)	-1525(10)	3014(5) 2571(6)	60(3)
C(10)	-1344(16)	-1380(10)	3371(0) 1202(7)	94(3)
C(11)	-1963(11)	5574(14)	1555(6)	83(4)
C(12)	-1071(14)	5574(14) 6050(11)	1312(6)	75(4)
C(14)	10(10)	5104(15)	1033(6)	79(4)
C(15)	-143(15)	4146(13)	1089(7)	85(4)
C(31)	5937(8)	913(11)	2523(6)	66(3)
C(32)	6412(12)	1415(12)	1920(6)	84(4)
C(33)	5447(12)	107(12)	2309(7)	91(4)
C(34)	6997(11)	221(12)	2904(8)	99(5)
C(51)	4129(10)	4480(10)	3938(6)	60(3)
C(52)	4113(16)	5337(13)	3369(7)	97(5)
C(53)	5363(12)	4080(14)	4179(7)	88(4)
C(54)	3044(11)	5230(13)	4489(7)	86(4)
C(61)	643(14)	-1957(13)	2392(8)	104(5)
C(71)	3291(13)	-1996(12)	2014(6)	99(5)
C(81)	4108(14)	-1696(13)	3337(9)	109(6)
C(91)	1940(2)	-1430(14)	4548(6)	135(8)
C(100)	3144(10)	2446(12)	4755(5)	63(3)
C(101)	3978(13)	2523(16)	5225(5)	95(5)
C(102)	3217(12)	1264(12)	4859(6)	79(4)
C(103)	1792(11)	3326(13)	4959(5)	80(4)
C(104)	-167(14)	-1594(13)	3966(9)	120(7)
C(111)	-1870(3)	3620(2)	1437(11)	191(13)
C(121)	-3289(12)	6232(19)	1855(9)	143(9)
C(131)	-1360(2)	7277(15)	1315(9)	148(9)
C(141)	1134(16)	5220(2)	663(7)	145(9)
C(151)	860(2)	2975(16)	782(8)	169(12)

C(160)	3800(4)	330(5)	-210(3)	150(2)
C(161)	4380(6)	-800(6)	40(3)	190(3)
C(162)	5600(7)	-1090(6)	420(4)	190(2)
C(170)	4090(6)	1210(5)	50(3)	160(2)
C(171)	3670(5)	290(5)	360(3)	130(2)
C(172)	4690(6)	-630(6)	560(3)	150(2)
C(180)	4690(4)	5900(3)	444(19)	186(14)
C(181)	3780(5)	5820(5)	160(3)	128(16)
C(182)	4710(7)	4100(6)	50(4)	160(2)
C(183)	4410(5)	6050(5)	-340(2)	126(16)
C(184)	3880(6)	4870(6)	-170(3)	150(2)
C(190)	-1270(3)	780(3)	263(16)	192(11)
C(191)	-600(3)	-360(3)	550(14)	182(10)
C(192)	770(3)	-910(3)	435(14)	180(10)

 Tabelle D3: Bindungslängen [Å] und -winkel [°] für 21.

Mo(1)-C(01)	1.963(10)	P(9)-P(10)	2.153(4)
Mo(1)-C(4)	2.334(8)	O(1) - C(01)	1.155(12)
Mo(1)-C(5)	2.336(9)	O(2)-C(02)	1.158(13)
Mo(1)-C(2)	2.335(9)	C(1)-C(2)	1.414(13)
Mo(1)-C(1)	2.372(8)	C(1)-C(5)	1.489(14)
$M_{O}(1)-C(3)$	2.397(9)	C(1)-C(100)	1.564(13)
Mo(1)-P(2)	2.484(2)	C(2) - C(3)	1.413(13)
Mo(1)-P(4)	2.511(3)	C(3) - C(4)	1.396(14)
Mo(1)-P(3)	2.537(3)	C(3) - C(31)	1.519(13)
Mo(1)-P(1)	2.547(3)	C(4) - C(5)	1.438(13)
Fe(1)-C(7)	2.087(10)	C(5)-C(51)	1.510(15)
Fe(1)-C(8)	2.079(10)	C(6) - C(7)	1.448(14)
Fe(1)-C(9)	2.108(11)	C(6) - C(10)	1.432(15)
Fe(1)-C(6)	2.138(11)	C(6)-C(61)	1.489(17)
Fe(1)-C(10)	2.142(11)	C(7)-C(8)	1.405(15)
Fe(1)-P(10)	2.319(3)	C(7) - C(71)	1.520(14)
Fe(1)-P(7)	2.319(3)	C(8)-C(9)	1.434(15)
Fe(1)-P(8)	2.320(3)	C(8)-C(81)	1.481(17)
Fe(1)-P(9)	2.340(3)	C(9) - C(10)	1.414(18)
Fe(2)-C(02)	1.751(12)	C(9)-C(91)	1.521(17)
Fe(2)-C(13)	2.102(11)	C(10)-C(104)	1.474(16)
Fe(2)-C(12)	2.104(11)	C(11)-C(15)	1.39(2)
Fe(2)-C(14)	2.118(12)	C(11)-C(12)	1.39(2)
Fe(2)-C(15)	2.139(12)	C(11)-C(111)	1.45(2)
Fe(2)-C(11)	2.144(13)	C(12)-C(13)	1.49(2)
Fe(2)-P(2)	2.194(3)	C(12)-C(121)	1.495(17)
Fe(2)-P(5)	2.260(3)	C(13)-C(14)	1.403(18)
P(1)-P(2)	2.116(4)	C(13)-C(131)	1.48(2)
P(1)-P(3)	2.186(5)	C(14)-C(15)	1.34(2)
P(2)-P(3)	2.107(4)	C(14)-C(141)	1.52(2)
P(4)-P(8)	2.204(3)	C(15)-C(151)	1.556(19)
P(4)-P(9)	2.199(3)	C(31)-C(32)	1.503(17)
P(4)-P(5)	2.237(3)	C(31)-C(34)	1.518(17)
P(5)-C(03)	1.851(10)	C(31)-C(33)	1.553(19)
P(5)-P(6)	2.194(4)	C(51)-C(53)	1.526(16)
P(6)-P(10)	2.204(4)	C(51)-C(52)	1.545(18)
P(6)-P(7)	2.205(4)	C(51)-C(54)	1.570(15)
P(7)-P(8)	2.161(4)	C(100)-C(102)	1.505(18)

C(100)-C(103) C(100)-C(101) C(160)-C(161) C(160)-C(162)#1 C(161)-C(162) C(162)-C(160)#1 C(170)-C(171) C(170)-C(172)#1 C(171)-C(172) C(172)-C(170)#1 C(180)-C(182)#2 C(180)-C(181)	1.534(16) $1.566(15)$ $1.41(7)$ $1.50(7)$ $1.67(10)$ $1.55(7)$ $1.70(10)$ $1.38(7)$ $1.70(10)$ $1.14(6)$ $1.40(6)$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
C(01)-Mo(1)-C(4)	116.4(4)	C(8)-Fe(1)-C(6)	67.3(4)
C(01)-Mo(1)-C(5)	85.5(4)	C(9)-Fe(1)-C(6)	65.2(5)
C(4) - MO(1) - C(5)	35.9(3)	C(7)-Fe(1)-C(10)	66.2(4)
C(01)-Mo(1)-C(2)	124.2(4)	C(8)-Fe(1)-C(10)	67.3(4)
C(4)-Mo(1)-C(2)	57.5(3)	C(9)-Fe(1)-C(10)	38.9(5)
C(5)-Mo(1)-C(2)	59.8(3)	C(6)-Fe(1)-C(10)	39.1(4)
C(01)-Mo(1)-C(1)	91.1(4)	C(7)-Fe(1)-P(10)	102.8(3)
C(4)-Mo(1)-C(1)	58.8(3)	C(8)-Fe(1)-P(10)	137.6(3)
C(5) - Mo(1) - C(1)	36.9(3)	C(9)-Fe(1)-P(10)	160.4(4)
C(2) - Mo(1) - C(1)	34.9(3)	C(6)-Fe(1)-P(10)	95.5(3)
C(01) - Mo(1) - C(3)	144.6(4)	C(10) - Fe(1) - P(10)	123.1(4)
C(4) - MO(1) - C(3)	34.3(3)	C(7) - Fe(1) - P(7)	156.8(3)
C(5) - MO(1) - C(3)	59.5(3)	C(8) - Fe(1) - P(7)	142.2(3)
C(2) = MO(1) = C(3) C(1) = MO(1) = C(3)	54.7(3)	C(9) - Fe(1) - P(7)	104.0(3) 117 0(2)
C(1) - MO(1) - C(3) C(01) - MO(1) - P(2)	56.5(3) 75.9(3)	C(0) - Fe(1) - P(7) C(10) - Fe(1) - D(7)	117.0(3)
C(01) - MO(1) - P(2) C(4) - MO(1) - P(2)	130 9(2)	P(10) - Fe(1) - P(7)	92.0(3) 80 15(11)
C(4) MO(1) P(2) C(5) - MO(1) - P(2)	143 0(3)	C(7) - Fe(1) - P(8)	$141 \ 4(3)$
C(2) - MO(1) - P(2)	155 2(3)	C(8) - Fe(1) - P(8)	103 3(3)
C(1) - MO(1) - P(2)	166.3(2)	C(9) - Fe(1) - P(8)	92.2(4)
C(3) - Mo(1) - P(2)	135.3(2)	C(6)-Fe(1)-P(8)	154.7(3)
C(01) - MO(1) - P(4)	91.2(3)	C(10) - Fe(1) - P(8)	115.8(3)
C(4) - Mo(1) - P(4)	145.0(3)	P(10)-Fe(1)-P(8)	105.80(11)
C(5)-Mo(1)-P(4)	138.8(2)	P(7)-Fe(1)-P(8)	55.53(11)
C(2)-MO(1)-P(4)	89.8(2)	C(7)-Fe(1)-P(9)	95.3(3)
C(1)-MO(1)-P(4)	102.4(2)	C(8)-Fe(1)-P(9)	101.2(3)
C(3)-Mo(1)-P(4)	111.3(3)	C(9)-Fe(1)-P(9)	138.0(4)
P(2)-Mo(1)-P(4)	74.10(8)	C(6)-Fe(1)-P(9)	123.4(3)
C(01)-Mo(1)-P(3)	124.7(3)	C(10)-Fe(1)-P(9)	161.1(3)
C(4)-Mo(1)-P(3)	96.5(2)	P(10)-Fe(1)-P(9)	55.03(10)
C(5)-Mo(1)-P(3)	131.3(2)	P(7)-Fe(1)-P(9)	104.83(11)
C(2)-Mo(1)-P(3)	110.7(2)	P(8)-Fe(1)-P(9)	80.71(10)
C(1) - Mo(1) - P(3)	143.9(2)	C(02) - Fe(2) - C(13)	90.1(5)
C(3) - Mo(1) - P(3)	86.1(2)	C(02) - Fe(2) - C(12)	93.8(5)
P(2) - MO(1) - P(3) P(4) = Mo(1) - P(3)	49.62(9)	C(13) - Fe(2) - C(12)	41.5(6)
P(4) - MO(1) - P(3)	83.03(9)	C(12) = Fe(2) = C(14) C(12) = Fe(2) = C(14)	122.9(0)
C(01) = MO(1) = P(1) C(4) = MO(1) = P(1)	81 8(2)	C(13) - Fe(2) - C(14) C(12) - Fe(2) - C(14)	50.0(5) 65 7(5)
C(4) - MO(1) - P(1) C(5) - MO(1) - P(1)	$99 \ 4(2)$	C(12) - Fe(2) - C(14) C(02) - Fe(2) - C(15)	$154 \ 1(5)$
C(2) - Mo(1) - D(1)	134 8(2)	$C(12) - F_{C}(2) - C(15)$	$64 \ 4(5)$
C(2) -M(1) - P(1)	135.0(2)	$C(12) = F_{P}(2) = C(15)$	64 5(5)
C(3) - MO(1) - P(1)	100.3(2)	C(14) - Fe(2) - C(15)	36.7(6)
P(2) - Mo(1) - P(1)	49.73(9)	C(02) - Fe(2) - C(11)	128.7(6)
P(4) - Mo(1) - P(1)	121.66(9)	C(13) - Fe(2) - C(11)	65.6(5)
P(3)-Mo(1)-P(1)	50.92(11)	C(12)-Fe(2)-C(11)	38.1(6)
C(7)-Fe(1)-C(8)	39.4(4)	C(14)-Fe(2)-C(11)	63.0(6)
C(7)-Fe(1)-C(9)	65.3(4)	C(15)-Fe(2)-C(11)	37.9(6)
C(8)-Fe(1)-C(9)	40.0(4)	C(02)-Fe(2)-P(2)	95.7(4)
C(7)-Fe(1)-C(6)	40.1(4)	C(13)-Fe(2)-P(2)	116.2(4)

C(12)-Fe(2)-P(2)	155.7(4)	C(2)-C(3)-C(31)	126.6(10)
C(14)-Fe(2)-P(2)	90.5(3)	C(4)-C(3)-Mo(1)	70.4(5)
C(15)-Fe(2)-P(2)	99.5(4)	C(2)-C(3)-Mo(1)	70.3(5)
C(11)-Fe(2)-P(2)	135.2(5)	C(31)-C(3)-Mo(1)	136.8(7)
C(02)-Fe(2)-P(5)	90.3(4)	C(3)-C(4)-C(5)	111.9(8)
C(13)-Fe(2)-P(5)	158.6(4)	C(3)-C(4)-Mo(1)	75.3(5)
C(12)-Fe(2)-P(5)	117.2(5)	C(5)-C(4)-Mo(1)	72.2(5)
C(14)-Fe(2)-P(5)	146.8(5)	C(4)-C(5)-C(1)	104.2(8)
C(15)-Fe(2)-P(5)	111.7(5)	C(4)-C(5)-C(51)	117.7(9)
C(11)-Fe(2)-P(5)	98.0(4)	C(1)-C(5)-C(51)	135.5(9)
P(2)-Fe(2)-P(5)	85.09(10)	C(4) - C(5) - Mo(1)	72.0(5)
P(2)-P(1)-P(3)	58.65(13)	C(1)-C(5)-Mo(1)	72.9(5)
P(2)-P(1)-Mo(1)	63.58(10)	C(51)-C(5)-Mo(1)	132.5(7)
P(3)-P(1)-Mo(1)	64.32(10)	C(7)-C(6)-C(10)	106.7(10)
P(3)-P(2)-P(1)	62.33(14)	C(7)-C(6)-C(61)	125.5(11)
P(3)-P(2)-Fe(2)	134.73(16)	C(10)-C(6)-C(61)	127.7(12)
P(1)-P(2)-Fe(2)	150.17(16)	C(7)-C(6)-Fe(1)	68.1(6)
P(3)-P(2)-Mo(1)	66.51(10)	C(10)-C(6)-Fe(1)	70.6(6)
P(1)-P(2)-Mo(1)	66.69(10)	C(61)-C(6)-Fe(1)	128.9(9)
Fe(2)-P(2)-Mo(1)	138.38(12)	C(8) - C(7) - C(6)	110.0(9)
P(2)-P(3)-P(1)	59.03(13)	C(8)-C(7)-C(71)	124.5(11)
P(2)-P(3)-Mo(1)	63.86(9)	C(6)-C(7)-C(71)	125.4(11)
P(1)-P(3)-Mo(1)	64.76(11)	C(8)-C(7)-Fe(1)	70.0(6)
P(8)-P(4)-P(9)	86.53(13)	C(6)-C(7)-Fe(1)	71.9(6)
P(8)-P(4)-P(5)	104.02(13)	C(71)-C(7)-Fe(1)	126.8(8)
P(9)-P(4)-P(5)	103.00(13)	C(7) - C(8) - C(9)	105.7(10)
P(8)-P(4)-Mo(1)	128.16(12)	C(7)-C(8)-C(81)	127.0(11)
P(9)-P(4)-Mo(1)	117.11(11)	C(9)-C(8)-C(81)	126.6(12)
P(5)-P(4)-Mo(1)	113.09(12)	C(7)-C(8)-Fe(1)	70.6(6)
C(03)-P(5)-P(6)	99.7(4)	C(9)-C(8)-Fe(1)	71.1(6)
C(03)-P(5)-P(4)	102.2(4)	C(81)-C(8)-Fe(1)	130.1(9)
P(6)-P(5)-P(4)	98.73(14)	C(10)-C(9)-C(8)	110.5(10)
C(03)-P(5)-Fe(2)	114.3(4)	C(10)-C(9)-C(91)	123.6(13)
P(6)-P(5)-Fe(2)	124.92(14)	C(8)-C(9)-C(91)	125.9(14)
P(4)-P(5)-Fe(2)	113.67(12)	C(10)-C(9)-Fe(1)	71.9(7)
P(5)-P(6)-P(10)	103.91(14)	C(8)-C(9)-Fe(1)	68.9(6)
P(5)-P(6)-P(7)	103.30(15)	C(91)-C(9)-Fe(1)	128.0(9)
P(10)-P(6)-P(7)	85.28(14)	C(9)-C(10)-C(6)	107.0(9)
P(8)-P(7)-P(6)	106.95(15)	C(9)-C(10)-C(104)	127.0(13)
P(8)-P(7)-Fe(1)	62.26(11)	C(6)-C(10)-C(104)	125.7(14)
P(6)-P(7)-Fe(1)	96.15(13)	C(9)-C(10)-Fe(1)	69.3(7)
P(7)-P(8)-P(4)	104.69(14)	C(6)-C(10)-Fe(1)	70.3(6)
P(7)-P(8)-Fe(1)	62.21(11)	C(104)-C(10)-Fe(1)	130.2(9)
P(4)-P(8)-Fe(1)	95.40(12)	C(15)-C(11)-C(12)	109.2(14)
P(10)-P(9)-P(4)	105.83(14)	C(15)-C(11)-C(111)	123.5(19)
P(10)-P(9)-Fe(1)	61.99(11)	C(12)-C(11)-C(111)	127(2)
P(4)-P(9)-Fe(1)	94.94(11)	C(15)-C(11)-Fe(2)	70.8(8)
P(9)-P(10)-P(6)	106.05(15)	C(12)-C(11)-Fe(2)	69.4(7)
P(9)-P(10)-Fe(1)	62.98(10)	C(111)-C(11)-Fe(2)	132.6(10)
P(6)-P(10)-Fe(1)	96.18(13)	C(11)-C(12)-C(13)	106.1(12)
O(1)-C(01)-MO(1)	177.5(10)	C(11)-C(12)-C(121)	126.7(17)
O(2)-C(02)-Fe(2)	173.1(10)	C(13)-C(12)-C(121)	127.0(16)
C(2)-C(1)-C(5)	106.6(8)	C(11)-C(12)-Fe(2)	72.5(7)
C(2)-C(1)-C(100)	121.7(9)	C(13)-C(12)-Fe(2)	69.2(6)
C(5)-C(1)-C(100)	130.5(9)	C(121)-C(12)-Fe(2)	127.1(10)
C(2)-C(1)-Mo(1)	71.1(5)	C(14)-C(13)-C(12)	104.6(13)
C(5)-C(1)-Mo(1)	70.3(5)	C(14)-C(13)-C(131)	129.5(17)
C(100)-C(1)-Mo(1)	133.4(6)	C(12)-C(13)-C(131)	125.6(16)
C(1)-C(2)-C(3)	110.9(9)	C(14)-C(13)-Fe(2)	71.2(7)
C(1)-C(2)-Mo(1)	73.9(5)	C(12)-C(13)-Fe(2)	69.3(6)
C(3)-C(2)-Mo(1)	75.0(5)	C(131)-C(13)-Fe(2)	128.0(10)
C(4)-C(3)-C(2)	106.2(8)	C(15)-C(14)-C(13)	110.8(13)
C(4)-C(3)-C(31)	125.2(9)	C(15)-C(14)-C(141)	126.3(17)

C(13)-C(14)-C(141)	122.6(18)
C(15)-C(14)-Fe(2)	72.5(8)
C(13)-C(14)-Fe(2)	70.0(7)
C(141)-C(14)-Fe(2)	129.1(10)
C(14)-C(15)-C(11)	109.3(12)
C(14) - C(15) - C(151)	122.7(18)
C(11)-C(15)-C(151)	127.7(19)
C(14) - C(15) - Fe(2)	70.8(8)
C(11) - C(15) - Fe(2)	71.3(8)
C(151) - C(15) - Fe(2)	128 9(9)
C(3) - C(31) - C(32)	113 1(11)
C(3) - C(31) - C(32)	105 6(10)
C(3) = C(31) = C(34)	109.2(10)
C(32) - C(31) - C(34)	110.5(10)
C(3) - C(31) - C(33)	110.5(9)
C(32) - C(31) - C(33)	100.0(11)
C(34) - C(31) - C(33)	109.2(12)
C(5) - C(51) - C(53)	110.1(9)
C(5) - C(51) - C(52)	112.2(10)
C(53) - C(51) - C(52)	105.5(11)
C(5)-C(51)-C(54)	116.3(10)
C(53) - C(51) - C(54)	109.8(9)
C(52)-C(51)-C(54)	104.2(11)
C(102)-C(100)-C(103)	107.8(10)
C(102)-C(100)-C(1)	109.2(10)
C(103)-C(100)-C(1)	114.5(9)
C(102)-C(100)-C(101)	105.8(10)
C(103)-C(100)-C(101)	110.7(11)
C(1)-C(100)-C(101)	108.5(8)
C(161)-C(160)-C(162)#1	126(5)
C(160)-C(161)-C(162)	116(5)
C(160)#1-C(162)-C(161)	114(5)
C(171)-C(170)-C(172)#1	111(4)
C(172)-C(171)-C(170)	108(5)
C(171)-C(172)-C(170)#1	114(5)
C(182)#2-C(180)-C(181)	95(5)
C(182)#2-C(180)-C(184)#2	49(4)
C(181)-C(180)-C(184)#2	121(4)
C(182)#2-C(180)-C(183)	48(4)
C(181)-C(180)-C(183)	48(3)
C(184)#2-C(180)-C(183)	89(4)
C(180) - C(181) - C(182)	94(4)
$C(180) - C(181) - C(182) \pm 2$	37(3)
$C(182) - C(181) - C(182) \pm 2$	89(4)
$C(180) \pm 2 - C(182) - C(181)$	96(5)
C(180)#2-C(182)-C(181)#2	48(4)
C(181) - C(182) - C(181) + 2	91 (4)
C(180) - C(183) - C(184)	22(2)
C(180) # 2 = C(184) = C(182)	81 (<i>A</i>)
C(100) # 2 - C(104) - C(103)	01(4)
C(190) C(191) C(192)	110(3)
C(190) + C(191) - C(192)	112(3)
$C(TAD) \pm 2 - C(TAS) - C(TAT)$	⊥⊥∠(J)

	U ₁₁	U ₂₂	U ₃₃	U 23	U ₁₃	U ₁₂
 Mo(1)	30(1)	36(1)	39(1)	-3(1)	-4(1)	-13(1)
Fe(1)	44(1)	40(1)	44(1)	-2(1)	-3(1)	-20(1)
Fe(2)	40(1)	41(1)	50(1)	-1(1)	-13(1)	-10(1)
P(1)	59(2)	68(2)	63(2)	16(1)	-10(1)	-37(2)
P(2)	43(1)	50(2)	44(1)	5(1)	-10(1)	-18(1)
P(3)	47(1)	70(2)	40(1)	-7(1)	0(1)	-17(1)
P(4)	36(1)	40(1)	40(1)	-4(1)	-4(1)	-17(1)
P(5)	35(1)	40(1)	52(1)	-8(1)	-4(1)	-13(1)
P(6)	43(1)	55(2)	74(2)	0(1)	-12(1)	-25(1)
P(7)	48(2)	55(2)	61(2)	-3(1)	6(1)	-27(1)
P(8)	65(2)	49(2)	44(1)	2(1)	-10(1)	-31(1)
P(9)	45(1)	43(2)	46(1)	-7(1)	2(1)	-19(1)
P(10)	59(2)	49(2)	53(1)	-3(1)	-16(1)	-24(1)
0(1)	55(5)	55(5)	94(6)	-25(4)	-8(4)	-4(4)
0(2)	80(6)	45(5)	106(7)	-25(5)	-11(5)	-9(4)
C(01)	43(5)	50(6)	52(5)	-4(4)	-10(4)	-17(5)
C(02)	51(6)	52(7)	67(7)	$\bot(5)$	-13(5)	-19(5)
C(03)	56(6)	53(7)	64(6)	-14(5)	4(5)	-22(5)
C(1)	21(4)	57(6)	50(5)	2(4)	-12(3)	-11(4)
C(Z)	33(4) 22(E)	38(6) 40(6)	59(5)	3(4)	-13(4)	-13(4)
C(3)	33(5) 21(4)	40(6) 50(6)	04(0) 57(5)	-10(4)	-4(4)	-13(4)
C(4)	51(4)	50(0)	37(5) 19(5)	0(4)	-12(4)	-21(4)
C(5)	49(6)	36(6)	$\frac{40}{2}$	-1(5)	-12(4)	-29(3) -19(4)
C(0)	54(6)	38(6)	60(6)	-4(4)	0(5)	-19(5)
C(8)	54(6)	45(6)	70(6)	6(5)	-19(5)	-25(5)
C(9)	94(9)	42(7)	57(6)	8(5)	-8(6)	-23(6)
C(10)	62(7)	47(7)	76(7)	-3(5)	10(6)	-26(5)
C(11)	121(13)	68(10)	83(9)	15(7)	-61(9)	-47(9)
C(12)	48(6)	116(13)	66(7)	3(7)	-26(5)	-16(7)
C(13)	107(11)	56(8)	67(7)	14(6)	-48(7)	-30(7)
C(14)	44(6)	108(12)	64(7)	19(7)	-20(5)	-15(7)
C(15)	96(11)	68(10)	67(8)	-10(7)	-41(7)	-3(8)
C(31)	24(5)	70(8)	93(8)	-30(6)	-4(5)	-8(5)
C(32)	73(8)	69(9)	94(9)	-30(7)	30(7)	-29(7)
C(33)	61(8)	63(9)	122(11)	-38(8)	6(7)	-5(б)
C(34)	44(7)	67(9)	154(14)	-21(9)	-18(8)	6(6)
C(51)	51(6)	44(7)	88(8)	-23(5)	-15(5)	-18(5)
C(52)	129(13)	70(10)	107(11)	4(8)	-34(9)	-54(9)
C(53)	78(9)	113(13)	93(9)	-35(8)	-16(7)	-55(8)
C(54)	69(8)	84(10)	102(10)	-45(8)	-15(7)	-24(7)
C(61)	87(10)	56(9)	157(14)	-31(9)	-54(10)	-6(7)
C(71)	100(10)	55(8)	83(9)	-10(6)	36(8)	-2(7)
C(81)	94(11) 260(2)	63(10)	178(16)	30(IO) 16(7)	-61(11)	-33(8)
C(91)	200(2)	69(10) 100(10)	50(8) 45(5)	10(7)	-41(11) 15(5)	-55(13)
C(100)	56(0)	100(10)	45(5)	13(0)	-15(5)	-40(0)
C(101)	94(IU) 95(0)	164(16)	40(0)	1/(8)	-20(0)	-72(10)
C(102)	00(9) 58(7)	94(10) 126/12)	02(/) 52(6)	∠>(/) _11(7)	-22(0)	-4∠(8) _30(7)
C(103)	30(7) 107(12)	120(12)	173(16)	-11(7) -8(10)	-3(3) 58(11)	-39(7)
C(111)	350(3)	160(2)	190(2)	101(17)	-200(2)	-190(2)
C(121)	46(8)	200(2)	126(14)	-31(13)	_17(R)	1(10)
C(131)	260(3)	81(13)	148(16)	38(11)	-127(17)	-86(15)
C(141)	104(13)	250(3)	68(9)	60(12)	-26(9)	-76(15)
C(151)	210(2)	111(15)	83(11)	-49(10)	-74(12)	42(14)

Tabelle D4: Anisotrope Auslenkungsparameter [Å² x 10³] für 21.Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [$(ha^*)^2 U_{11} + ... + 2hka^*b^*U_{12}$]

	x	У	Z	U(eq)
H(03A)	-2121	4625	3671	89
H(03B)	-925	4654	3810	89
H(03C)	-1145	3572	4011	89
Н(2)	4058	993	3626	52
H(4)	5231	3260	2781	53
H(32A)	5729	2031	1748	125
H(32B)	6872	830	1586	125
H(32C)	6939	1706	2039	125
H(33A)	5130	-198	2697	137
H(33B)	6108	-513	2046	137
H(33C)	4799	534	2052	137
H(34A)	7105	731	3170	149
H(34B)	7741	-184	2597	149
H(34C)	6814	-321	3187	149
H(52A)	4753	4939	3007	145
H(52B)	4251	5933	3527	145
H(52C)	3326	5670	3221	145
H(53A)	5383	3621	4571	131
H(53B)	5458	4737	4278	131
H(53C)	6023	3629	3837	131
H(54A)	2271	5485	4334	129
H(54B)	3145	5885	4587	129
H(54C)	3053	4778	4884	129
H(61A)	953	-1813	1947	156
H(61B)	-223	-1447	2495	156
H(61C)	767	-2739	2426	156
H(71A)	4008	-1889	2025	148
H(71B)	2812	-1467	1703	148
H(71C)	3543	-2769	1880	148
H(81A)	4493	-1558	2911	163
H(81B)	4621	-2451	3488	163
H(81C)	4000	-1134	3649	163
H(91A)	1235	-749	4729	202
H(91B)	2683	-1389	4599	202
H(91C)	1925	-2093	4778	202
H(10A)	3689	2386	5675	142
H(10B)	3940	3276	5193	142
H(10C)	4815	1956	5095	142
H(10D)	2936	1169	5318	118
H(10E)	4056	696	4736	118
H(10F)	2704	1174	4589	118
H(10G)	1278	3182	4716	120
H(10H)	1707	4087	4864	120
H(10I)	1544	3258	5427	120
H(10J)	33	-2345	4152	179
H(10K)	-780	-1402	3686	179
H(10L)	-483	-1040	4318	179
H(11A)	-2470	3861	1142	287
H(11B)	-2269	3607	1885	287
H(11C)	-1232	2863	1314	287
H(12A)	-3524	5753	2169	214
H(12B)	-3793	6463	1512	214
H(12C)	-3402	6901	2078	214
H(13A)	-685	7350	1448	221
H(13B)	-2098	7689	1622	221
H(13C)	-1468	7589	877	221

Tabelle 5:H-Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 21.

7. Anhang					
H(14A)	1824	4792	891	217	
H(14B)	959	6014	642	217	
H(14C)	1328	4921	220	217	
H(15A)	1044	3056	310	254	
H(15B)	571	2404	876	254	
H(15C)	1602	2742	971	254	

8 Dank

Mein Dank gilt all jenen, die zum Gelingen dieser Arbeit beigetragen haben. Insbesondere möchte ich mich bedanken bei:

- Dr. Wolmershäuser für die Anfertigung der Röntgenstrukturanalysen.
- Dr. M. A. Hofmann f
 ür die Bereitstellung des Phosphaalkins und die vielen n
 ützlichen Diskussionen im Rahmen unserer Kooperation.
- PD Dr. K. Karaghisoff (LMU München) für die Simulation und Aufnahme einiger Spektren und die vielen sehr hilfreichen Diskussionen.
- Bei Dr. Weigel, Dr. Hilt, Dr. Völmecke, Dipl.-Chem. Schmitt, Dipl.-Chem. Fuchs,
 Dipl.-Chem. Ertel, Dipl.-Chem. Koch, sowie Frau Ruzek für die Aufnahme einiger
 NMR-Spektren.
- Frau Dr. G. Hornung für die Aufnahme der Massenspektren.
- Bei Guido Schmitt und Birgit Koch für die excellente Zusammenarbeit im Labor.
- Frau Dr. Kristina Mast für die Unterstützung bei der Synthese von (tBuAs)₄.
- Andrea Thommet, Udo Gumsheimer und Guido Schmitt für das Korrekturlesen dieser Arbeit.
- Sascha, Thomas, Andrea, G.S. aus B., Olli, Dirk, Michael, Christina, Diddi, Mario, Thorsten, Christine, Kristina, Udo, Christian, Seppel, Christian und Herbert f
 ür die vielen schönen Stunden w
 ährend unseres gesamten Studiums.
- Bei meinen Eltern.