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Summary Based on general partitions of unity and standard numerical 
ux

functions, a class of mesh-free methods for conservation laws is derived. A Lax-

Wendro� type consistency analysis is carried out for the general case of moving

partition functions. The analysis leads to a set of conditions which are checked

for the �nite volume particle method FVPM. As a by-product, classical �nite

volume schemes are recovered in the approach for special choices of the partition

of unity.

1 Introduction

The need for mesh-free methods typically arises in connection with problems

posed in time depending or very complicated geometries where the handling of

mesh discretizations becomes technically complicated or very time consuming.

If interesting features in solutions should be captured with maximal compu-

tational speed and minimal memory requirements, dynamic adaption of the

resolution is necessary. In mesh-based methods, re�nement or coarsening tech-

niques require programming of complicated data structures which re
ect the

hierarchical connectivity relations in the re�ned mesh. If the mesh points are

allowed to move, as in Lagrangian methods, large deviations lead to degenerate

mesh cells and stability problems can occur because the neighborhood structure

may no longer re
ect the actual relative positions of the nodes. Other examples

where usual mesh structures are not applicable are high dimensional problems

because of memory limitations. A typical example for this situation arises in

connection with the Boltzmann equation where particle methods are classically

used to construct approximate solutions [10]. In gas and 
uid dynamics, the

SPH method [9] has been successfully applied to problems with free boundaries

and large deviations. For variants of the SPH method, we refer to [6,14]. A

detailed analysis can be found in [2] and [5,11]. Another classical application of

particle methods is the simulation of vortex dynamics in incompressible Euler

or Navier-Stokes 
ows [12,4,3]. Recent developments in the area of mesh-free

methods for hyperbolic problems include the �nite mass method (FMM) [15,
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16] and the partition of unity method (PUM) [7] (see also the references therein

for mesh-free �nite element methods and [1] for a general overview on mesh-free

methods).

In this article, we analyze the �nite volume particle method (FVPM) [8]. In

fact, we are going to embed this method into a more general framework which

also includes classical �nite volume schemes. Since we will use a modi�cation of

the original approach in [8], let us brie
y outline the construction for the case

of scalar conservation laws in one space dimension

@u

@t
+
@f(u)

@x
= 0; u(0; x) = u0(x) (1)

In standard �nite di�erence discretizations of the Cauchy problem, approximate

values ui are calculated at regularly spaced points xi = ih, i 2 Z with distance

h > 0. The value ui typically represents the integral average of u over a volume

(xi� 1
2
; xi+ 1

2
] attached to xi. In terms of the indicator function  i(x) of that

interval, we can write the cell average as

ui =
1

h

Z
R

 iu dx =
1

Vi
hu;  ii ; Vi = h1;  ii

where h�; �i abbreviates x-integration. Note that f i : i 2 Zg is a partition of

unity, i.e.
P

i2Z i(x) = 1 for all x 2 R.
As extension of this concept, we are going to introduce a particle method with

particle positions xi which may be irregularly spaced and moving. To each xi we
associate a function  i, the particle. As in the �nite di�erence approach, f i : i 2
Zg will be a partition of unity but the supports of the functions  i may overlap.

More precisely, we assume that the particles  i are smooth functions which

are localized around the particle positions xi(t) and satisfy
P

i2Z i(t; x) = 1

for all x 2 R and t 2 R
+ = [0;1) (for details of the construction, we refer

to Section 4). The positions are supposed to move according to a di�erential

equation _x = a(t; x) with a given �eld a. As we will see, this movement implies

that  i satis�es the relations

@ i

@x
=
X
j2Z

(�ji � �ij) ;
@ i
@t

= �
X
j2Z

( _xi�ji � _xj�ij) (2)

where the function �ij is localized on the intersection of the supports of particle

i and particle j. Using (2), we �nd that  i satis�es the transport equation

@ i
@t

+ _xi
@ i
@x

=
X
j2Z

( _xj � _xi)�ij : (3)

Note that the left hand side in (3) describes the movement of the particle while

the right hand side is related to a deformation of  i. Deformations arise if

particles move relative to each other so that the function values have to change

in order to keep the property that the sum of all  i is equal to one. For the local
averages ui = hu;  ii =Vi of the solution u of equation (1) we �nd

d

dt
(uiVi) =

�
@u

@t
;  i

�
+

�
u;
@ i
@t

�
=

�
f(u);

@ i
@x

�
+

�
u;
@ i
@t

�



Consistency analysis of mesh-free methods for conservation laws 3

and with (2), we get

d

dt
(uiVi) =

X
j2Z

(hf(u)� _xiu; �jii � hf(u)� _xju; �iji) :

For abbreviation, we introduce the Lagrangian 
ux

G(t; x; u) = f(u)� ua(t; x)

which consists of the 
ux in (1) as well as a contribution ua due to the particle

movement with velocity a. Setting Gi = G(t; xi; ui) and 
ij = h�ij ; 1i, we have
approximately

d

dt
(uiVi) �

X
j2Z

(Gi
ji �Gj
ij)

since �ij are localized close to xi and xj. Now, we use the splitting ac � bd =

(a� b)(c+ d)=2 + (a+ b)(c� d)=2 which yieldsX
j2Z

(Gi
ji �Gj
ij) =
X
j2Z

1

2
(Gi �Gj)(
ij + 
ji)

�
X
j2Z

1

2
(Gi +Gj)(
ij � 
ji)

Assuming Gi � Gj for 
ij + 
ji 6= 0 (i.e. for nearby particles), we conclude

further

d

dt

X
i2Z

(uiVi) � �
X
j

j�ij j
Gi +Gj

2
nij

where �ij = 
ij�
ji and nij = sign(�ij). Note that
1
2
(Gi+Gj)nij is the numerical


ux function of central di�erencing. A more general approach is obtained if we

replace this particular expression by a general numerical 
ux function gij =

g(t; xi; ui; xj ; uj ; nij) for G(t; x; u).
We end up with a system of ordinary di�erential equations

d

dt
(uiVi) = �

X
j

j�ij jgij ; ui(0) =


u0;  i(0)

�
=Vi(0): (4)

Based on the solution ui(t) of (4) we construct an approximate solution ~u of

the original problem (1) by setting

~u(t; x) =
X
i2Z

ui(t) i(t; x): (5)

Conservativity of the scheme follows from the property j�ij jgij = �j�jijgji which
implies

d

dt
h~u; 1i =

d

dt

X
i2Z

uiVi = �
X
i;j2Z

j�ij jgij

= �
1

2

X
i;j2Z

(j�ij jgij + j�jijgji) = 0:
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Remark 1 Choosing a � 0, xi = ih,  i as indicator functions of (xi� 1
2
; xi+ 1

2
],

�i i+1 = 1, �i i�1 = �1, �ij = 0 otherwise, and nij = sign(�ij), then (4) turns

into a usual �nite di�erence scheme for (1) provided that the time derivative is

discretized by Euler's method.

In [14,2] schemes of a structure similar to (4) are considered but the coe�-

cients �ij in this approach are of a very special form and do not exactly satisfy

the requirements that will be introduced here. Using overlapping particles  i
and �ij = 
ij�
ji as introduced above, the method turns into the �nite volume

particle method which has been tested for scalar conservation laws like (1) and

for the system of Euler equations in [8].

Here, our aim is to show the consistency of (4) with a Lax{Wendro� type

result: assuming that (5) is close in a suitable sense to some function u : R+ �

R 7! R, it already follows that u is a weak solution of the problem (1).

De�nition 1 A function u 2 L
1
loc(R

+ ;L1loc(R)) is called weak solution of the

Cauchy problem (1) with u0 2 L1loc(R) ifZ
1

0

�
u(t);

@�

@t
(t)

�
+

�
f(u(t));

@�

@x
(t)

�
dt+



u0; �(0)

�
= 0

for all � 2 C10 (R+ � R). Here, �(t) and u(t) denote the functions x 7! �(t; x)
and x 7! u(t; x) respectively.

While the detailed consistency proof will be given in Section 3, we can already

outline the main steps. We start with the relation�
@~u

@t
; �

�
=
X
i2Z

�
 i
dui
dt
; �

�
+
X
i2Z

�
ui
@ i
@t

; �

�

= �
X
i2Z

X
j2Z

�
j�ij jgij

 i

Vi
; �

�

+
X
i2Z

 �
ui
@ i

@t
; �

�
�

*
ui

_Vi

Vi
 i; �

+!
:

(6)

Using again the conservation property j�ij jgij = �j�jijgji, we can rewrite the


ux term as

�
X
i;j2Z

�
j�ij jgij

 i

Vi
; �

�
= �

X
i;j2Z

�
1

2
j�ij jgij

�
 i

Vi
�
 j

Vj

�
; �

�
:

The consistency of the numerical 
ux and the fact that �ij 6= 0 only for particles

i; j which are close to each other (i.e. xi � xj and ui � uj), implies that we can

approximate gij by Ginij for such pairs

�
X
i;j2Z

�
1

2
j�ij jgij

�
 i

Vi
�
 j

Vj

�
; �

�
� �

X
i;j2Z

�
Gi

1

2
�ij

�
 i

Vi
�
 j

Vj

�
; �

�
:
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A crucial observation is that the right hand side is a weak derivative

X
i;j2Z

�
Gi

1

2
�ij

�
 i
Vi
�
 j
Vj

�
; �

�
= �

*X
i2Z

GiHi;
@�

@x

+

where the functions fHi : i 2 Zg are constructed from �ij and f i : i 2 Zg and
form again a partition of unity. In the special case of �nite di�erence schemes

(see Remark 1), the partitions f ig and fHig are depicted in Fig. 1.

xi+1

ψi

xi+1

Hi

xi

1/21

xi

Fig. 1. The partitions of unity in the case of �nite di�erence schemes

Since the sum
P

i2ZGiHi can be viewed as an approximation of the Lagrangian


ux G, we obtain

�
X
i2Z

X
j2Z

�
j�ij jgij

 i

Vi
; �

�
�

�
f(~u)� a~u;

@�

@x

�
: (7)

For the second sum in (6) we get with (3)

X
i2Z

�
ui
@ i
@t

; �

�
=

*X
i2Z

ui _xi i;
@�

@x

+
+
X
i2Z

X
j2Z

ui( _xj � _xi) h�ij; �i :

Here, the �rst term approximates h~ua; @x�i and the second one is related to the

change of shape of the functions  i. It turns out that this term is approximately

compensated by the contribution due to the volume change
PD

ui _Vi=Vi i; �
E

in (6). Hence

X
i2Z

 �
ui
@ i

@t
; �

�
�

*
ui

_Vi
Vi
 i; �

+!
�

�
a~u;

@�

@x

�
:

Combining this result with (7) and (6), the term ha~u; @x�i vanishes so that�
@~u

@t
; �

�
�

�
f(~u);

@�

@x

�
: (8)

If now ~u converges in a suitable sense to a function u, the relation (8) is the

essential part in showing that u is a weak solution of the problem (1).

We conclude the introductory remarks with an outline of the article. In Sec-

tion 2, the general consistency result is presented together with some de�nitions

and the assumptions on the partition f ig, the geometric coe�cients �ij , and
the numerical 
ux function gij . The proof of the main result is contained in

Section 3. Finally, we check that the �nite volume particle method (FVPM)

satis�es all requirements and thus is consistent.
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2 A Lax-Wendro� type result

Our aim is to derive a consistency result for the �nite volume particle method

which has been introduced in the previous section. It turns out that the result

is largely independent of the form of the chosen partition of unity and the exact

structure of the geometric coe�cients �ij and therefore, we base the proof on

general assumptions which are listed below. In setting up these conditions, we

have taken care that standard �nite volume (resp. �nite di�erence) methods

on �xed regular or irregular grids are also contained in the considerations. For

example, the choice of parameters mentioned in Remark 1 obviously satis�es all

the requirements.

Before listing the assumptions, we need the notion of locally �nite families.

De�nition 2 Let M(R+ ;L1loc(R)) be the set of strongly measurable functions

on R
+
with values in L

1
loc(R) and let

F = fFi 2M(R+ ;L1loc(R)) : i 2 Z g:

For f 2 L
1
loc(R) let supp f be the complement of the largest open set on which

f vanishes in the sense of distributions. We introduce

IF (t; x) : = f i 2 Z : x 2 suppFi(t) g

which is the set of indices of those Fi which are non-zero at (t; x). If we replace
t or x in IF (t; x) by sets, this abbreviates the union

IF (A;B) : =
[
t2A

[
x2B

IF (t; x) A;B � R:

The indices of the functions Fi whose support is completely contained in an

interval B�(x) of radius � > 0 around x at time t are collected in

IF (t; x; �) : = f i 2 Z : suppFi(t) � B�(x) g:

The set F is called locally �nite if IF ([0; T ];K) is �nite for any compact set

K � R and any T > 0.

2.1 The particle clouds

A set of functions 	 = f i : R
+ � R 7! R : i 2 Zg will be called a moving cloud

of particles if the following conditions are satis�ed:

Regularity properties

{  i is measurable on R+ � R,

{  i 2 C
1(R+ ;L1loc(R)),

{ diamsupp i(t) � S for some S > 0,

{  i(t; x) = 0 for all x 62 supp i(t),

Partition of unity properties

{ 	 is locally �nite,

{ 0 �  i(t; x) � 1 for all t � 0 and x 2 R,
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{
P

i2Z i(t; x) = 1 for all t � 0; x 2 R,

Position and volume properties

{ for some � > 0, the volume Vi(t) = h1;  i(t)i satis�es Vi(t) � � for all i 2 Z
and t � 0,

{ there exists a continuous function xi : R
+ 7! R such that xi(t) 2 supp i(t)

which is called the position of  i,

Movement properties

{ there exists a �eld a 2 C0(R+ ; C1(R)) such that with ai(t) = a(t; xi(t)), the
relation

@ i
@t

+ ai
@ i
@x

= �i i

holds for some �i 2 L
1

loc(R
+ ;L1 (R)) satisfying

sup
0�t�T

k�
(h)
i (t)kL1(R) � CT

in the sense of distributions on R (since  i 2 C1(R+ ;L1loc(R)) is compactly

supported, we can view  i as a di�erentiable mapping with values in the

space of compactly supported distributions E 0(R)).

A sequence 	� = f	h : 0 < h � 1g of moving particle clouds is called uniformly

regular (or short \urp{sequence") if the above assumptions hold for 	 = 	h
with S; � and CT replaced by S	�h, �	�h and C	�;Th. Here, S	� ; �	� and C	�;T

are assumed to be uniform constants for the sequence 	�. In addition, we require
that

sup
h>0

sup
t�0

sup
x2R

jI	h(t; x; rh)j <1 8r > 0:

2.2 The geometric coe�cients

Let 	 = f i : i 2 Zg be a moving cloud of particles. A family of measurable

functions � = f�ij : R
+ 7! R : i; j 2 Zg is called 	{admissible if

{ j�ij(t)j � C for all i; j 2 Z and t � 0,

{ �ij = ��ji,
{ there exists B > 0 such that �ij(t) = 0 if jxi(t)� xj(t)j > B,
{
P

j2Z�ij(t) = 0 for all i 2 Z and t � 0,

{ for each t � 0 there exists �x 2 R such thatX
xi(t)��x

X
xj(t)��x

�ij(t) = 1

Let 	� = f	h : 0 < h � 1g be a urp{sequence and �� = f�h : 0 < h � 1g

a sequence of families �h = f�
(h)
ij : i; j 2 Zg. Then �� is called 	�{admissible

sequence of geometric coe�cients if each �h is 	h{admissible with B replaced

by B��h and �
(h)
ij being uniformly bounded also in h.
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2.3 The numerical 
ux function

If a 2 C0(R+ ; C1(R)) is a given velocity �eld and f the Lipschitz continuous


ux of the conservation law, we �rst introduce the modi�ed 
ux

G(t; x; u) = f(u)� ua(t; x):

We then assume that g(t; x1; u1; x2; u2; n) with t � 0, x1; x2; u1; u2 2 R and

n 2 f�1; 1g is a numerical 
ux function for G which satis�es

Consistency

{ g(t; x; u; x; u; n) = G(t; x; u)n

Conservativity

{ g(t; x; u; y; v;�n) = �g(t; y; v; x; u; n)

Continuity

{ jg(t; x; u; y; v; n)�g(t; �x; �u; �y; �v; n)j � L(jx��xj+jy��yj+ju��uj+jv��vj), where
L depends monotonically on t and maxfjuj; j�uj; jvj; j�vjg. Also, g is assumed

to be continuous in t 2 R+ .

2.4 The particle method

Let 	 = f i : i 2 Zg be a moving particle cloud, g a numerical 
ux function sat-

isfying the assumptions of Section 2.3, and � = f�ij : i; j 2 Zg a 	{admissible

family of geometric coe�cients. Further let u0 2 L
1
loc(R). A set of functions

fui 2 C1(R+) : i 2 Zg is called solution of the (	;�; g){particle method (or

simply (	;�; g){solution) if for all i 2 Z

d

dt
(uiVi) = �

X
j2Z

j�ij jgij ; ui(0) =


u0;  i(0)

�
=Vi(0):

where

gij(t) = g(t; xi(t); ui(t); xj(t); uj(t); nij(t)); nij = sign�ij

and xi is the position of particle  i.
If 	� is a urp{sequence, �� a 	�{admissible sequence of geometric coe�-

cients, then a sequence fu
(h)
i 2 C1(R+) : i 2 Zg, h > 0 is called solution of

the (	�; ��; g){particle method if for �xed h > 0 the set fu
(h)
i : i 2 Zg is a

(	h; �h; g){solution.

2.5 	�-convergence

The particle method presented in the previous section includes an approximation

of the initial value u0. We now study in which sense, for example, u0 2 L
1(R)

is approximated by ~u(0; x) =
P
ui(0) i(0; x) where ui(0) are the local averages


u0;  i(0)
�
=Vi(0). The resulting notion of 	�-convergence will then be assumed

also for t > 0 to get the consistency result. We start with a preparatory remark.
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Lemma 1 Let 	 = f i : i 2 Zg be a moving particle cloud and fui : R
+ 7! R :

i 2 Zg a family of measurable functions. Then,

u(t; x) =
X

i2I	 (t;x)

ui(t) i(t; x)

is measurable on R
+�R and can be identi�ed with

P
i2Zui i 2M(R+ ;L1loc(R)).

If jui(t)j � C(t) for some increasing function C : R+ 7! R
+
, then u is contained

in L
1

loc(R
+ ;L1(R)). If ui 2 C

1(R+) then u 2 C1(R+ ;L1loc(R)) with derivative

@u

@t
=
X
i2Z

 i
dui

dt
+
X
i2Z

ui
@ i

@t
:

Proof The truncated series

Sn(t; x) =

nX
i=�n

ui(t) i(t; x)

is clearly measurable on R+ � R and converges point-wise to

u(t; x) =
X

i2I	 (t;x)

ui(t) i(t; x)

which is therefore measurable. Since 	 is locally �nite, we have for any compact

K � R that jI	 (t;K)j <1. For any x 2 K it follows I	 (t; x) � I	 (t;K) which

leads to the estimate

ju(t; x)j � max
i2I	 (t;K)

jui(t)j
X

i2I	 (t;K)

 i(t; x) � max
i2I	 (t;K)

jui(t)j

for all x 2 K so that u(t) 2 L1loc(R) � L
1
loc(R) Because of point-wise convergence

Sn ! u and the uniform bound for x 2 K � R, it follows that Sn(t) ! u(t) in
L
1
loc(R) for n!1. Hence, we can identify

P
i2Zui i with the function u.

Under the condition jui(t)j � C(t), we �nd immediately ju(t; x)j � C(t).
Finally, if ui 2 C1(R+), then ui i 2 C1(R+ ;L1loc(R)) still makes up a locally

�nite family. Hence, if x is restricted to a given compact K � R and t 2 [0; T ],
we can replace u by a �nite sum so that the result follows.

Proposition 1 Assume 	� = f	h : 0 < h � 1g is a urp{sequence and let

u 2 L1loc(R
+ ;L1(R)) be given. Then, the coe�cients

u
(h)
i (t) : =

D
 
(h)
i (t); u(t)

E
=V

(h)
i (t);  

(h)
i 2 	h

are measurable on R
+
and, for a.e. t 2 R+ ,

satisfy ju
(h)
i (t)j � ku(t)kL1(R) and

max
i2I	h(t;x;rh)

jui(t)� u(t; x)j ! 0 as h! 0

for a.e. x 2 R and all r � S	�. If u 2 C
1
0 (R

+ � R), we even �nd

max
i2I	h(t;x;rh)

jui(t)� u(t; x)j � Ch 8t � 0:
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Proof Since u is strongly measurable, u(t) is the L1loc(R) limit of simple functions

sn(t). The product t 7! h i(t); sn(t)i is obviously measurable so that the same

holds for the limit, giving rise to measurability of ui (we suppress the index h
for ease of notation). The bound on ui simply follows from

jui(t)j � ku(t)kL1(R) h i(t); 1i =Vi(t) = ku(t)kL1(R):

To show the convergence, we pick x 2 R; t � 0 and r � S	� For any i 2
I	h(t; x; rh) the conditions diamsupp i � S	�h and 0 �  i � 1 then imply

that  i(t) is bounded from above by the indicator function XBrh(x) of a ball

with radius rh around x. Hence,

jui(t)� u(t; x)j =
1

Vi(t)
j hu(t)� u(t; x);  i(t)i j

�
2rh

Vi(t)

1

2rh



ju(t)� u(t; x)j;XBrh(x)

�
�

2rh

�	�h
av(ju(t)� u(t; x)j; Brh(x))

where av(f;A) = 1
jAj

R
A
f(y) dy is the averaging operator. It is known [13] that

for all Lebesgue{points of u(t) (and thus a.e. in x) the average of ju(t; y)�u(t; x)j
over the ball y 2 Brh(x) tends to zero for h ! 0 which leads to the claimed

convergence. If u 2 C1(R+ � R), uniform Lipschitz continuity yields at once

jui(t)� u(t; x)j = j h i(t); u(t)� u(t; x)i j=Vi(t)

� Ldiamsupp i � LS	�h:

The convergence result of Proposition 1 motivates the following de�nition of

	�{convergence.

De�nition 3 Let 	� = f	h : 0 < h � 1g be a urp{sequence. A sequence of

families of measurable functions fu
(h)
i : R+ 7! R : i 2 Zg, 0 < h � 1, 	�{

converges to u : R+ � R 7! R if for a.e. t � 0

max
i2I	h(t;x;rh)

ju
(h)
i (t)� u(t; x)j

h!0
���! 0

for a.e. x 2 R and every r � S	�.

2.6 The consistency result

Using the De�nitions from above, we can now state

Theorem 1 Let 	� = f	h : 0 < h � 1g be a urp{sequence, g a numerical 
ux

function, and �� a 	�{admissible sequence of geometric coe�cients. If fu
(h)
i 2

C1(R+) : i 2 Zg, 0 < h � 1 is a solution of the (	�; ��; g){particle method which

satis�es the uniform bound ju
(h)
i (t)j � C(t) for some function C : R+ 7! R

+
and

	�{converges to some u : R+ �R 7! R, then u is a weak solution of the Cauchy

problem, satis�es ku(t)kL1(R) � C(t) and ~u(h) : =
P

i2Zu
(h)
i  

(h)
i converges to u

in L
1
loc(R

+ ;L1loc(R)).
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3 Proof of Theorem 1

We split the proof into several sub-steps. Since there is no danger of ambiguity,

the superscript h is dropped in all proofs for ease of notation.

In the �rst step, we show the bound on u and convergence in the space

L
1
loc(R

+ ;L1loc(R)).

Lemma 2 Under the conditions of Theorem 1, we have

~u(h) =
X
i2Z

u
(h)
i  

(h)
i ���!

h!0
u in L

1
loc(R

+ ;L1loc(R))

and ku(t)kL1(R) � C(t). For t = 0, we �nd ~u(h)(0) ! u0 in L
1
loc(R). More

generally, if A : R+ � R � R 7! R is continuous, we obtainX
i2Z

A(t; x
(h)
i (t); u

(h)
i (t)) 

(h)
i (t; x)

h!0
���! A(t; x; u(t; x))

in L
1
loc(R

+ ;L1loc(R)).

Proof Let u be the 	� limit and note that, according to Lemma 1, the index set

in the de�nition of ~u can be replaced by I	h(t; x). Using the relation I	h(t; x) �
I	h(t; x; rh) for r � S	� as well as the partition of unity property, we �nd

j~u(t; x)� u(t; x)j =

������
X

i2I	h(t;x;rh)

(ui(t)� u(t; x)) i(t; x)

������
� max

i2I	h(t;x;rh)
jui(t)� u(t; x)j (9)

which tends to zero as h ! 0 for a.e. t � 0 almost everywhere in x 2 R.

Assuming a bound on ui, it is easy to see from the above estimate that u is

also bounded. In this case, we obtain from the Lebesgue theorem ~u(t)! u(t) in
L
1
loc(R) for a.e. t � 0 so that u is strongly measurable, i.e. u 2M(R+ ;L1loc(R)).

Using again the bound on u(t) and ~u(t), we conclude ~u! u in L1loc(R
+ ;L1loc(R)).

Proposition 1 applied to the function u(t; x) = u0(x) shows that fui(0) : i 2
Zg 	�-converges and is uniformly bounded. Hence, the above argument shows

that ~u(0; x) ! u0(x) in L
1
loc(R). Repeating estimate (9) again for ~A(t; x) =P

i2ZA(t; xi(t); ui(t)) i(t; x), we �nd

j ~A(t; x)�A(t; x; u(t; x))j �

max
i2I	h(t;x;rh)

jA(t; xi(t); ui(t))�A(t; x; u(t; x))j

where xi is the position of the particle  i. Note that, due to uniform continuity

of A in a neighborhood of (t; x; u(t; x)), we get convergence for a.e. t � 0 a.e.

in x 2 R. If x is restricted to a compact set and t 2 [0; T ], we conclude that

A(t; x; u(t; x)) and A(t; xi; ui) are bounded. Hence, with the same argument as

above, convergence in L1loc(R
+ ;L1loc(R)) follows.
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Since the approximation ~u(h) of u is t-di�erentiable we just have to show con-

vergence of the 
ux terms to get consistency, as the following Lemma indicates.

Lemma 3With the assumptions of Theorem 1, we �nd that u is a weak solution

of the Cauchy problem if the approximation ~u(h) satis�es

Z
1

0

*
@~u(h)

@t
; �

+
dt

h!0
���!

Z
1

0

�
f(u);

@�

@x

�
dt

for every � 2 C10 (R+ � R).

Proof The convergence ~u! u obtained in Lemma 2 implies at once

Z
1

0

�
u;
@�

@t

�
dt = lim

h!0

Z
1

0

@

@t
h~u; �i �

�
@~u

@t
; �

�
dt

= � lim
h!0

h~u(0); �(0)i � lim
h!0

Z
1

0

�
@~u

@t
; �

�
dt:

Using Lemma 2 again, we get convergence of the initial value and with the

assumption for the second limit, it follows that u is a weak solution.

The result of Lemma 1 implies

@~u

@t
=
X
i2Z

 i
dui

dt
+
X
i2Z

ui
@ i

@t

and with ui being a (	h; �h; g){solution, we obtain

@~u

@t
= �

X
i;j2Z

j�ij jgij
 i
Vi

+
X
i2Z

ui

 
@ i
@t

�
_Vi
Vi
 i

!
: (10)

In the next lemma, we consider convergence of the second term on the right

hand side of (10).

Lemma 4 Under the conditions of Theorem 1, we �nd for

� 2 C10 (R+ � R)

Z
1

0

*X
i2Z

u
(h)
i

 
@ 

(h)
i

@t
�

_V
(h)
i

V
(h)
i

 
(h)
i

!
; �

+
dt

h!0
���!

Z
1

0

�
au;

@�

@x

�
dt:

Proof Using the assumption on the time derivatives of  i, we get

X
i2Z

�
ui
@ i

@t
; �

�
=
X
i2Z

�
uia(t; xi) i;

@�

@x

�
+
X
i2Z

hui�i i; �i : (11)

In view of Lemma 2, the �rst term on the right hand side gives the desired limitX
i2Z

ui(t)a(t; xi(t)) i(t; x)
h!0
���! u(t; x)a(t; x)
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in L
1
loc(R

+ ;L1loc(R)). Hence, it su�ces to show that the second term in (11)

vanishes in connection with the contribution due to _Vi=Vi. We �rst observe that

_Vi =

�
@ i
@t

; 1

�
= �a(t; xi)

�
@ i
@x

; 1

�
+ h�i i; 1i

where the �rst term on the right equals zero. It remains to show thatZ
1

0

X
i2Z

ui

�
h�i i; �i � h�i i; 1i

h i; �i

Vi

�
dt

h!0
���! 0: (12)

Since � is compactly supported, we �rst note that for a given t � 0, the sum-

mation can be restricted to the indices I	h(t; 0; R) for R su�ciently large. The

number of indices in this set can be estimated by jI	h(t; 0; R)j � C=h. Indeed,
this bound is obtained by covering (�R;R) with intervals of length (S	� + 1)h
which requires a number of O(1=h) since the particle number in each of the

small intervals is bounded

jI	h(t; �x; (S	� + 1)h)j � sup
h>0

sup
t�0

sup
x2R

jI	h(t; x; (S	� + 1)h)j <1;

�x 2 R:

Hence, convergence of (12) follows if we can bound each term in the sum by an

expression of order h2. Rearranging the bracket in (12), we get with Proposition

1 and the assumptions on �i����
�
�i i; ��

h i; �i

Vi

����� � k�ikL1(R)Ch � ~Ch2:

Since ui are uniformly bounded in h, the result follows.

Before we focus on the convergence of the 
ux terms in (10), we need some

auxiliary result which covers a central argument in the consistency proof.

Lemma 5 Let 	 = f i : i 2 Zg be a moving particle cloud and f�ij : i; j 2 Zg

a 	{admissible family of geometric coe�cients. The functions

�ij(t; x) =
1

2
�ij(t)

Z x

�1

 i(t; s)

Vi(t)
�
 j(t; s)

Vj(t)
ds; i; j 2 Z

form a locally �nite family of x{di�erentiable functions which satisfy j�ij(t; x)j �
supi;j2Zj�ij(t)j. Moreover �ij(t; x) 6= 0 implies i; j 2 I	 (t; x;D) where D =

3S + B is related to the maximal diameter S of the supports of  i as well as

the constant B characterizing the indices i; j for which �ij = 0. Based on �ij,

another locally �nite family of functions

Hi(t; x) : =
X
j2Z

�ij(t; x)

can be de�ned which is a partition of unityX
i2Z

Hi(t; x) = 1 8t � 0; x 2 R:
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Each Hi satis�es a bound

jHi(t; x)j � sup
i;j2Z

j�ij(t)j jI	 (t; x;D)j:

Proof According to the de�nition,�ij is a function with compact support in the

convex hull of the supports of  i and  j . Indeed, if we denote this convex hull

by [a; b], we see that for x � a the integrand is identically zero and for x � b,
we have

�ij(t; x) =
1

2
�ij

�Z
1

�1

 i(t; s)

Vi(t)
ds�

Z
1

�1

 j(t; s)

Vj(t)
ds

�
= 0:

Moreover, we have the bound j�ij j � j�ij j=2 since

�1 � �

Z x

�1

 j

Vj
ds

Z x

�1

 i

Vi
�
 j

Vj
ds �

Z x

�1

 i

Vi
ds � 1:

Since xi is contained in supp i, we have xi; xj 2 [a; b] and since the support of

 i has a diameter less than S, we �nd (with xi � xj) that [a; b] � [xi�S; xj+S].
Since �ij is di�erent from zero only for jxi�xjj � B, the condition �ij(t; x) 6= 0

implies that jb�aj < 2S+B as well as x 2 [a; b] � x+[�(2S+B); 2S+B]. In other
words, i; j 2 I	 (t; x;D) with D = 3S+B. To show that L : = f�ij : i; j 2 Zg is

locally �nite, we take T > 0 and K � R compact. For a ball K̂ which contains

K in such a way that the boundaries have at least a distance D, we know that

I	 ([0; T ]; K̂) is �nite and if i 62 I	 ([0; T ]; K̂) then the support of �ij(t) does not
intersect K for any j 2 Z and t 2 [0; T ]. Hence, jIL([0; T ];K)j can be estimated

by jI	 ([0; T ]; K̂)j supt�0 supx2R jI	 (t; x;D)j. Based on the locally �nite family

L, we now introduce H : = fHi : i 2 Zg according to

Hi(t; x) : =
X
j2Z

�ij(t; x); i 2 Z:

With the same argument as above, one can show that

jIH([0; T ];K)j � jI	 ([0; T ]; K̂)j

so that H is also locally �nite. Moreover, each Hi satis�es the bound jHi(t; x)j �
supij j�ij j jI	 (t; x;D)j since the sum involves at every point at most jI	 (t; x;D)j

many terms. For the space derivative of the sum of all Hi, we �nd

@

@x

X
i2Z

Hi =
X
i2Z

X
j2Z

1

2
�ij

�
 i

Vi
�
 j

Vj

�
=
X
i2Z

X
j2Z

�ij
 i

Vi
:

Since, by assumption,
P

j2Z�ij = 0, we conclude that
P

i2ZHi is a constant

c 2 R. To determine c, we need the assumption on the geometric coe�cients

that
P

xi��x

P
xj��x

�ij = 1 for some �x 2 R. The idea is to pick a test function

� 2 C10 (R) which satis�es 0 � � � 1, h1; �i = 1 and which is supported

su�ciently far to the right of �x, say a : = inf supp� > �x+ 2D. We then have

c =

*X
i2Z

Hi; �

+
=

*X
xi��x

Hi; �

+
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because for xi < �x, the support of Hi is disjoint with the one of �. Introducing
the function

�(x) =

Z
1

x

�(s) ds; x 2 R

we conclude that �0 = �� and h1; �i = 1 implies that �(x) = 1 for x 2 (�1; a].
Integration by parts yields

c =

*X
xi��x

H 0

i; �

+
=

*X
xi��x

X
j2Z

@�ij

@x
; �

+
:

Note that for index pairs (i; j) with xi � �x, xj < �x and �ij 6= 0, the function

�ij must be supported close to �x so that, by construction, it is supported in

x 2 (�1; a] where � = 1. Hence, the corresponding integrals h@x�ij; �i vanish
and

c =

*X
xi��x

X
xj��x

1

2
�ij

�
 i

Vi
�
 j

Vj

�
; �

+
=

*X
xi��x

X
xj��x

�ij
 i

Vi
; �

+
:

Finally, our construction assures that for indices i with h i; �i < Vi, xi is close
to the support of � and thus su�ciently far from �x to assure that all j 2 Z with

�ij 6= 0 satisfy xj � �x. Using
P

j2Z�ij = 0, we get

X
xj��x

�ij = 0 =
X
xj��x

�ij
h i; �i

Vi

For indices i with h i; �i = Vi, we also have

X
xj��x

�ij =
X
xj��x

�ij
h i; �i

Vi

and hence

c =
X
xi��x

X
xj��x

�ij = 1:

Now, we can conclude the proof of Theorem 1 by showing the convergence of

the 
ux terms in (10).

Lemma 6With the assumptions of Theorem 1, we �nd for any � 2 C1
0(R

+�R)

Z
1

0

*
�
X
i;j2Z

j�
(h)
ij jg

(h)
ij

 
(h)
i

V
(h)
i

; �

+
dt

h!0
���!

Z
1

0

�
f(u)� au;

@�

@x

�
dt:

Proof We �rst note that the double sum is actually �nite since both indices can

be restricted to I	h([0; T ];K) for T > 0 and K � R su�ciently large so that

supp� is well contained in the compact set [0; T ]�K.
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We then exploit the relation nji = sign(�ji) = � sign(�ij) = �nij together with
the conservativity of g which leads to j�ij jgij = �j�jijgji. This allows us to writeX

i;j2Z

j�ij jgij
 i

Vi
=
X
i;j2Z

1

2
j�ij jgij

�
 i

Vi
�
 j

Vj

�
:

According to Lemma 5, we have

1

2
�ij

�
 i

Vi
�
 j

Vj

�
=
@�ij

@x

so that with integration by partsZ
1

0

*
�
X
i;j2Z

j�ij jgij
 i

Vi
; �

+
dt =

Z
1

0

*X
i;j2Z

gijnij�ij;
@�

@x

+
dt

Using consistency of g, we write

gijnij = Gi +Rij; Gi(t) = G(t; xi(t); ui(t)): (13)

The remainder Rij = g(t; xi; ui; xi; ui; nij)nij � gijnij can be estimated with the

help of Lipschitz continuity of g

jRij j � L(jui � uj j+ jxi � xjj):

De�ning

R(t; x) =
X
i;j2Z

Rij(t)�ij(t; x)
@�

@x
(t; x)

and using the fact that �ij(t; x) 6= 0 only if i; j 2 I	h(t; x;D	�h) with D	� =

3S	� +B	� , we have the estimate

jR(t; x)j �
X

i;j2I	h(t;x;D	�h)

sup
i;j2Z

j�ij(t)jL(jui(t)� uj(t)j

+ jxi(t)� xj(t)j)j@x�(t; x)j

Due to the uniform bound on j�ij j, ui and u as well as the estimate jxi � xjj �
2D	�h and the assumed 	�{convergence, we concludeZ

1

0

hR; 1i dt
h!0
���! 0:

In view of (13), it remains to show thatZ
1

0

*X
i2Z

GiHi;
@�

@x

+
dt

h!0
���!

Z
1

0

�
G;

@�

@x

�
dt (14)

where G = G(t; x; u(t; x)) and Hi is de�ned as in Lemma 5. Using the fact that

Hi is a partition of unity, (14) reduces to the conditionZ
1

0

*X
i2Z

(Gi �G)Hi;
@�

@x

+
dt

h!0
���! 0: (15)
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The Lipschitz continuity of G leads to the estimate

jGi �Gj � L(jui � uj+ jxi � xj):

Since Hi(t; x) 6= 0 implies i 2 I	h(t; x;D	�h)X
i2Z

L(jui � uj+ jxi � xj)jHi@x�(t; x)j

� LjI	h(t; x;D	�h)j max
i2I	h (t;x;D	�h)

(jui � uj+ jxi � xj)jHi@x�(t; x)j

so that (15) follows with the uniform bounds on ui,
jHij, jI	h(t; x;D	�h)j and the assumed convergence of ui.

In view of (10), Lemma 4 and Lemma 6 show that the assumption of Lemma 3

is satis�ed which completes the proof of Theorem 1.

4 The �nite volume particle method

Based on a given set of particle positions xi which move according to _xi =

a(t; xi), we construct a partition of unity f ig and geometric coe�cients �ij .
Together with (4) this de�nes the �nite volume particle method (FVPM). For

suitable sequences of particle positions and the associated partitions and co-

e�cients we then check the conditions of Section 2. Applying Theorem 1, we

conclude that FVPM is consistent to (1).

4.1 Point clouds

In order to obtain reasonable approximation properties with a cloud of points

C = fxi 2 R : i 2 Z g, it is clear that some regularity of C has to be assumed.

To quantify gaps in the cloud C, we introduce the functional


(C) : = sup
x2R

inf
p2C

jx� pj

and to control the clustering of points, we use

N(r; C) : = sup
x2R

jfp 2 C : jx� pj < r gj r > 0

where j � j is the counting measure. Obviously, N(r; C) is the largest number of
points p 2 C in an interval of radius r around any x 2 R.

De�nition 4 The set C = fxi 2 R : i 2 Z g is called a regular point cloud, if


(C) <1 and N(r; C) <1 for all r > 0.

If we study families of point clouds we will assume a certain uniformity.

De�nition 5 A family fCh : h > 0 g is called uniformly regular if

sup
h>0


(Ch=h) <1 and sup
h>0

N(r; Ch=h) <1 8r > 0:
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Note that 
(Ch=h) <1 assures that the maximal distance between neighboring

points in Ch is of order h. Indeed, if we assume the points xi of a cloud C to be

ordered according to xi � xi+1, we can write


(C) =
1

2
sup
i2Z

jxi+1 � xij (16)

so that 
(Ch=h) � � implies jxi+1 � xij � 2�h for all i 2 Z.

It is a simple matter to check that

N(rh;Ch) = N(r; Ch=h)

so that the second condition in De�nition 4 assures that in an interval of radius

rh the points from Ch cannot cluster in such a way that their number becomes

in�nite as h! 0.

4.2 Moving point clouds

In the next step, we consider point clouds which move along a prescribed velocity

�eld a 2 C0(R+ ; C1(R)). If C = C(0) is the initial point con�guration, we de�ne
C(t) = X(t;C; 0), where X(t; �x; �) is the solution at time t of the problem

_x = a(t; x), x(�) = �x.

Lemma 7 Let a 2 C0(R+ ; C1(R)) and C(0) be a regular cloud of points. Then,

for any T > 0 there exists K > 0 such that

jX(t; p; �) �X(t; q; �)j � Kjp� qj 8t; � 2 [0; T ]; p; q 2 R:

For 0 � t � T , the set C(t)X(t;C(0); 0) is a regular cloud with


(C(t)) � K
(C(0)) and N(r; C(t)) � N(rK;C(0)) 8r > 0:

Proof Due to our smoothness assumptions on a, the 
ow map X is well de�ned

and the constant K is obtained with a standard Gronwall estimate. Assuming

that xi � xi+1 for all xi 2 C(0), we note that the ordering is not changed in the

evolution. According to (16), we have


(C(t)) =
1

2
sup
i2Z

jX(t;xi+1; 0)�X(t;xi; 0)j � K
(C(0))

With a similar argument for the backward movement, we conclude with the

relation p = X(0;X(t; p; 0); t) that

jX(0;x; t) � pj = jX(0;x; t) �X(0;X(t; p; 0); t)j � Kjx�X(t; p; 0)j:

Hence jx � X(t; p; 0)j < r implies jX(0;x; t) � pj < Kr so that N(r; C(t)) �
N(rK;C(0)).

Mainly to avoid working with �nite time intervals, we introduce the notion of

�elds with �nite strain.
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De�nition 6

A function a is called �eld of �nite strain if a 2 C0(R+ ; C1(R)) gives rise to a


ow map X which satis�es for some K > 0

jX(t; p; �) �X(t; q; �)j � Kjp� qj 8t; � 2 R+ ; p; q 2 R

Corollary 1 Let a be a �eld of �nite strain and fCh(0) : h > 0 g a uniformly

regular family of point clouds. Then fCh(t) : h > 0 g is uniformly regular and

sup
t2R

sup
h>0


(Ch(t)=h) <1

sup
t2R

sup
h>0

N(r; Ch(t)=h) <1 8r > 0:

Proof We just note that the assumptions on the �eld a guarantee existence of

solutions to _x = a(t; x), x(0) = �x for all times. The uniform regularity follows

immediately from Lemma 7.

4.3 Construction of particles

To explain the construction of particles, we �rst restrict to the case of a single,

non{moving point cloud C. Taking a Lipschitz continuous functionW : R 7! R
+

which is strictly positive for jxj � � = 
(C), say W (x) � �min > 0, and which

vanishes for jxj � �� with some � > 1, we de�ne

 i(x) =
Wi(x)

�(x)
; �(x) =

X
i2Z

Wi(x); Wi(x) =W (x� xi); i 2 Z:

In Fig. 2, this construction is visualized. The symbols on the x-axis indicate the
particle positions. Around each position xi, the function Wi is plotted.

0

1

-4 -2 0 2 4
x

Fig. 2. Irregular particle positions xi and functions Wi

The sum � of all the functions Wi is shown in Fig. 3.

0

1

2

3

-4 -2 0 2 4
x

Fig. 3. The function � corresponding to Fig. 2

After dividing Wi by �, we get the partition functions  i which, in contrast to

Wi, may be non-symmetric and of di�erent height (see Fig. 4).
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0

1

-4 -2 0 2 4
x

Fig. 4. The partition of unity corresponding to Fig. 2

We remark that the sum de�ning � is �nite at each x 2 R because it involves

only those points xi 2 C with jxi � xj � �� which are at most N(��;C) many.

We also know that � � �min because the biggest gap in the particle cloud is of

length � = 
(C) but the functions Wi are bigger than �min over intervals of at

least that length. Hence the maximal possible gap is still covered by at least one

of the Wi.

If the regular cloud is moving along a �eld of �nite strain, the same construc-

tion is carried out with � = supt�0 
(C(t)) and

 i(t; x) =
Wi(t; x)

�(t; x)
; �(t; x) =

X
i2Z

Wi(t; x); Wi(t; x) =W (x� xi(t)) (17)

Finally, for a moving, uniformly regular family fCh : h > 0 g we introduce

particles using � = suph>0 supt�0 
(Ch(t)=h) and

W
(h)
i (t; x) =W

�
x� xi(t)

h

�

giving rise to  
(h)
i and �(h) as in (17).

Proposition 2 Let 	� = f	h : 0 < h � 1 g be a family of particle clouds

	h = f 
(h)
i : i 2 Z g which are constructed based on a uniformly regular family

of point clouds moving along a �eld of �nite strain. Then, each 	h is locally

�nite with

sup
h>0

sup
t�0

sup
x2R

jI	h(t; x; rh)j <1 8r > 0

and

 
(h)
i 2 C0(R+ ;W 1;1(R)) \C1(R+ ;L1 (R)):

Further, there exists S	� > 0 such that

diamsupp 
(h)
i (t) � S	�h 8i 2 Z; h > 0

and �	� > 0 such that

V
(h)
i (t) : =

D
 
(h)
i (t); 1

E
� �	�h
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for all t � 0 and h > 0. The derivatives of  
(h)
i are given by

@ 
(h)
i

@x
=
X
j2Z

�
�
(h)
ji � �

(h)
ij

�
;

@ 
(h)
i

@t
= �

X
j2Z

( _x
(h)
i �

(h)
ji � _x

(h)
j �

(h)
ij )

where

�
(h)
ij =

 
(h)
i

�(h)

@W
(h)
j

@x
:

We also have

@ 
(h)
i

@t
+ _x

(h)
i

@ 
(h)
i

@x
= �

(h)
i  

(h)
i

where �
(h)
i 2 L1loc(R

+ ;L1(R)) allows the estimate

sup
0�t�T

k�
(h)
i (t)kL1(R) � C	�;Th 8h > 0:

Proof We assume that 	h is based on a moving point cloud Ch(t). Due to our

construction of  i (we suppress the superscript h), the support is contained in a

ball of radius ��h, giving rise to S	� = 2��. Since the number of points in a ball

of radius rh certainly dominates the number of particles which are completely

contained in that ball, we also conclude that jI	h(t; x; rh)j � N(rh;Ch(t)) which
is uniformly bounded by assumption. Since for any compact K � R, we can �nd

R > 0 such that K is contained in a ball of radius Rh around the origin, we get

at once

jI	h(t;K)j � jI	h(t; 0; Rh)j � N(Rh;Ch(t)) � N( �KRh;Ch(0))

where the last inequality follows from Lemma 7.

Altogether, jI	h([0; T ];K)j is uniformly bounded for any T > 0 which shows

that 	h (and thus also Wh : = fWi : i 2 Z g) is locally �nite.

The estimate on the diameter of the supports also implies

I	h(t; x) � I	h(t; x; S	�h), giving rise to a uniform bound

�(t; x) � sup
t�0

sup
x2R

jI	h(t; x; S	�h)jmax
x2R

W (x) = : �max:

Since W (x=h) � �min on jxj � �h, we obtain

 i(t; x) �
�min

�max
; jxj � �h:

Consequently, the volume can be estimated from below

Vi �

Z
jxj��h

 i dx �
�min

�max

2�h

and we set �	� = 2��min=�max.
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To show smoothness properties of  i, we continue with the observation that

the support of Wi(t) stays in a compact set K � R if t varies in a compact

interval [0; T ]. Hence, we can replace � by

~�(t; x) =
X
i2~I

Wi(t; x); ~I = IWh
([0; T ];K)

which is only a �nite sum. Since Lipschitz continuity implies di�erentiability

almost everywhere, we immediately get

@ i
@x

=
1

~�

@Wi

@x
�
Wi

~�

1

~�

X
k2~I

@Wk

@x
: (18)

At this point, we remark that  i 2 C0(R+ ;W 1;1(R)). Indeed, a small change

in time leads to a little translation of the participating functions Wk which is a

continuous operation in L1(R).

Multiplying equation (18) by  j, summing over all j and replacing ~� again

by �, we arrive at

@ i

@x
=

1

�

X
j2Z

�
 j
@Wi

@x
�  i

@Wj

@x

�
: (19)

Using the fact that @tWi = � _xi@xWi, we obtain in an analogous way

@ i

@t
= �

1

�

X
j2Z

�
_xi j

@Wi

@x
� _xj i

@Wj

@x

�
: (20)

ConsideringWi as an L
1(R) valued function on R+ , we haveWi 2 C

1(R+ ;L1 (R))
where continuity of the �rst derivative is again due to the continuity of the

translation operator in L1(R). A straight forward estimate of di�erence quotients

shows that also  i 2 C
1(R+ ;L1(R)). Combining (19) and (20), we end up with

@ i

@t
+ _xi

@ i
@x

=

0
@ 1

�

X
j2Z

( _xj � _xi)
@Wj

@x

1
A i: (21)

Introducing

�i =

0
@ 1

�

X
j2Z

( _xj � _xi)
@Wj

@x

1
A �i

with �i being the indicator function of a ball of radius ��h around xi(t), the right
hand side in (21) can also be written as �i i. To estimate the L1{norm of �i(t),
we note that � � �min and, since the velocity �eld a(t) is uniformly bounded

in C1(R) if t ranges in a compact interval, we get j _xj � _xij � L(t)jxj � xij.
Note that this estimate is only needed if �i@xWj 6= 0 which may happen if

jxj � xij � 2��h (otherwise the supports are disjoint). The number of involved
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points xj is estimated by N(2��h;Ch(t)) � N(2K��h;Ch(0)) according to

Lemma 7 so that

k�i(t)kL1(R)) � L(t)N(2K��h;Ch(0))





@W (�=h)

@x






L1(R)

2��h:

With the change of variables y = x=h, we �nd that k@xW (�=h)kL1 (R)
= k@xWkL1(R) for all h > 0 so that the result follows with

C	�(T ) : = sup
0�t�T

sup
h>0

2��L(t)N(2K��h;Ch(0)):

4.4 Geometric coe�cients

Motivated by the derivation of the method in Section 1, we de�ne the coe�cients

�
(h)
ij (t) =

D
�
(h)
ij (t)� �

(h)
ji (t); 1

E
(22)

where �
(h)
ij are taken from Proposition 2

�
(h)
ij =

 
(h)
i

�(h)

@W
(h)
j

@x

Proposition 3 The coe�cients �
(h)
ij are uniformly bounded and satisfy �

(h)
ij =

��
(h)
ji as well as

P
j2Z�

(h)
ij = 0 for all i 2 Z. There exists a constant B > 0

such that jx
(h)
i (t)� x

(h)
j (t)j � Bh implies �

(h)
ij (t) = 0. Finally, for every �x 2 R,

we have X
x
(h)
i (t)��x

X
x
(h)
j (t)��x

�
(h)
ij (t) = 1 8t � 0; h > 0:

Proof We again suppress the superscript h in the proof. >From the de�nition

(22) of �ij , the skew symmetry follows at once.

Since j i=�j � 1=�min, we �ndZ
R

j�ij(t; x)j dx �
1

�min

Z
R

����@W (x=h)

@x

���� dx =
1

�min

Z
R

����@W@x (y)

���� dy
which is a uniform bound giving rise to j�

(h)
ij (t)j � 2k@xWkL1(R)=�min. Taking

into account that diamsupp i � S	�h, we conclude that for jxi(t) � xj(t)j �
2S	�h, the supports of Wj and  i are disjoint and hence �ij = 0. The remaining

two properties are shown based on a useful reformulation of the formula for �ij

�ij = 2

�
 i;

@ j

@x

�
: (23)

Equation (23) follows immediately from

@ j

@x
=

1

�

@Wj

@x
�  j

1

�

@�

@x
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so that

h�ij; 1i =

�
 i;

@ j

@x

�
+

�
 i j;

�
@�

@x

�
=�

�

and

�ij = h�ij � �ji; 1i =

�
 i
@ j

@x
�  j

@ i

@x
; 1

�
= 2

�
 i;

@ j

@x

�
:

It implies that

X
j2Z

�ij = 2

*
 i;

@

@x

X
j2Z

 j

+
= 0

and with 	�x(t; x) : =
P

xi��x
 i(t; x),X

xi��x

X
xj��x

�ij = 2

�
	�x

@

@x
	�x; 1

�
=

�
@

@x
	2
�x ; 1

�
= 	2

�x

��x=1
x=�1

:

Note that 	�x(t; x) = 0 for x ! �1 since all  i(t; x) with xi � �x vanish for

x < �x�Bh. On the other hand, for x > �x+Bh, the function 	�x(t; x) coincides
with

P
i2Z i(t; x) = 1, so that 	2

�x

��x=1
x=�1

= 1.

5 Conclusion

We have presented a consistency result for a general class of conservative, mesh-

free methods based on partitions of unity. Apart from the partition and a stan-

dard numerical 
ux function, the schemes are characterized by the parameters

�ij which contain geometrical information about relative position of particles

and the amount of overlap. For example, in classical �nite volume methods,

which are recovered in the approach for a special choice of the partition of

unity, the coe�cients �ij are related to the surface area of the cell faces (in

the multi-dimensional case) and the corresponding normal directions. In the �-

nite volume particle method (FVPM), which can be viewed as a generalization

of classical �nite volume methods to the case of overlapping and moving grid

cells, the coe�cients are calculated based on the partition functions according

to �ij = 2 h i; @x ji. Since the proof of the consistency result requires only little
regularity of the partition of unity functions and is mainly based on some gen-

eral assumptions on the coe�cients �ij , it applies at the same time to FVPM

and standard �nite volume methods.

The advantage of FVPM to work for general distributions of particle positions

and overlapping partition functions has to be paid with the calculation of Vi
and �ij which involve integration over  i and @x j . The goal is to discretize

the integrals in such a way that the evaluation becomes fast without violating

the consistency conditions presented here (note that for consistency, the speci�c

form �ij = 2 h i; @x ji is not necessary). Since additional restrictions on �ij
may arise from stability considerations, a convergence analysis is naturally the

next step in the investigation of the method. Apart from that, the treatment of

bounded domains is most important, because the main applications of particle

methods will be in complicated and time depending geometries.
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