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Abstract

An asymptotic preserving numerical scheme (with respect to diffusion scal-
ings) for a linear transport equation is investigated. The scheme is adopted
from a class of schemes developped in [6, 7]. Stability is proven uniformly
in the mean free path under a CFL type condition turning into a parabolic
CFL condition in the diffusion limit.

1 Introduction

Transport equations and kinetic equations are used for a variety of applications,
for example, to simulate radiative heat transfer processes or rarefied gas flows.
Near to the continuum regimes the equations are approximated by macroscopic
equations like diffusion equations or fluid dynamic equations. In recent years
asymptotic preserving schemes for kinetic equations and transport equations have
gained considerable attention in the literature. These schemes are used to treat
singularly perturbed transport equations in situations with small mean free paths,
i.e. in the above mentioned macroscopic limits. The general aim is to develop
schemes allowing an underresolution in these limit situations. Schemes for in-
stationary transport equations in the diffusion limit can be found, for example,
in [5], [6],[7], [11], see also the references therein. Schemes for different other
transport equations with different macroscopic limits have been developped in

[4], [1], [8], [10], 9].
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Concerning the numerical analysis of these schemes proofs of uniform consistency
with respect to small mean free path € can be found in [6], [1], [7]. Furthermore,
using homogenization theory for transport equations, a proof of uniform conver-
gence (as € — 0) for equations discretized spatially and in velocity is given in
13, 2].

In the present paper a numerical scheme for transport equations as developed in
[6, 7] is considered. Numerical investigations of this scheme and proofs of uniform
consistency can be found in [6, 7]. The aim of the paper is to prove a uniform sta-
bility result for the method. The linear transport equation is introduced togehter
with a time and space discretization. Linear stability is proven uniformly in €
using a careful direct analysis of the iterative scheme. The problem is tackled by
a von Neumann analysis of the discrete system. This gives explicit and accurate
estimates.

Under a e-dependent CFL type restriction the iterations are proven to be uni-
formly bounded. As e tends to 0 the CFL type condition turns into a parabolic
CFL condition as expected for the discretization of the limiting diffusion equa-
tion. For large mean free path, the CFL condition is the one adapted to the
transport equation.

The paper is organized as follows. In Section 2 equations and schemes are intro-
duced. Section 3 contains some definitions and the statement of the main result.
In section 4 several preliminary results are established and, finally, section 5
contains the proof of the main result.

2 Equations and Numerical Scheme

Our model problem is the one dimensional linear transport equation with isotropic
scattering,

1 [t
628tF+€UazF:§/ Fdv - F (].)
-1
with density F' = F(z,v,t), x € R, v € [-1,1] and ¢ € [0, 00).
We pass to the even-odd parity formulation by introducing for v > 0 the even
and odd functions

F) = 3 (F() + F(-v)),
o(0) = 5 (F(0) = F(0),

i.e.

Fw) = f(v)+eg(v),v>0
Fv) = f(-v)—eg(—v),v <0,



such that (1) becomes for v > 0,

Of +vsg = ~(Uf1—f), )= /0 fv, (2)

€
v 1
8tg + 6_2 azf = _6_29- (3)

Remark 1. Concerning the limit ¢ — 0 in (2), (3) we obtain from a formal
asymptotic erpansion,

f:p:[f]a g:_vazfa
where p = p(z,t) fulfills the diffusion equation

1

We describe a scheme which is taken from a general class of schemes developed
in [7], [6]. For the time discretization we use the time step At € R*t. The
spatial step size is Deltatz. The time iterations approximating f(x, v, nAt) and
g(x,v,nAt) are denoted by f"(z,v), g"(z,v) for n € Norn = 0. Given ", g" we
calculate f**1 ¢g"t! as follows.

Algorithm. The discretization in time is obtained using a fractional step scheme.
The spatial discretization is a simple first order discretization. For more compli-
cated approaches, see for example [5].

Step 1: Approximate the solution of the system

8tf+vamg =0
Og =

by an explicit discretization, i.e. determine f"2,¢""2 via
[t = fr"— Atv D, g" (5)
gn+% — gn
Y
where D, denotes the forward difference with step size Azx.

Step 2: Approximate the solution of the system

of = (/-9

1
By = 5(—v:f —g)

€



by a semi-implicit discretization to treat ’Ehe stilffness of the equations cor-
rectly, i.e. determine f**1 ¢g"*1 from f"*2,¢""2 via

1 A 1
frt = S - )
At

gt = gt 4 = D_f™*h — g™+,

where D_ denotes the backward difference with step size Ax.

Remark 2. We do not consider the velocity discretization. Usually a Gaussian
quadrature is used.

We rewrite the recursion formula of Step 2 as
[T = AT 4 Bl (6)
gn—l—l — Agn—l—% _ BUD_fn+1,

A 71
A = <1+—2t>
€

At € !
B = —A=1—-A=|—+1 .
€2 <At+ >

with

For the numerical analysis it is convenient to combine both steps in a single step,
o = A(f"— AtvD,g") + Bf" — Atv D, g"]
gt = Ag"—vABD_frt' —yB2D_[f"H] ™
or
g"tt = A¢g"—vABD (f"— AtvD,.g") —vB*D_[f"— AtvD,g"].

Scheme (7) will be investigated in the following. Uniform consistency of similiar
schemes has been considered in [7] and [6]. Here we will prove a uniform (in €)
stability result.

Remark 3. Keeping At fized and considering the limit ¢ — 0 of (7) we have
A—0,B—1 as e = 0 and we obtain the scheme

= =1 - Atv Dagn
gn+1 = _’UD*[fn_H]a

i.e. in terms of p" = [f"],
1

which is a straightforward explicit discretization of the diffusion equation (4).



3 The main result

In this section we state a theorem on uniform stability for (7). The proof is
settled on a von Neumann stability analysis.

The recursion scheme (7) involves two positive discretization parameters At, Ax
(which enters via D) and the scaled mean free path € € (0,00). In the sequel it
is assumed that At, Az, e satisfy the following condition.

Definition 1. At, Ax and € fulfill the “transport CFL condition” iff

At At < 1 (8)
(Az)2ez+ At 2

Remark 4. Condition (8) is equivalent to

At - e+ At (9)
(Ax)? 2At

or

At €2+ At

— . 10
Az < 2 (10)
For €2 < At condition (9) reduces to a “parabolic CFL condition”,
At 1
— 11
Bof <% (11)
and in case €2 > At, condition (10) reduces to
At
<= (12)

Az 2
which s for fived € a “hyperbolic CFL condition”.

Remark 5. Introducing

At
pi=—, teAt= pe?,
€

the transport CFL condition (8) holds if and only if
WeR: (Az)?=2p—2.&2
€ (Ax) P p €
2

Here, p < 1 corresponds to the fine resolved case At <K €
to the under-resolved case €2 < At.

and 1 < p corresponds



Now we shall give the recursion (7) a well-defined meaning by introducing sets
of functions on which the recursion operator of (7) acts.
We put

M:={¢:Rx (0,1) » C: ¢ is measurable},

MO2 = {gbeM: (VUE(O,I): /R|q5(x,v)|2dx<oo>}.

We are heading towards a von Neumann stability analysis of (7). This requires
for a notation for the Fourier transform of ¢ € M%? with respect to . We put

A

1
6.0) = <= [ 9(a.0) expl(ciat) do. (.0) €Rx (0.1).
For later reference we introduce the space
MY .= {¢ € M% . <VU € (0,1): /(1 + €Y |B(&, )2 dE < oo) }
R

Remark 6. Due to the standard theory of Sobolev spaces we have ¢(.,v) € H'(R)
for all € M"? and for all v € (0,1) and

160, 0) 2 < K / (1+ €) 18, ) de,
R

where K is independent of ¢ € M2,

Applying the Fourier transform (with respect to x) on (7) we obtain the recursion
scheme

o= A(f"+vag") +B [f”+avg”],

. . 13
gt = A +vBfr-002g) + Bu [fr+avgr], 13)
where

a=a(f,At,Az) = 2—; (1 — e%47) = ¢AtH (EAx), (14)

B , _, At —
§=BEAL AR = 1o (1) = - ST EAn), (19

At At

© =0(& At Ax,e) = —af = BoEd T A (2 — 2cos(EAx)), (16)



and the holomorphic function H is given by

1 — exp(iz)
H:C—C, H(z)= z ’ Z#O,
—1 , 2=0

is bounded on R with |H(o)| < 1 for all 0 € R with ¢ # 0, and |H(0)| = 1.

Remark 7. For all positive At, Ax, e we have

4At At
— 3 f =
0 %IElR@(f, At, A.CE,C) < Sglel]g@(§7 Atv AJ?,G) (Ax)Q €2+At7

which highlights the distinctive importance of the value of ©: The transport CFL
condition s equivalent to

sup O(§, At, Ax,€) < 2.
EER

It is convenient to introduce for f,g € M and f ,§ € M the notations
i=(f9), §=(f9)
We rewrite recursion (13) as
f*tl = (AT 4 BTp) " (17)

with A,B € (0,1),A+ B =1 as above and n € N. The linear operators 7" and
Ty depend on the parameters «, 3. We have for f = (f,§) € M x M and for
(& v) € R x (0,1),

T v) = (F&v) +avi€v), 8o fE0) + (1 -0 g(&v)),  (18)
and

To()(&v) = ([/ +avd] ©.8v [f+avi] ©). (19)

Remark 8. We obviously have T, Ty : M — M and - due to the linear depen-
dence of a on & - we have: T(f), To(f) € M®? for all f € M"?. Later on we will
actually show T™(§), T (f) € M®? for all § € M“? and for alln € N.

Our aim is to prove uniform boundedness in suitable norms of the iterations
f* = (f",g") for alln € N and € > 0.

The results will depend on point-wise estimates of f" Let us highlight the argu-
mentation at hand of the formal limiting problem when ¢ is set to zero. In this

situation recursion (17) reduces to f**1 = (fm*1, g"*1) = Tyf", this means
N

gn-l-l — ,Uﬁ[fn_i_avgn]zvﬁ[fn—l—l]

7



with
B = B(E, At Az,e = 0) = £ H(EAD).
This yields

= el = (1-5) 17

where
© =0(, At Az, e =0) = At (1 — cos(EAx))
- ) ) , €= - (A$)2 .
Thus, we have the point-wise estimates
. o .
e = -3 e,

"),

e < ol 1=

in particular, whenever

sup O(&, At, Az, e =0) < 6,
¢eR

which is the case if and only if the usual parabolic CFL condition for the diffusion
equation (4)

<5 (20)

holds, then for all n € N,
) < 1. (21)
g"1(&,0) < L€M) (22)

From (21), (22) we obtain under the assumption that all involved integrals are
finite for all n € N and for all v € (0,1) the estimates

/ FrPE ) de < / FOL(E, u) d€, ) (23)
R Rx(0,1)

[areends < [ (eIPREw) de ), (24)
R Rx(0,1)
thus for all n € N and for all v € (0, 1),

/R (1P + 1) € de< [ (et PPEw diga). @9

Rx(0,1)



This motivates the introduction of the anisotropic semi-norms
||.||1;1 : M1’2 X M1’2 — R(—)I— U {OO},

mmmm:JAwJH%moﬁ+mﬂ@mamm

l-llosoo : M%? x M*? — RY U {o0},

(£ 9)lloso0 := sup \//R(|f|2+|9|2) (&) d¢,

v€(0,1)
and to define the anisotropic spaces of Sobolev type,

W= £2((0,1) : H'(R) x H'(R)) = {(f,9) € M"* x M"* - |[(f,9)

|1;1 < OO},

W= £2((0,1) : LAR) x L*(R)) = {(f, 9) € M** x M**  ||(f, g)loso0 < 00}

Assuming the validity of (20) (here no further condition on the parameters
At, Az, e are required) we can re-write (25) in the more convenient form

I loee < %M1, n €N, (26)

where we made use of the fact that the Fourier transform maps L?*(R) isometri-
cally into itself.
For the general case we introduce additionally

W?:= L3R x (0,1)) x L*(R x (0,1))

—{renrxars [ (P lgte ) deo) <o

Rx(0,1)

equipped with the canonical semi-norm

1(f; 92 = \//Mo 1)(|f\2 + [9[2)(&; v) d(&, ).

Our main result is the following theorem:

Theorem 1. Let Ax,At,e € RY. Let f° € WU and let the sequence (§*)nen =
((f™, g"))nen be defined by (7) (with initial value §°).

Assume At, Az, e satisfy (8). Then:



a) f* € W2 for alln € N and

n AT V2e

b) If {f* € WHEL N W% then f* € W% for alln € N and

2 2
[ loco < V2 (2 +2vVe + At + L) 1151000

(€2 + At)3/2

+2 (15 +oUVeE T At) 15011

Theorem 1 allows for the derivation of several stability results for (7) indepen-
dently of €. As examples, we deduce

Corollary 1. Let M, ¢y be positive constants. Then there is a positive constant
Co = Co(M, €y) such that for all Ax,At,e € Rt :

If At,Az,e satisfy (8), if At + € < M and if € < €At, then the following
estimates hold for any sequence (f*)nen = ((f™, g"))nen defined by (7) with initial
value f° € Wht:

a) * € W2 for allm € N and ||f"|]2 < Co|lf°|1.1-
b) If f* e WHEL N W% then f* € W% for alln € N and
17000 < Colll*lloseo + 17°ll1:1)-

Corollary 2. Let M, e, be positive constants. Then there is a positive constant
C1 = C1(M,e;) such that for all Ax,At,e € Rt :
If At, Ax, e satisfy (8), if At+e€ < M and if €; < €, then the following estimates

hold for any sequence (f*)nen = ((f™, 9"))nen defined by (7) with initial value
0 € Wil

a) fn € W2 fOT’ alln € N and ||fn||2 < Cl||f0||1;1.
b) If f* €e WHEL N W% then f* € W% for alln € N and
1™ lloz00 < Crlllflozoo + 1F°1l12)-

Remark 9. It is remarkable that although the scheme is developed based on con-
sideration of the diffusive limit € tending to 0, the transport CFL condition (8)
1s sufficient to gquarantee stability also for large €. In particular, for large mean
free paths the time step is not any more restricted by a parabolic CFL condition
related to the limiting diffusion equation, but by the hyperbolic CFL condition
(12) related to the transport equation.

10



Remark 10. The transport CFL condition (8) is seemingly not optimal. For
example for € tending to 0 we have

At
(Az)?

<

N —

However, as the direct analysis for € = 0 shows, actually, the correct restriction
is the parabolic CFL (20)

At
(Az)?

<

[\CRVN]

Remark 11. The conditions ¢g < € < M or € < e At, cover the fine resolved
and under-resolved cases.

4 Preliminaries

The main ingredients of the proof of Theorem 1 are investigations of recursion
formulae. These investigations require several preliminary estimates.

Lemma 2. Let o € (0,2). We put
2
¥ :(0,1) — (0,1), 2 (v) = arccos <1 - %) .
Then for alln € N,

<1

/0 1 (Cos(m/J(v)) - sin(nw(v))%(gﬁ)(;}))> d

Proof. Introducing ¢ := cos(1(v)) as new variable we obtain

[ (costmon) — im0 g,

1 arccos((2—0)/2)
= \/T/ (\/1 + cos(t). cos(nt) — y/1 — cos(t). sin(nt)) dt
g Jo

arccos((2—0)/2)
= %/0 (cos(t/2).cos(nt) — sin(t/2).sin(nt)) dt

_ 1 sin((n + (1/2) arccos((2 — 0)/2)) _ sin((n + (1/2))v)
Vo n+(1/2) (n + (1/2))y/2(1 — cos(¥))
_sin((n+(1/2))y) /2 _
B 7. R
[

11



Lemma 3. Let (¢y)nen and (Vn)nen be complex sequences. Define a complex
sequence (Kn)nen by recursion via

ko=c€C, Kpy1=cn+ (Ko-Vno1+ K1-Yn2+ .-+ Kn_1.7%) -

Assume

o [e.e]
D el <00, > wl <1
k=0 k=0

Then the sequence (Kn)nen i bounded, more precisely,
VneN:  |ky| < kol + (Jeo| + ...+ |cnal]) - (27)

Proof. We prove (27) by induction. There is nothing to do in case n = 0. To
pass from n to n + 1, we calculate

n—1 n—1
|fnt1] = |cn + Z";j"yn—l—j < lenl + Z |65 Yn-1-41
=0 =0
n—1
< Jea] +max{[sol,-. , [wn-1l} D 1yl < leal + [0l + lcol + ... + [en-a -
=0

[
Furthermore, we require the following result about the recursion scheme (7) when
A is set to 1 (or equivalently, when B is set to 0).

Lemma 4. Let £ € R and let At, Az, e be positive real numbers. Let o, 3,0 be
as in (14), (15), (16), respectively. For (fo, do) € M x M let T as in (18), i.e. for
(&,v) € R x (0,1) in vector notation,

r(B)en=(4, 155 ) (2EY)

Forn € N let
(5)-r(4)
9n 9o

Assume At, Az, e satisfy the transport CFL condition (8).
Then for all n € N and for all (§,v) € R x (0,1),

L 1fal(€0) < (2ol + V2@ + D) lgol ) (€ )-

2. 16a(6,0) < (7 1ol + 210l (6,0).

K, <,

12



3. law du|(€,v) < (2|f0| +AVE T AT \g})|) (€, v).
4. If fo =1 and if go(&,v) = Bu, then

1
Fl(€0) <2, 1.6 v) < 3¢, \ [ e +as e ds| <1

Proof. We recall: If At, Az, e satisfy (8), then sup,cg O(§, At,Az,e) < 2. We
shall use this estimate frequently.

We keep (£,v) € R x (0,1) fixed and introduce the 2 x 2 matrix

R= 5,00 =( 4, 1 %8 ).

Then we have for all n € N or n = 0,

n fO ) n ( fO(g U) )
T N ,v)=R"- A .
( g ) &Y go(&,v)
If © = 0, then £ = 0 and therefore @« = 3 = 0 as well. In this case R is the
identity matrix and the proof of the lemma is straight-forward.

Let us assume © > 0 henceforth.
The eigenvalues of R are

0 v? 0v2)?

)\1,2(7)) = (1 - T) + \/(T) — O92,
Since a := ©v?/2 < 1, we have 2a — a® > 0 such that
AMg2=(1-a)tiVv2a—a?

i.e. R has two distinct, non-real, complex conjugate eigenvalues

M=X=(1—-a)+ivV2a—a% =\

Hence

n o__ )\n 0 -1

Since |A| = 1 we have X := €'? for some 0 € (0, 27). Since cos(d) =1—a > 0 and
sin(f) = v2a — a® > 0, we have 0 € (0,7/2). Furthermore,

2
v = 75 sin(6/2). (28)

13



Hence for all n € N,
R" = i —Qav —Qv enié’ 0 1— efia av
~ 2ausin(@) \ 1—€? 1—e 0 e ni 14e? —qu

B 7 —av —av eni@ _ e(nfl)ia av enie
- 200 sm(@) 1—¢e 11— _eme + ef(n—l)iﬁ _ave—mﬂ

sin(nfd)—sin((n—1)4 sin(né
B ( )sin(a()( = av sirf(e))
__ 2sin(nf)—sin((n—1)8)—sin((n+1)§)  sin(nd)—sin((n41)6)
awsin(6) sin()
sin(nd)—sin((n—1)8) 2q_sin(8/2) sin(nd)
. sin(6) V) sin(6)
o __ /0 2sin(nf)—sin((n—1)8)—sin((n+1)8)  sin(nf)—sin((n+1)9)
20 sin(#/2) sin(0) sin(0)
. 1—cos(é o . sin(6/2
( cos(nf) + sin(nf) sin(H()) % sin(nd) sh(l(é))
. —cos(0 . —cos(6
\ —@ sin(nh) 7@20 72) gi 3(0) cos(nf) — sin(nf) =) sin(a())
Rn;ll Rn;12 )
Rn;21 Rn;22
Since § = 6 € (0,7/2) we have

|Rn11 , | Rni22] < 2. (29)
Furthermore, we have for all n € N,

sin(0/2) N sin(nf) o sin(nh)

sin(0) sin(0) VOu./1— e

4

sin(nf) (EAtH (EAZ))(Azv/e? + At) sin(nd)

2c
R,.19 = — sin(nf
;12 \/@ ( )

= 75 \/@ At+/2(1 — cos(€Ax)) \/1 — &

_ Ja s A torH(EAT)  sin(nd)
+ t\/2(1—cos(§Ax)) \/1_ ov?

S H(¢Az) sin(nf)
= Ve +At|H(§A$)\ ey (30)

and in analogy,
1 |H(EAz)| sin(nf)
Ve + At H(EAz) /1 v’

4

Rn;21 = - (31)

14



hence

|Rpa2| < /2(e2 + At)
|Rpo1| < \/e;/fﬁ‘ 32
Since for all n € N,
fa&0) = Rpar fo(€,v) + Ruaz Go(€,v) (33)
Gu(€,v) = Rugn fo(&,v) + Rugz Go(€,0),
statements 1. and 2. of the lemma follow from (29), (32), (33).
Now we calculate for all n € N,
R, 1 = —vVO sin(nh) sinl(ﬁ_/;};)ss(ii)(ﬁ) = —2sin(nh) - 1;1?7?;)(0),
and
QURp.90 = 2Sin(0/2)%Rn;22,
Hence for all n € N,
lav R0 | < 2, (34)
and
QU Rp00| < 4V + At (35)

Statement 3. of the lemma follows from (33), (34) and (35).

Let us finally turn our attention to fo = 1 and gy(&,v) = Bv. We set
PO = 1; QO = 1a

and easily verify

fn:PnagAn:ﬂUQm nENornzO,

where for n € N or n = 0,
P, 1 —09v? P,
Qni1 1 1-0v Qn

15



from which we obtain after some elementary manipulations for all n € N (we
recall © < 2),

P, = Re (((1—a)—i.m)". (1—M>)

Vo=
Qu = Re (((1 —0)—iv2a—a) . (” %)) |

Ov?

where a = 5

oo (F)] = aen- (0 )] = P-eQ) =Rl 30

In

is as above. Then we have for all n € N,

Writing as above
(1—a)+iv2a—a2 ="
we have 0 € (0,7/2), cos(d) = (1 — a), sin(f) = v2a — a?. Hence for all n € N,

1 — cos(6)

P, = cos(nf)) — sin(nf) sin(6)

1 — cos(#)

Qn = cos(nf) + 2 sin(n@)wa

such that for all n € N,

|fal(&0) = [Pal(€,0) < 2, 6al(€,0) = (B8] |v] |Qul (€, 0) < 318] < 3¢,
and due to lemma 2 and due to (36) for all n € N,
) .
A fa(&s) ) —
[ e (60 ) as—ine

= /0 (cos((n +1)0(s)) —sin((n + 1)0(3))M

sin(6(s))
s€e (0,1). O

) ds € [-1,+1], (37)

2

where cos(f(s)) =1 — 25,

5 Proof of theorem 1

For n € N let f, §" be as in (13). In the sequel let (£, v) € R x (0,1) be fixed.
We introduce for n € N or n = 0 the complex number

kn = B [f” +augn} (). (38)

16



Then it is easy to see that for all n € N,

N ~ n—1
fn ) — A" T ( fO ) .An—l—j Tn—l—j ( 1 ) 39
( gn gO + pars Kj ﬁv : ( )

We derive from (39) a recursion formula for (k,)nen,

ko = B.[f+avi’] (©),

o = B[man-(£))
e

S o (o 1)

7=0
= ¢n+ (KoYno1+ .-+ Kn—170),

o= a8 [an)- (1 (1))] @
=B (L) (1 5, )] @

By part 4. of lemma 4 we have for all n € N

where for n € N,

|7n| < BA",

hence
>l <1 (40)
n=0
Furthermore, we have due to part 1. and part 3. of lemma 4 for all n € N,
£0
Looo- ( ()]

< 21+ v2(e2 + A1) [°](€) + [2[/°] + 4V + At [°[] (€)
< A[fOlI(€) + 6ve + At [|g°]](6),

17



hence for all n € N,
eal < A7 B (4[7°)(6) + 6V + AL1I°))(©)) (41)

in particular (¢;)nen is in £(C).
We can therefore apply lemma 3 to deduce for all n € N the estimate

|kn| < [Ko| + (|co| + -+ - + cn-1])

<|Blf° + (407°0() + 6V + AT | )ZA“B

< [1/O)€) + 2V + At [|g°1() + 4[1/°11(€) + 6m[|g 1(€)
= 5[1/°1(¢) + 8V + At[|3°[](€), (42)
where we made use of the estimate
lav| < 2Ve + At,
see (28).

Now we deduce from (39) via part 1. of lemma 4, via part 4. of lemma 4 and via
(42) for all n € N the estimate

£ 0)
< (2171 + V2@ + A1) 13°1) (€ v) + 10[°1)(&) + 16 Ve + At [|7[](¢).

In a similiar way we deduce from (39) via part 2. of lemma 4, via part 4. of lemma
4 and via (42) for all n € N the estimate

37I(€.v)
<A (\/% o +2 |g°|) (&,v) +[¢] (150°) + 24/ + AL (13" (&)

< (% 2 w) (&) + 6] (1507°) + 24V 5 B2 () (o).
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We deduce

I5"1l2 = 15"ll2 < I1F" | c2@xo,1)) + 13”1 c2@xco,)
<201l 2@xoy) + V2(€% + A3l c2mxo0,1))
+ 10| f°ll 2 0,1)) + 16VE® + At]|3°]] c2m(o,1))
V2¢é2

T (€2 + At)3/2 ||f0||£2(RX(0,1)) + 2||§0||L2(R><(0,1))

+w¢/ MWﬂP@Md@wHQ%ﬁ“%M¢/ ELIF012(¢,v) d(E, v)
Rx(0,1) R

x(0,1)

Ve ' :
S(w+@:§WJ(WW%W@+¢AWJWWWQW&M>

+ (2 + 42/ €2 + At) <||§0||52(R><(0,1)) + \// o €12[9°12(&, v) d(gav))
Rx(0,1

(€2 + AL)32

x<¢/ a+mmﬁmamaam+¢/ U+EWWW@wd@w>
Rx(0,1) Rx(0,1)

2 2
<9 (42\/62 FAL+15+ L)

(2 + A1)

2 2
<32 (42\/62 FAL+15+ L)

X \// (1+ |§|2)(|f0‘2+ 13912) (€, v) d(€,v)
Rx(0,1)

o (aovaraisise Y2 1°11:.
(€2 + At)3/2 e
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On the other hand, we have for each v € (0,1),

\//R(\f”\” g7 ?) (&, v) d€ = \//R(\f”I“r 972)(€, v) dE
< \// |7 2(€,v) dE + \// g 2(€,v) d€ = (1", 0)llezqry + 1" (o)l caqy

<2, 0)llep@ + V2(E + AIIG( ) llex) + 1011 Fll 2o,

A Ve s X
IOV + A @ + m”f‘)(.,mnm + 230l

+15\// [€[2]f[2(&, v) d(f,v)+24v62+At\// 1€1219°12(&, v) d(§,v)
Rx(0,1) Rx(0,1)

2¢2 2
(2 + 2V €2 + At t+ JW) (”fo(: U)”L'Z(R) + ”90(7 ’U)“L?(R))

+15 (||f°||£2(RX(O,1)) + \//]R o EP1fO2(€,v) d(&ﬂ))

+ 24V e? + At <||.@0||L2(R><(0,1)) + \//R €1219°2(&, v) d(&, U))

gx/é(2+2\/e‘z+At+ —|—At3/2>\// |72+ 197 2) (€, v) de

+2(15+ 24ve? + At) \//IR (1+ ) (|fO2 + 13°2) (&, v) d(€, v)

%x(0,1)

:\/§<2+2M+ +At3/2)\// ([f™2 + [g"?) (&, v) d€
+2(15 + 24V + A1) |10

<2 (2 +2Ve2 + At + w:{ﬁ) 15 1l0:00 + +2(15 + 24v/€2 + A1) 1.1

Taking the supremum with respect to v € (0,1) on the left hand side of this
inequality establishes b) of theorem 1. O

6 Conclusions

We have proved uniform stability of the iterative scheme under two restrictions:
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e Uniform boundedness of the iterative scheme could be proven for under-

resolved numerical computations € < ¢yAt or bounded mean free path ¢; <
e < M.

e The necessary CFL restriction is in the diffusive limit a parabolic CFL
condition as was to be expected. However, for finite values of € the parabolic
restriction can be relaxed. One obtains a CFL condition adapted to the
hyperbolic part of the original kinetic equation.
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