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Abstract

The satellite{to{satellite tracking (SST) problems are characterized from

mathematical point of view. Uniqueness results are formulated. More-

over, the basic relations are developed between (scalar) approximation of

the earth's gravitational potential by `scalar basis systems' and (vecto-

rial) approximation of the gravitational �eld by `vectorial basis systems'.

Finally, the mathematical justi�cation is given for approximating the ex-

ternal geopotential �eld by �nite linear combinations of certain gradient

�elds (for example, gradient �elds of multi{poles) consistent to a given

set of SST data.

AMS classi�cation: Primary: 86A20, 86A30.

Secondary: 31B05, 35J05.

Key Words: satellite{to{satellite tracking, external gravitational �eld,

uniqueness, fundamental systems, scalar and vectorial trial

systems, closure theorems.



1 THE SST PROBLEMS 2

1 The SST Problems

The purpose of high{low satellite{to{satellite tracking (hi{lo SST) by use of

the Global Positioning System (GPS) (as realized e.g. by the recently launched

German satellite CHAMP (2000) of the GeoForschungsZentrum (GFZ) Pots-

dam) is to develop the geopotential �eld from measured ranges (geometri-

cal distances) between a low earth orbiter (LEO) and the high{
ying GPS{

satellites. In this paper, hi{lo SST is discussed from mathematical point of

view as the problem of determining the external gravitational �eld of the earth

from a given set of gradient vectors at the altitude of the low earth orbiter

(LEO).

@E

E = Ei

�

0
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S

Figure 1: Illustration of the sets E and S

In order to translate hi{lo SST into a mathematical formulation (see [7], for

alternative approaches [3, 4, 9, 17, 18, 19, 22]) we start from the following

geometrical situation (cf. Figure 1): Let the surface @E of the earth E and the

orbital set S of the low earth orbiter (LEO) be given in such a way that S is

a strict subset of the earth's exterior Ee satisfying

sup
x2@E

jxj < h = inf
x2S

jxj : (1)

The arrangement of the GPS{satellites is such that at least four satellites are

simultaneously visible above the horizon anywhere on the earth's surface @E

and the orbit S of the low earth orbiter as well, all the time. Moreover, the

GPS{satellites are supposed to be placed in six circular orbits 

i
of radii


i; i = 1; : : : ; 6, around the origin with 
i � h; i = 1; : : : ; 6; and n be the total
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number of GPS{satellites. To every LEO{position x 2 S, therefore, there exist

at least m(� 4) visible GPS{satellites located at yl1 ; : : : ; ylm , li 2 f1; : : : ; ng

for i = 1; : : : ;m, such that the geometrical distances (ranges) dli = jx � yli j,

li 2 f1; : : : ; ng for i = 1; : : : ;m, are measurable. Since the orbits of the GPS{

satellites are assumed to be known, the coordinates of the low earth orbiter

(LEO) located at x 2 S can be derived from simultaneous range measurements

to the satellites. From this the relative positions of the satellites at x and yli ,

i.e. pli = x � yli , li 2 f1; : : : ; ng for i = 1; : : : ;m, become available at time t.

The relative velocities vli and accelerations ali are obtainable by di�erentiating

the relative positions with respect to t. We may assume that the measurements

are produced at a su�ciently dense rate so that (numerical) di�erentiation can

be performed without any di�culty. The interesting expressions now are the

relative accelerations ali , i = 1; : : : ;m, all of which are determined for inertial

motion (in accordance with the Newton{Euler equation) by the gravitational

�eld only and may be equated by the di�erence of the gradient �eld of the

geopotential, V , here evaluated at the locations of x and yli , li 2 f1; : : : ; ng

for i = 1; : : : ;m. To be more speci�c,

ali(x) = (rV )(x)� (rV )(yli); x 2 S; (2)

i = 1; : : : ;m. (Note that the gravitational force is considered now to be

independent of time t at a certain position. In other words, we assume here

that the time{like variations of the �eld are so slow as to be negligible.) From

(2) it follows that

(rV )(x) =

mX
i=1

�i (ali(x) + (rV )(yli)) ; x 2 S (3)

for all selections (�1; : : : ; �m)
T
2 R

m satisfying
P

m

i=1
�i = 1. The in
u-

ence of the Global Positioning System (GPS) to the choice of the coe�cients

�1; : : : ; �m will not be investigated here. (Usually, in practice, (rV )(yli) are

supposed to be so small as to be negligible).

Loosely spoken, the mathematical formulation of the hi{lo SST problem now

reads as follows:

Let there be known the gradient vectors v(x) = (rV )(x), x 2 X , for a subset

X � S of points at the 
ight positions of the low earth orbiter (LEO). Find an

approximation u of the geopotential �eld v on Ee = @E [Ee, i.e. on and outside

the earth's surface, such that the geopotential �eld v and its approximation u

are in "{accuracy on Ee (with respect to the uniform topology in Ee) so that

v(x) = u(x) for all x 2 X .
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As a matter of fact, the approximation property will be proved in this paper

even with respect to the H�older{topology in Ee.

The problem of knowing the vectors (rV )(yi), i = 1; :::;m, in (2) is not

relevant anymore, if low{low satellite{to{satellite tracking (brie
y, lo{lo SST)

will be used (as planned by the future GFZ{NASA 'two satellite con�guration'

GRACE (2002)). By the tandem mode procedure of lo{lo SST (cf. [3, 4]) the

vectors ali , i = 1; :::;m, are measurable at two di�erent positions x and x� with

x� = x+ h(x), x 2 S, where h : S ! R
3 is the di�erence vector �eld between

the two satellite positions (i.e. jh(x)j � � > 0 with � denoting the intersatellite

range). Consequently, the mathematical scenario of the lo{lo SST problem is

characterized as follows:

Let there be known the vectors v(x) = (rV )(x) and ~v(x) = v(x + h(x)) =

(rV )(x+h(x)), x 2 X , for a subset X � S. Find an approximation u of v on

Ee, such that v and u are in "-accuracy (with respect to the uniform topology

in Ee), so that v(x)� v(x+ h(x)) = u(x)� u(x+ h(x)) for all x 2 X .

2 Notational Background

Let us begin by introducing some notations that will be used throughout this

paper.

We consider R3 to be equipped with the canonical inner product � and the

associated norm j j. Using "1; "2; "3 as canonical orthonormal basis in R
3

each element x 2 R
3 may be represented in cartesian coordinates as follows:

x = �3
i=1

(x � "i)"i.

If G is a set of points in R3 , @G will denote its boundary. The set G = G [ @G

will be called the closure of G. A set G � R
3 will be called a region if it is

open and connected.

The restriction of a function f to a subsetM of its domain is denoted by f jM ,

for a set L of functions we set LjM = ff jM j f 2 Lg.

A function f possessing k (�{H�older) continuous derivatives is said to be of

class C(k)(C(k;�)) (note that we use C(k); C(k;�) simultaneously for scalar{ and

vector{valued functions).

A region G will be called regular, if its boundary @G satis�es the following

properties:

(i) @G divides the three{dimensional Euclidean space R3 into the bounded

region G = Gi (inner space) and the unbounded region Ge (outer space)

de�ned by Ge = R
3
nG.
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(ii) @G is a closed and compact surface with no double points.

(iii) The origin 0 is contained in Gi.

(vi) @G is a C(2;�){surface, i.e. @G is locally C(2;�){smooth.

From this de�nition it is clear that all (geophysically relevant) earth's models

are included. Regular regions are, for example, the inner space of a sphere, an

ellipsoid, a geoid, and a (su�ciently smooth) real earth's surface.

Pot(Ge) denotes the space of functions V : Ge ! R with the following proper-

ties:

(i) V is twice continuously di�erentiable in Ge: V 2 C(2)(Ge),

(ii) V satis�es Laplace's equation in Ge: �V = 0 in Ge,

(iii) V is regular at in�nity:

jV (x)j = O

�
1

jxj

�
; jrV (x)j = O

�
1

jxj2

�
; jxj ! 1 :

We denote by Pot(k)
�
Ge

�
the space of all functions V : Ge ! R such that V is

a member of class C(k)
�
Ge

�
and V jGe satis�es, in addition, the properties (i),

(ii), (iii) of a function of class Pot(Ge). Brie
y formulated,

Pot(k)
�
Ge

�
= Pot(Ge) \ C

(k)
�
Ge

�
:

Furthermore, we set

Pot(k;�)
�
Ge

�
= Pot(Ge) \ C

(k;�)
�
Ge

�
:

By pot(Ge) we denote the space of vector �elds v : Ge ! R
3 satisfying the

following properties:

(i) v is continuously di�erentiable in Ge: v 2 C(1)(Ge),

(ii) v is a harmonic vector �eld in Ge:

div v = 0; curl v = 0 in Ge;

(iii) v is regular at in�nity:

jv(x)j = o(1) jxj ! 1 :
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In analogy to the scalar approach we let

pot(k)
�
Ge

�
= pot(Ge) \ C

(k)
�
Ge

�
and

pot(k;�)
�
Ge

�
= pot(Ge) \ C

(k;�)
�
Ge

�
:

As is well-known, every v 2 pot(Ge) can be represented as gradient �eld v =

rV , where V is of class Pot(Ge), and vice versa (see, for example, [14]).

C(0;�)(@Ge) is a (non{complete) normed space with the norm de�ned by

kFk0 (@Ge) = sup
x2@Ge

jF (x)j

and a Banach space with

kFk� (@Ge) = sup
x2@Ge

jF (x)j+ sup
x;y2@Ge
x6=y

jF (x)� F (y)j

jx� yj�
; 0 < � < 1:

C(0;�)(@Ge) is a (non{complete) normed space with k k� for � < � (see e.g.

[20]).

In C(0;�)(@Ge) we have the (L
2
�)inner product

< F;G >@Ge=

Z
@Ge

F (x)G(x) dS(x);

where dS(x) (or, when confusion is not likely to arise, dS) denotes the surface

element. The inner product <;>@Ge implies the norm

jF j(@Ge) =
p
< F;F >@Ge :

The space (C(0;�)(@Ge); <;>@Ge) is a pre{Hilbert space. For every function

F 2 C(0;�)(@Ge) we have the norm{estimate

jF j(@Ge) � C kFk0(@Ge) � C kFk�(@Ge); (4)

where

C =

0
@Z
@Ge

dS

1
A

1=2

:

By L2(@Ge) we denote the space of (Lebesgue) square{integrable functions on

the boundary @Ge. L
2(@Ge) is a Hilbert space with respect to the inner product

<;>@Ge and a Banach space with respect to the norm j j(@Ge), L
2(@Ge) is the

completion of C(0)(@Ge) (and of C
(0;�)(@Ge)) with respect to the norm j j(@Ge).

For later use we introduce the concept of fundamental systems:
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Definition 2.1. A system Y = (yn)n=0;1;::: � Gi is called a fundamental

system in Gi, if F : Gi ! R with F 2 C(2)(Gi), �F = 0 in Gi, and F (yn) = 0 for

n = 0; 1; : : : implies F = 0 in Gi. Analogously, a system Y = (yn)n=0;1;::: � Ge

is called a fundamental system in Ge, if F : Ge ! R with F 2 C(2)(Ge), �F = 0

in Ge, F is regular at in�nity, and F (yn) = 0 for n = 0; 1; : : : implies F = 0 in

Ge.

3 Uniqueness of the SST Problems

Our considerations start with the problem of uniqueness corresponding to an

in�nite system X � S of known GPS{SST data.

Theorem 3.1. Let E = Ei (i.e. the inner space of the earth) be a regular

region. Suppose that X (i.e. the subset of observational points of the satellite

orbit S) is a fundamental system in Ee. If v is of class pot(0)
�
Ee

�
with

v(x) = 0; x 2 X ;

then v = 0 in Ee.

Proof. Any �eld v 2 pot(Ee) can be expressed in the form rV , hence, the

coordinate functions v � "i, i = 1; 2; 3, satisfy �(v � "i) = �(("i � r)V ) =

("i �r)�V = 0 in Ee. Moreover, according to our assumption, ("i �r)V (x) = 0

for all points x of the fundamental system X in Ee. This implies v � "
i = 0 in

Ee, i = 1; 2; 3, as required. �

In other words, the earth's external gravitational �eld is uniquely detectable

on and outside the earth's surface @E from GPS-SST data corresponding to

a system of gradient vectors determined on a fundamental system X on the

satellite orbit S.

Furthermore we are able to verify the following result (for a similar theorem

see [7]).

Theorem 3.2. Let Ei be a regular region. Suppose that X is a fundamen-

tal system in Ee with supx2@Ee jxj < h � infx2X jxj. If v is a �eld of class

pot(0)
�
Ee

�
with

�
x

jxj
� v(x) = 0; x 2 X ;

then v = 0 in Ee.
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Proof. Again we base our arguments on the identity v = rV in Ee. From our

assumptions it is clear that there exists a sphere @A with radius � around the

origin such that supx2@Ee jxj < � < h, i.e. Ae is a strict subset of Ee. Outside

the sphere @A the potential V 2 Pot(Ee) may be expanded in terms of outer

harmonics (see e.g. [14, 15]):

V (x) =

1X
n=0

2n+1X
k=1

V ^(n; k)Hn;k(�;x); x 2 Ae;

where

Hn;k(�;x) =
1

�

�
�

jxj

�n+1

Yn;k

�
x

jxj

�
;

(Yn;k) n=0;1;:::;
k=1;:::;2n+1

is an L2{orthonormal system of spherical harmonics on the

unit sphere, and V ^(n; k) are the orthogonal coe�cients

V ^(n; k) =

Z
@Ae

V (x)Hn;k(�;x) dS;

n = 0; 1; : : :; k = 1; : : : ; 2n+ 1. It is not di�cult to see that

�
x

jxj
� (rV )(x) =

1X
n=0

2n+1X
k=1

n+ 1

jxj
V ^(n; k)Hn;k(�;x); x 2 Ae:

In accordance with our assumption � x

jxj
� (rV )(x) = 0, x 2 X , we thus obtain

1X
n=0

2n+1X
k=1

V ^(n; k)(n+ 1)Hn;k(�;x) = 0; x 2 X : (5)

Since X is a fundamental system in Ae, (5) holds true in Ae. The theory of

spherical harmonics then tells us that V ^(n; k)(n+1) = 0, hence, V ^(n; k) = 0

for n = 0; 1; : : :; k = 1; : : : ; 2n + 1. This yields V = 0 in Ae. By analytical

continuation we have V = 0 in Ee, hence, v = 0 in Ee. This yields the desired

result. �

Theorem 3.2 means that the earth's external gravitational �eld is uniquely

recoverable from (negative) 'radial derivatives' corresponding to a fundamental

system X � S.

In what follows we mention a uniqueness result related to the oblique derivative

problem of potential theory.
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Theorem 3.3. Let E = Ei (i.e. the inner space of the earth) be a regular

region. Suppose that @F is the boundary of a regular region F = Fi such that

@F is a subset of S (i.e. the satellite orbit). Furthermore, assume that v is of

class pot(0)
�
Ee

�
and X is a countable dense system of points on @F (i.e. the

subset of observational points of the satellite orbit S) such that

l(x) � v(x) = 0; x 2 X ;

where l : @F ! R
3 is a unit vector �eld of class C(0;�)(@F) forming with

the inner (unit) normal n on @F an angle satisfying infx2@F (l(x) � n(x)) > 0.

Then v = 0 in Ee.

Proof. Let x be a point of @F such that l(x)�v(x) 6= 0. Because of the continuity

of l � v on @F there exists a neighbourhood U(x) such that l(x) � v(x) 6= 0 for

all x 2 U(x). This, however, contradicts our assumption imposed on the point

system X .

The point of departure now is v = rV in Ee. As is well{known in potential

theory (see e.g. [1, 11, 16]), the oblique derivative problem V 2 Pot(1;�)
�
Fe

�
,

(l � r)V = @V

@l
= 0 on @F , infx2@F (l(x) � n(x)) > 0 only has the trivial

solution V = 0 in Fe. We therefore get the wanted result in Ee by analytical

continuation. �

In conclusion, the geopotential �eld is uniquely determined by a certain set of

non{tangential oblique derivatives on the satellite orbit. Moreover, seen from

mathematical point of view, lo{lo SST corresponding to an in�nite system

X � S delivers redundant information.

From potential theory it is clear that analogous uniqueness theorems (as men-

tioned before) cannot be deduced for the `actual' hi{lo SST problem of �nding

the external gravitational �eld of the earth from a �nite subsystem X on the

satellite orbit S. In what follows, however, we would like to show that, given

the SST data for a �nite subset X � S, we are able to �nd, for every value

" > 0, an approximation u of the external gravitational �eld v of the earth in

"{accuracy so that u additionally is consistent to the SST data on the �nite

subsystem X .

4 Scalar Approximation

Let @Be be a sphere inside (the earth) E = Ei of radius � centered at the origin

0 (cf. Figure 2) with

� < inf
x2@Ee

jxj :
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�

@Be

@Ee

Figure 2: Illustration of the sets @Be and @Ee

We consider simultaneously the outer space Be of the sphere @Be and the outer

space Ee. Of course, Ee � Be.

A system (�n), �n 2 L2(@Be), n = 0; 1; : : :, is called complete in the Hilbert

space L2(@Be), if it satis�es the following property:

(P1) For every � 2 L2(@Be), the condition

< �;�n >@Be=

Z
@Be

�(x)�n(x) dS = 0

for all n = 0; 1; : : : implies � = 0 (in the sense of L2(@Be)).

In scalar potential theory a large number of systems (~�n)n=0;1;::: is known

satisfying ~�n 2 Pot(0)
�
Be

�
, ~�nj@Be = �n, n = 0; 1; : : :, and (�n)n=0;1;::: is

complete in L2(@Be) (see, for example, [5, 6, 10, 11]).

The most important system in the geosciences is the system of solid spherical

harmonics (i.e. multi{poles).

Example 4.1. Let (Hn;k(�; �)) n=0;1;:::
k=1;:::;2n+1

be the system of solid spherical har-

monics given by

Hn;k(�;x) =
1

�

�
�

jxj

�n+1

Yn;k

�
x

jxj

�
; x 2 Be :
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Then �
Hn;k(�;x)

���
x2@Be

�
n=0;1;:::

is a linearly independent complete system in L2(@Be). �

In order to illustrate the role of single poles we use the concept of fundamental

systems.

Example 4.2. Suppose that Y = (yn)n=0;1;::: is a fundamental system in Bi.

Denote by

M(x; yn) =
1

jx� ynj
; x 2 Be;

the single{poles (mass{points) at yn 2 Y, n = 0; 1; : : :.

Then �
M(x; yn)

���
x2@Be

�
n=0;1;:::

is a linearly independent complete system in L2(@Be). �

It should be mentioned that the completeness of solid spherical harmonics in

L2(@Be) is a well{known fact in potential theory (see, for example, [8, 14, 15,

21]). For mass{point systems the property (P1) has been proved already in

[5] (in fact, the property (P1) can be veri�ed even for arbitrary fundamental

systems (yn) in Ei and (general) boundaries @Be of regular regions).

Some examples of fundamental systems in Bi should be listed below:

(i) If Y is a countable dense set of points on the boundary @Di of a regular

region Di � Bi, then Y is a fundamental system in Bi.

(ii) If Y is a countable dense set of points in a regular region Di � Bi, then Y

is a fundamental system in Bi.

(iii) Let x0 be a point of Bi and Y = (yn)n=0;1;::: � Bi be an in�nite sequence

of points (with yn 6= yk for all n 6= k; n; k = 0; 1; :::) converging to x0, then Y

is a fundamental system in Bi.

Remark. Consider the fundamental system Y = (yn)n=0;1;::: in Bi generated by

Y = (yn)n=0;1;:::
as follows:

(�) (yn) is a countable dense system on the (real earth's) surface @E � Be,

(�) (yn)n=0;1;::: is obtained by letting yn =
�2

jynj2
yn.
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This set seems to be a suitable point system for practical purposes (cf. the

numerical experiments in [6]). �

Further complete systems can be obtained by using (K(x; yn))n=0;1;:::
with

K(x; y) =
1

jxj

1X
k=0

2k + 1

4��2
�k

�
jyj

jxj

�k

Pk

�
x

jxj
�
y

jyj

�
; x 2 Be; y 2 Y � Bi; (6)

instead of the system (M(x; yn))n=0;1;:::
with

M(x; y) =
1

jxj

1X
k=0

�
jyj

jxj

�k

Pk

�
x

jxj
�
y

jyj

�
; x 2 Be; y 2 Y � Bi; (7)

provided that Y is a fundamental system in Bi with � = supy2Y jyj < �, and

the coe�cients �k, �k 6= 0 for k = 0; 1; : : :, have to be chosen in such a way

that
1X
k=0

(2k + 1)j�kj

�
�

�

�k

<1 : (8)

Example 4.3. Suppose that Y = (yn)n=0;1;::: is a fundamental system in Bi

with � = supy2Y jyj < �. Let K(x; yn) be given by (6) (with coe�cients �k,

�k 6= 0 for k = 0; 1; : : :, satisfying the condition (8). Then�
K(x; yn)

���
x2@Be

�
n=0;1;:::

is a linearly independent complete system in L2(@Be). �

The proof of the property (P1) for the system (K(x; yn))n=0;1;:::
immediately

follows from the completeness of the spherical harmonics.

Remark. Of numerical signi�cance are series expansions (6) with explicit (i.e.

elementary) representation (as, for example, in the case of (7)). �

Example 4.4. Let y0 be a �xed point in Bi. Denote by P
y0
n (x) the expression

given by �
@

@y0

��

K(x; y0)

����
[�]=n

; n = 0; 1; : : :

0
@� : multiindex; [�] = �1 + �2 + �3;

�
@

@y0

��

=
@[a]

@y�1
1
@y�2

2
@y�3

3

�����
y0

1
A :
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Then  �
@

@y0

��

K(x; y0)

����
[�]=n

�����
x2@Be

!
n=0;1;:::

is a linearly independent complete system in L2(@Be). �

The proof follows from Maxwell's representation theorem. (cf. e.g. [8])

Applying the Kelvin transform with respect to the sphere @Be with radius �

around the origin (cf. e.g. [14]) Example 4.3 leads us to systems�
K(x; yn)

���
x2Be

�
n=0;1;:::

with

K(x; y) =

1X
k=0

2k + 1

4��2
�k

�
�2

jxjjyj

�k+1

Pk

�
x

jxj
�
y

jyj

�
; x 2 Be; y 2 Y � Be;

where Y = (yn)n=0;1;:::
is the point system generated by Y by letting yn =

�2

jynj2
yn, n = 0; 1; : : : (thereby assuming 0 =2 Y).

Remark. Note that our assumptions imply the estimate

1X
k=0

(2k + 1)j�kj

�
�

�

�k

<1; (9)

where � is given by

� = inf
y2Y

jyj > � :

�

Example 4.5. Suppose that Y = (yn)n=0;1;:::
is given as described above. Let

K(x; yn) be given as above (with coe�cients �k, �k 6= 0 for k = 0; 1; : : :,

satisfying (8)). Then �
K(x; yn)

��
x2@Be

�
n=0;1;:::

is a linearly independent complete system in L2(@Be). �
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Typical examples of this type are known from harmonic spline theory [6, 7]

and geodetic implementations (see [22] and the references therein). We only

mention:

(i) Abel{Poisson kernel:

�k = 1; k = 0; 1; : : : :

The kernel reads as follows:

K(x; y) =
1

4�

jxj2jyj2 � �2

(L (x; y))3=2
; x 2 Be; y 2 Y � Be;

where we have introduced the abbreviation

L(x; y) = jxj2jyj2 � 2�2x � y + �4:

(ii) Singularity kernel:

�n =
2

2n+ 1
; n = 0; 1; : : : :

The kernel is given by

K(x; y) =
1

2�

1

(L(x; y))1=2
; x 2 Be; y 2 Y � Be :

(iii) Logarithmic kernel:

�n =
1

(n+ 1)(2n+ 1)
; n = 0; 1; : : : :

Now we have

K(x; y) =
1

4��2
ln

 
�2
� x � y + (L(x; y))1=2

jxj jyj+ x � y

!
; x 2 Be; y 2 Y � Be :

Remark. Choosing (instead of (8) and (9)) �k, �k 6= 0 for k = 0; 1; : : :, in such

a way that
1X
k=0

(2k + 1)j�kj <1
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i.e. (j�kj
�1=2)k=0;1;::: is assumed to be summable (in the sense of [8]), � and �

are allowed to satisfy � � � and � � �, respectively. �

An equivalent statement to the completeness of a system (�n)n=0;1;::: in the

space L2(@Be) is the closure (see e.g. [2] for the proof of the equivalence).

(P2) For a given function � 2 L2(@Be) and arbitrary " > 0, there exist an

integer N(= N(")) and constants a0; : : : ; aN such that0
@Z
@Be

������(x)�
NX
n=0

an�n(x)

�����
2

dS

1
A

1=2

� " :

The property (P2) particularly means that any � 2 C(0)(@Be) can be approx-

imated by a member of the span of (�n)n=0;1;::: in the sense of the L2{metric

on @Be.

The step from approximation on the sphere @Be to approximation in the outer

space Be can be performed by the following theorem:

Theorem 4.6. Let K be a (not necessarily compact) subset of the space Be with

dist(K; @Be) � � > 0. Suppose that ~�; ~	 are functions of class Pot(0)
�
Be

�
with

~�j@Be = �; ~	j@Be = 	. Then there exists a positive constant C = C(K; @Be)

such that

sup
x2K

���~�(x)� ~	(x)
��� � C

0
@Z
@Be

j �(y)�	(y) j2 dS

1
A

1=2

:

Proof. Theorem 4.6 is easily veri�ed by application of the Poisson integral

formula

~�(x)� ~	(x) =

Z
@Be

P (x; y)
�
�(y)�	(y)

�
dS(y);

where P (x; y) denotes the Abel{Poisson kernel (see e.g. [14]). Put

C = C(K; @Be) = sup
x2K

0
@Z
@Be

j P (x; y) j2 dS(y)

1
A

1=2

: (10)

Then, for each x 2 K, the Cauchy{Schwarz inequality yields���~�(x)� ~	(x)
���2 � C2

Z
@Be

j�(y)�	(y)j2 dS(y) : (11)
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This is the desired result. �

Let ~� 2 Pot(0)
�
Be

�
with ~�j@Be = �. If now (~�n)n=0;1;::: � Pot(0)

�
Be

�
is given

such that ~�nj@Be = �n; n = 0; 1; : : :, forms a complete system in L2(@Be), then

for every " > 0 there exist an integer N(= N(")) and coe�cients a0; : : : ; aN
such that

sup
x2K

�����~�(x)�
NX
n=0

an ~�n(x)

�����
� C

0
@Z
@Be

������(y)�
NX
n=0

an�n(y)

�����
2

dS(y)

1
A

1=2

� C"

for each subset K � Be with dist(K; @Be) � � > 0. In other words, given
~� 2 Pot(0)

�
Be

�
with ~�j@Be = �, the L2{approximation of the function � on

the surface @Be implies ordinary pointwise approximation of ~� by the system

(~�n)n=0;1;::: on each subset K of Be with positive distance to @Be.

The system (~�n) is a 'basis system' (more precisely: scalar basis system) in

the following sense:

(P3) Each ~� 2 Pot(0)
�
Be

�
can be approximated, uniformly on subsets of Be

with positive distance to @Be, by �nite linear combinations of (~�n)n=0;1;::: �

Pot(0)
�
Be

�
, i.e. for every function ~� 2 Pot(0)

�
Be

�
there exists a member U 2

spann=0;1;:::(
~�n) in "{accuracy (with respect to the C(0){norm) on every set K

with dist(K; @Be) � � > 0.

As particular case we mention

sup
x2Ee

�����~�(x)�
NX
n=0

an ~�n(x)

����� � C" :

5 Vectorial Approximation

Let K be a compact subset of Be. Since Be is assumed to be an open set, K

has a positive distance to the boundary @Be. Hence, there exists a regular

region K� with K � K
�
e and K�e � Be (cf. Figure 3).
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�

@Be

@K�

e

K

Figure 3: Illustration of the sets @Be, K and K�e

Given ~� 2 Pot(0)
�
Be

�
, we have

sup
x2K

����r~�
�
(x)
��� = sup

x2K

�������rx

Z
@K�e

~�(y)
@

@n(y)
G�(x; y) dS(y)

������� ; (12)

where G� denotes Green's function for the scalar Dirichlet problem (cf. e.g.

[14]) in K�e . Consequently, it follows that

sup
x2K

����r~�
�
(x)
��� � sup

x2@K�e

���~�(x)��� sup
x2K

Z
@K�e

����rx

@

@n(y)
G�(x; y)

���� dS(y) : (13)

Setting

C� = C�(K; @K�e ) = sup
x2K

Z
@K�e

����rx

@

@n(y)
G�(x; y)

���� dS(y) (14)

we �nd

sup
x2K

����r~�
�
(x)
��� � C� sup

x2@K�e

���~�(x)��� : (15)

Since @K�e is a compact set in Be, we are able to deduce the following statement:

Theorem 5.1. Each scalar basis system
�
~�n

�
n=0;1;:::

i.e. each system
�
~�n

�
�

Pot(0)
�
Be

�
, where

�
~�nj@Be

�
is complete in L2(@Be), implies a `vectorial basis

system' in the following sense: For v 2 pot(Be), there exists an approximation
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by a �nite linear combination of vector �elds
�
r~�n

�
n=0;1;:::

, uniformly on

compact subsets of Be.

Proof. Suppose that v is of class pot(Be) and K is an in�nite compact subset of

Be. Then there exists a function V 2 Pot(Be) such that vjK = (rV )jK. Now,

for arbitrary " > 0, we have an integer N(= N(")) and coe�cients a0; : : : ; aN
such that

sup
x2@K�"

�����V (x)�
NX
n=0

an ~�n(x)

����� � ":

In connection with (15) this gives us

sup
x2K

�����v(x)�
NX
n=0

an(r~�n)(x)

����� � C� sup
x2@K�"

�����V (x)�
NX
n=0

an ~�n(x)

�����
� C�" :

This is the desired result. �

Next we discuss some relations between the spaces pot(Be)jEe and pot
(0;�)

�
Ee

�
.

Of course, we have

pot(Be)jEe � pot(0;�)
�
Ee

�
: (16)

The inclusion is, in fact, strict: choose y 2 BenEe, then the �eld

x 7! rx

1

jx� yj
; x 6= y; (17)

is an element of class pot(0;�)
�
Ee

�
, but it is obvious that the vector �eld is not

an element of pot(Be)jEe. Hence,

pot(Be)jEe 6= pot(0;�)
�
Ee

�
:

However, we are able to prove the following closure theorem:

Theorem 5.2. The space pot(Be)jEe is a dense subset of the space pot
(0;�)

�
Ee

�
with respect to k k�

�
Ee

�
, i.e. for any given value " > 0 and any element

v 2 pot(0;�)
�
Ee

�
there exists a �eld u 2 pot(Be)jEe such that 1

kv � uk�
�
Ee

�
� " :

1Note that the norm symbols are used simultaneously for scalar{ and vector{valued func-

tions.
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Proof. The main tool is the classical Hahn{Banach Theorem. Let F be a

linear functional on pot(0;�)
�
Ee

�
, continuous with respect to k k�

�
Ee

�
. Assume

that F is zero on the set pot(Be)jEe. Then we have to prove that F is the

zero functional, since this argumentation implies that pot(Be)jEe is dense in

pot(0;�)
�
Ee

�
with respect to k k�

�
Ee

�
due to a theorem in e.g. [13].

Because of the regularity of E = Ei we are allowed to construct at each point

x 2 @Ee a normal n(x) pointing into Ei. From the exterior Neumann problem

of potential theory we know that, for a given vector �eld f 2 C(0;�)(@Ee), there

exists a unique vector �eld u satisfying

u 2 pot(0;�)
�
Ee

�
; (uj@Ee) � n = f : (18)

The unique solution u can be represented as gradient �eld of a potential in-

volving a single layer G 2 C(0;�)(@Ee) (see e.g. [1, 10, 11, 12, 16])

u(x) = rx

Z
@Ee

G(y)
1

jx� yj
dS(y); x 2 Ee :

Moreover, we have the estimate (cf. [20])

kuk�
�
Ee

�
� C� k (uj@Ee) � nk� (@Ee) : (19)

For any point y 2 Ei, the vector �eld

x 7! ay(x) = ry

1

jx� yj
; x 6= y; (20)

is of class pot(0;�)
�
Ee

�
. Thus, by setting

A(y) = F (ayjEe) (21)

we get a function A de�ned on Ei. The expressions

("i � ry)ay(x) =
@

@yi
ay(x) =

@

@yi
ry

1

jx� yj
; x 2 Ee; (22)

de�ne vector �elds @

@yi
ay, i = 1; 2; 3, of class pot(0;�)

�
Ee

�
. Furthermore, it

is not di�cult to see that A is a continuously di�erentiable function on Ei

satisfying
@

@yi
A(y) = F

�
@

@yi

�
ayjEe

��
: (23)
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Hence, obverserving (23) we �nd

curl ryA(y) = 0; div ryA(y) = 0; y 2 Ei : (24)

This means that A is analytic in Ei. On the other hand, for y 2 Bi it is

obvious that ayjBe 2 pot(Be) and ayjEe 2 pot(Be)jEe. Hence, for y 2 Bi,

F (ayjEe) = A(y) = 0. Analytic continuation gives A(y) = 0 for all points

y 2 Ei. This yields, in particular,

0 = G(x)A(x+ sn(x)) = F
�
G(x)ax+sn(x)jEe

�
for each x 2 @Ee and (su�ciently small) s > 0. The mappings �s : @Ee !

pot(0;�)
�
Ee

�
given by

�s(x) = G(x)ax+sn(x)jEe (25)

will be investigated in parallel to arguments in [10], Appendix 4. First the

H�older continuity of �s will be veri�ed. We start with the estimate

�s(x)� �s
�
x0
�



�
(@Ee) �

��G �x0��� 

ax+sn(x) � ax0+sn(x0)




�
(@Ee)

+
��G(x)�G

�
x0
��� 

ax+sn(x)




�
(@Ee) (26)

for x; x0 2 @Ee.

Explicit calculations in connection with the mean value theorem show us that

ax+sn(x)




�
(@Ee) = O

�
s�3
�

(27)

as s! 0+.

The H�older continuity of G gives

��G(x)�G
�
x0
��� = O

���x� x0
����

as jx� x0j ! 0+.

Moreover,

ax+sn(x) � ax0+sn(x0)




�
(@Ee) = O

�
x+ sn(x)�

�
x0 + sn

�
x0
���

= O
���x� x0

��+ s
��n(x)� n

�
x0
����

= O
���x� x0

���� (x! x0); (28)

where we have used the estimate��n(x)� n
�
x0
��� � C

��x� x0
��
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(which is certainly true for a C(2;�)-smooth surface @Ee). Summarizing our

results (26), (27), and (28) we therefore obtain



�s(x)� �s
�
x0
�



�
(@Ee) = O

�
jjGjj0(@Ee)

��x� x0
��� + 1

s3

��x� x0
����

= O
���x� x0

���� (x! x0);

i.e. x ! x0 implies �s(x) ! �s(x
0) with respect to k k�(@Ee), hence, �s is

continuous with respect to k k�(@Ee), thus integrable over @Ee. Now, we have

0 =

Z
@Ee

G(x)A(x+ sn(x)) dS(x)

=

Z
@Ee

F (G(x)ax+sn(x)jEe) dS(x) :

By virtue of the continuity of F and the integrability of �s over @Ee the linear

functional and the integral may be interchanged (see also [15]).

0 = F

0
@Z
@Ee

(G(x)ax+sn(x)jEe) dS(x)

1
A ; s > 0 : (29)

Using the abbreviation

us(y) =

Z
@Ee

G(x)rz

1

jz � yj

������
z=x+sn(x)

dS(x) (30)

the identity (29) reduces to

0 = F (us); s > 0 : (31)

The vector �eld us is of class pot(0;�)
�
Ee

�
(cf. [20]). In [10], Appendix 5, it

has been shown that

(usj@Ee) � n! (uj@Ee) � n; s! 0; (32)

with respect to k k�(@Ee). Therefore, by virtue of (19), we have

us ! u ; s! 0; (33)
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with respect to k k�
�
Ee

�
. The continuity of F then shows

F (u) = lim
s!0

s>0

F (us) = 0; (34)

as required. �

Finally, the closure theorem (Theorem 5.2) enables us to derive the following

approximation theorem:

Theorem 5.3. Let (~�n)n=0;1;::: be a system of functions ~�n 2 Pot(0)
�
Be

�
,

n = 0; 1; : : :, such that (~�nj@Be)n=0;1;::: is complete in L2(@Be). Then, every

function v 2 pot(0;�)
�
Ee

�
can be approximated in the metric k k�

�
Ee

�
by a

�nite linear combination of the gradient �elds (r~�n)n=0;1;:::, i.e. for given

" > 0 and v 2 pot(0;�)
�
Ee

�
, there exist an integer N(= N(")) and coe�cients

a0; : : : ; aN such that 




v �
NX
n=0

anr~�n







�

�
Ee

�
� " :

Proof. In comparison to Theorem 5.2 it remains to prove that any continuous

linear functional F on pot(0;�)
�
Ee

�
satisfying F

�
r~�njEe

�
= 0 for n = 0; 1; : : :,

is zero on the set pot(Be)jEe.

Let u be a vector �eld of class pot(Be). Then there exists a function U 2

Pot(Be) with u = rU . Since (~�n)n=0;1;::: is assumed to be a scalar basis system

in Be, the function U can be approximated by �nite linear combinations UN

of (~�n), i.e. UN ! U on each compact subset K of Be. A result given in [15]

shows that any partial derivative of UN tends to the corresponding partial

derivative of U uniformly on each compact set K of Be. We consider, in

particular, the second order derivatives and a bounded neighbourhood of @Ee.

Then, by application of the mean value theorem of multidimensional analysis,

rUN !rU in the H�older norm k k�(@Ee). Consequently, by (19), we obtain

rUN ! rU in the sense of k k�
�
Ee

�
. In accordance with the assumption

F
�
rUN jEe

�
= 0. Hence, the continuity of F gives us

F (u) = F
�
rU jEe

�
= lim

N!1
F
�
rUN jEe

�
= 0;

as required. �

In connection with the norm estimate (4) and Theorem 5.3 we �nd the follow-

ing corollary.
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Corollary 5.4. Let (~�n)n=0;1;::: be a scalar basis system of functions ~�n 2

Pot(0)
�
Be

�
, n = 0; 1; : : :, in the sense of the property (P3). Then, for given

" > 0 and v 2 pot(0)
�
Ee

�
, there exist an integer N(= N(")) and coe�cients

a0; : : : ; aN such that 




v �
NX
n=0

anr~�n







0

�
Ee

�
� " :

Hence, the external gravitational �eld v of the earth admits a uniform approx-

imation by gradient �elds of scalar basis systems of class Pot(0)
�
Be

�
on and

outside the earth's surface.

From an extended version of the Helly Theorem (see [23]) we are able to

derive the following corollaries, which play an important role in hi{lo SST of

determining the earth's gravitational �eld from a �nite set of GPS{SST data.

Corollary 5.5. Let the assumptions of Corollary 5.4 be ful�lled. Let X be

a �nite subset of S � Ee satisfying (1). Then, for given " > 0 and v 2

pot(0;�)
�
Ee

�
, there exist an integer N(= N(")) and coe�cients a0; : : : ; aN such

that 




v �
NX
n=0

anr~�n







�

�
Ee

�
� "

and

v(x) =

NX
n=0

an

�
r~�n

�
(x); x 2 X :

Corollary 5.6. Let the assumptions of Corollary 5.4 be ful�lled. Let l be a

vector �eld given on a �nite subset X of S � Ee satisfying (1). Then, for given

" > 0 and v 2 pot(0;�)
�
Ee

�
, there exist an integer N(= N(")) and coe�cients

a0; : : : ; aN such that 




v �
NX
n=0

anr~�n







�

�
Ee

�
� "

and

l(x) � v(x) =

NX
n=0

an l(x) �
�
r~�n

�
(x); x 2 X :

In other words, the geopotential �eld admits an approximation (in "{accuracy

with respect to the k k�
�
Ee

�
{norm) consistent to a �nite number of (oblique)

derivatives.

Furthermore, lo{lo SST can be based successfully on the following result:



REFERENCES 24

Corollary 5.7. Let the assumptions of Corollary 5.4 be ful�lled. Let l be

a vector �eld given on a �nite subset X of S satisfying (1). Then, for given

" > 0 and v 2 pot(0;�)
�
Ee

�
, there exist an integer N(= N(")) and coe�cients

a0; : : : ; aN such that 




v �
NX
n=0

anr~�n







�

�
Ee

�
� "

and

l(x) � (v(x)� v(x+ h(x))) =

NX
n=0

anl(x) �
��
r~�n

�
(x)�

�
r~�n

�
(x+ h(x))

�
;

x 2 X . In particular,

h(x) � (v(x)� v(x+ h(x))) =

NX
n=0

anh(x) �
��
r~�n

�
(x)�

�
r~�n

�
(x+ h(x))

�
;

x 2 X .

Clearly, the H�older topology in Corollary 5.5, 5.6, and 5.7 can be substituted

by the uniform topology on Ee (as indicated in Corollary 5.4).
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