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Abstract

Being interested in (rotation-)invariant pseudodi�erential equations of satellite problems corresponding to

spherical orbits, we are reasonably led to generating kernels that depend only on the spherical distance,

i. e. in the language of modern constructive approximation form spherical radial basis functions. In

this paper approximate identities generated by such (rotation-invariant) kernels which are additionally

locally supported are investigated in detail from theoretical as well as numerical point of view. So-called

spherical di�erence wavelets are introduced. The wavelet transforms are evaluated by the use of a

numerical integration rule, that is based on Weyl's law of equidistribution. This approximate formula is

constructed such that it can cope with millions of (satellite) data. The approximation error is estimated

on the orbital sphere. Finally, we apply the developed theory to the problems of satellite-to-satellite

tracking (SST) and satellite gravity gradiometry (SGG).

AMS Subject classi�cation: 33F05, 34A55, 41A35, 42C40, 47A52, 65J20

Key words: singular integrals, equidistribution, error estimates, spherical di�erence wavelets, satellite

data, satellite-to-satellite tracking, satellite gravity gradiometry, regularization.
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Introduction

In approximation theory, locally supported trial functions are nothing new, having been discussed already

in 1910 by Haar (cf. [Ha]), long before anyone began speaking of wavelets. The primary importance of

locally supported basis functions in one-dimensional Euclidean space is the `birth' to an entire family of

wavelets by means of two operations, viz. (dyadic) dilations and (integer) translations. In other words,

an entire set of approximants is available from a single locally supported `mother wavelet' function, and

this set provides useful `building block' functions that enable fast decorrelation of data. In consequence,

a `multiscale analysis' in terms of so-called Haar wavelets consists of studying the `detail signals', i.e. the

di�erence in approximations made at adjacent resolution levels. Once a full understanding of multiscale

approximation using the Haar basis is ensured, the extension to other (smooth) locally supported wavelet

bases is just a matter of changing the mother wavelet. The fundamental principles remain the same. (For

more details the reader is referred, for example, to [Chu] [Da], [Ho], [LoMaRi], [Ni], and the references

therein.)

In modern satellite problems the orbits are quite attractive for mathematical modelling: A circular

orbit implies that the data are lying on a sphere; the measurements o�er a global data coverage and

an extremely dense and uniform distribution; the measurements (achieved by employing the signi�cant

principles of satellite-to-satellite tracking (SST) and/or satellite gravity gradiometry (SGG)) provide

global information about the �rst and/or second radial derivatives of the gravitational potential at a

moderate altitude. The radial derivatives on spherical orbits are representable by rotation-invariant

pseudodi�erential equations (for more details on pseudodi�erential operators on the sphere see [Sv]; their

role in modern satellite problems is described in [Fr]).

This is the reason why it is of basic interest to construct locally supported wavelets on the sphere re
ect-

ing the rotational invariance of the operators of the SST/SGG-observables. In consequence, multiscale

modelling of the data has to be formulated by a rotation-invariant multiscale approach, and the features

of any signal on the sphere have to be examined by some process of `spherical cap windowing'. In this

respect it should be noted that the basic framework of rotation-invariant wavelet approximation has

been developed by the Geomathematics Group of the University of Kaiserslautern during the last years.

(Note that other approaches to spherical wavelets are due to e. g. [Sw1], [Sw2], [Va]). Localizing and

even locally supported scaling and wavelet functions have been shown to act as adequate approximants

in rotation-invariant approximation on the sphere (confer [FrGeSchr] and the references therein). How-

ever, if the approximants happen to constitute locally supported (rotation-invariant) bases and the data

points are of huge number and uniform distribution, then the sequence of consecutive di�erences within

the multiscale process admits a more e�cient and economical study. This situation can be handled by

an appropriate observation of the integration concept of equidistribution within a spherical approach of

locally supported di�erence wavelets. The objective of this writing, therefore, is to investigate in more

detail the speci�c advantages of both the spherical wavelet theory and the concept of equidistribution

on the sphere as essential ingredients in the solution of modern satellite problems such as SST, SGG.

More explicitly, the following features are incorporated in this way of thinking about locally supported

spherical wavelets corresponding to equidistributed data, namely (i) rotational symmetry of scaling and

wavelet functions, (ii) basis property based on the multiscale modelling of the di�erence of `two smooth-

ings' realized by two operations, i.e. dilation and rotation, (iii) decorrelation by the probate construction

of scale dependent locally supported wavelets (i.e. radial basis functions), (iv) fast computation by use of

the simple integration technique of equidistribution, (v) appropriate regularization of the satellite problem

by multiscale approximation. An essential tool is the theory of singular integrals using locally supported

kernel functions. Altogether, our locally supported di�erence wavelet approach based on equidistributed

data points is meant as the simplest mathematical realization that models large numbers of satellite

data economically and e�ciently, to achieve parsimonious representations of rotation-invariant physical

quantities such as radial derivatives and potential values of the earth's gravitational �eld. SST is the

technology to be realized by the satellite missions CHAMP (2000), GRACE (2002), while SGG is planned

for the future satellite mission GOCE (2004).
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1 De�nitions and Notation

In this section the notation and the mathematical background that will be used throughout the paper

will be introduced brie
y.

Z, N, R denote the set of integers, positive integers, real numbers, respectively. As usual, N0 := N [ f0g.
Let Rn := f(x1; x2; : : : ; xn) jxi 2 R for i = 1; : : : ; ng be the n-dimensional Euclidean space and let


r := f� 2 R
3 j j�j = rg, r 2 R, r > 0, be the sphere of radius r with center in the origin in R3 , where

jxj :=
p
(x1)2 + (x2)2 + (x3)2 is the Euclidean norm in R3 and x � y :=P3

i=1 xiyi is the Euclidean inner

product in R3 . The unit sphere 
1 will be brie
y denoted by 
.

For points on the sphere 
r we introduce spherical polar coordinates as follows: Every vector x 2 
r can

be represented with respect to the canonical standard basis in R3 as x = r�, r = jxj, and � = x=jxj 2 
,

� = (�1; �2; �3) =
�
cos(')

p
1� t2; sin(')

p
1� t2; t

�
; ('; t) 2 [0; 2�)� [�1; 1]:

Using the coordinate transformation t = cos(#), # 2 [0; �], one gets the usual polar coordinates ('; #) 2
[0; 2�)� [0; �]. The surface element of the sphere 
r is denoted by d!r. In the coordinates ('; t) it has
the representation d!r(x) = r2 d' dt. For the surface element of the unit sphere 
 we write d! instead

of d!1. The surface volume of a measurable subset D of the sphere 
r is denoted by kDk. Clearly,

k
rk = 4� r2.

Let F(
r) denote the set of all measurable real-valued functions on 
r. The subset of all k-times
continuously di�erentiable real-valued functions on 
r is Ck(
r), k 2 N0 , and C1(
r) :=

T
1

k=0 Ck(
r).

In particular, we let C(
r) := C0(
r). De�ne for F 2 C(
r), and for F 2 F(
r), respectively,

kFkC(
r) := sup
x2
r

jF (x)j;

kFkLp(
r) :=

�Z

r

jF (x)jpd!r(x)
�1=p

for 1 � p <1:

(All integrals are understood in the Lebesgue-sense.) It is well-known from functional analysis, that

the space C(
r) of continuous functions on 
r equipped with the supremum norm k � kC(
r) and the

spaces Lp(
r) := fF 2 F(
r) j kFkLp(
r) <1g equipped with the Lp-norm k � kLp(
r), respectively, are
Banach spaces. In addition, the space L2(
r) of square-integrable functions on 
r with the inner product

(F;G)L2(
r) :=
R

r

F (x)G(x) d!r(x) is a real Hilbert space.

Analogously, let [a; b], a; b 2 R, a < b, be a nonempty interval in R and let F([a; b]) be the space of

all real-valued measurable functions on the interval [a; b]. The Banach spaces of continuous, k-times
continuously di�erentiable, in�nitely often di�erentiable, and Lp-integrable functions, 1 � p < 1, on

[a; b] are denoted by C([a; b]), Ck([a; b]), C1([a; b]), and Lp([a; b]), respectively.
Let D be either a sphere 
r or an interval [a; b]. As D is compact, C(D) � L1(D) and Lp(D) � L1(D)
for all p, 1 � p < 1. A continuous function F 2 C(D) is said to be Lipschitz-continuous, if there

exists a constant CF , such that jF (x) � F (y)j � CF jx� yj for all x; y 2 D. The constant CF is called a

Lipschitz-constant for F . The support of a function F 2 F(D) is given by supp(F ) := fx 2 D jF (x) 6= 0g.
In what follows, some facts about spherical harmonics and Legendre polynomials are presented. For more

details, the reader is referred to [FrGeSchr], [M�u].

The set of all polynomials in R3 of degree n is denoted as Poln(R
3 ). Let Harmn(R

3 ) be the space of

homogeneous harmonic polynomials of degree n. The space Harmn(
) :=
�
Hn j
 j Hn 2 Harmn(R

3 )
	
is

called the space of spherical harmonics of degree n. It is a �nite-dimensional vector space with dimension
dim(Harmn(
)) = 2n+ 1.

Let fYn;jgj=1;:::;2n+1 � Harmn(
) from now on denote a complete L2(
)-orthonormal system in the

vector space Harmn(
) for n 2 N0 . Then the set fYn;jg :=
S
n2N0

fYn;jgj=1;:::;2n+1 is a complete

L2(
)-orthonormal system in L2(
). In particular, every function F 2 L2(
) can be represented by

means of its Fourier series with respect to fYn;jg, i. e.

F =

1X
n=0

2n+1X
j=1

F^(n; j)Yn;j ;
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with the Fourier coe�cients

F^(n; j) := (F; Yn;j)L2(
) =

Z



F (�)Yn;j(�) d!(�):

Furthermore, the span of fYn;jg is dense in C(
) with respect to the k � kC(
)-norm.
The addition theorem establishes a connection between spherical harmonics of degree n and the Legendre

polynomial Pn of degree n: Let fYn;jgj=1;:::;2n+1 be an L2(
)-orthonormal system in Harmn(
), then

2n+1X
j=1

Yn;j(�)Yn;j(�) =
2n+ 1

4�
Pn(� � �); �; � 2 
; n 2 N0 :

To K 2 L1([�1; 1]) we can associate a function eK : 
�
! R, de�ned by (�; �) 7! eK(�; �) := K(� � �).
Then eK is a so-called radial basis function, it is in C(
� 
), and Lp(
� 
), 1 � p < 1, if and only if

K is in C([�1; 1]), and Lp([�1; 1]), respectively. Furthermore, for � 2 
 �xed, the function � 7! K(� � �),
� 2 
, is in C(
), and Lp(
), 1 � p < 1, if and only if K is in C([�1; 1]), and Lp([�1; 1]), respectively.
The C-norm of � 7! K(� � �), and the Lp-norm of � 7! K(� � �), respectively, do not depend on � 2 
.

This result is obvious for continuous functions, and in the case of Lp-functions it is implied by

2�

Z 1

�1

G(t) dt =

Z



G(� � �) d!(�)

for all G 2 L1([�1; 1]) and for all � 2 
. Let fYn;jg be a complete orthonormal system in L2(
) and

K 2 L2([�1; 1]). Then (�; �) 7! K(� � �), �; � 2 
, has in the L2-sense the representation

K(� � �) =
1X
n=0

2n+1X
j=1

K^(n)Yn;j(�)Yn;j(�);

where

K^(n) := 2�

Z 1

�1

K(t)Pn(t) dt = 2� (K;Pn)L2([�1;1]):

The number K^(n), n 2 N0 , is called n-th Legendre coe�cient of K.

Let F 2 L2(
) and K 2 L2([�1; 1]), or F 2 C(
) and K 2 L1([�1; 1]). Then

(K � F )(�) :=
Z



K(� � �)F (�) d!(�); � 2 
;

is well-de�ned and is in L2(
), and in C(
), respectively. The function K � F is called (spherical)

convolution of K and F . For K 2 L2([�1; 1]) and F 2 L2(
), K � F can be expressed as

(K � F )(�) =
1X
n=0

2n+1X
j=1

K^(n)F^(n; j)Yn;j(�):

An important result in the theory of spherical harmonics is the Funk-Hecke formula: Let K be in

L1([�1; 1]) and n 2 N0 . Then, for every Yn 2 Harmn(
),Z



K(� � �)Yn(�) d!(�) = K^(n)Yn(�); � 2 
:

2 Approximate Identities on the Sphere

In this section approximate identities for continuous functions, and square-integrable functions, respec-

tively, will be presented, i. e. families of operators fIhgh2(�1;1), Ih : X (
)! X (
), F 7! Ih(F ) := Kh�F ,
where fKhgh2(�1;1) � L1([�1; 1]) for X (
) = C(
), and fKhgh2(�1;1) � L2([�1; 1]) for X (
) = L2(
),
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which ful�ll limh!1; h<1 kF � Ih(F )kX (
) = 0. Of special interest are approximate identities generated

by so-called ([h; 1]-)locally supported kernels.

In Subsection 2.1 the terminology of singular integrals, approximate identities, and scaling functions will

be explained and several equivalent characterizations of an approximate identity will be given. Further

background material can be found in [BeBuPa]. In Subsection 2.2 we shall be concerned with approximate

identities generated by so-called [h; 1]-locally supported kernels i. e. kernels fKhgh2(�1;1) showing the

additional property supp(Kh) = [h; 1] for all h 2 (�1; 1). Error estimates for kF � Ih(F )kC(
) will be
presented in explicit form. Finally two particularly important examples of non-negative [h; 1]-locally
supported kernels that generate an approximate identity in C(
) (and also in L2(
)) will be discussed in

more detail.

2.1 Singular Integrals, Approximate Identities and Scaling Functions

De�nition 2.1 Let fKhgh2(�1;1) be a family of functions in L1([�1; 1]) or in L2([�1; 1]) satisfying the
condition (Kh)

^(0) = 1 for all h 2 (�1; 1). Then the family of bounded linear operators fIhgh2(�1;1),
Ih : X (
)! X (
), F 7! Ih(F ), given by

Ih(F )(�) := (Kh � F )(�) =
Z



Kh(� � �)F (�) d!(�);

where X (
) = C(
) for fKhgh2(�1;1) � L1([�1; 1]) and X (
) = L2(
) for fKhgh2(�1;1) � L2([�1; 1]),
is called a (spherical) singular integral. The family fKhgh2(�1;1) is called the kernel of the (spherical)

singular integral. The singular integral fIhgh2(�1;1) is said to be an approximate identity (in X (
))
corresponding to the scaling function fKhgh2(�1;1), if the following limit relation holds true:

lim
h!1;
h<1

kF � Ih(F )kX (
) = 0 for all F 2 X (
):

Note that the assumption that a kernel fKhgh2(�1;1) be a scaling function implies that fIhgh2(�1;1) is
an approximate identity. The scaling function fKhgh2(�1;1) is said to generate the approximate identity

fIhgh2(�1;1). The kernel fKhgh2(�1;1) is called continuous kernel, L1-kernel, L2-kernel, non-negative

kernel, etc., if all Kh have this property.

Theorem 2.2 Let fKhgh2(�1;1) be a family of functions in L1([�1; 1]) or in L2([�1; 1]), which satis�es

(Kh)
^(0) = 1 for all h 2 (�1; 1) and which is L1

-uniformly bounded, i. e.

2�

Z 1

�1

jKh(t)j dt �M for all h 2 (�1; 1); (1)

with some constant M independent of h. Then the spherical singular integral fIhgh2(�1;1) de�ned in

De�nition 2.1 is an approximate identity (in X (
)) if and only if

lim
h!1;
h<1

(Kh)
^(n) = 1 for all n 2 N0 : (2)

Proof: The proof has to be performed separately for the two cases fKhgh2(�1;1) � L1([�1; 1]) and
fKhgh2(�1;1) � L2([�1; 1]). We start with fKhgh2(�1;1) � L1([�1; 1]).
=): By the de�nition of an approximate identity, limh!1; h<1 kF � Ih(F )kC(
) = 0 for all F 2 C(
).
Particularly, this holds for all spherical harmonics Yn of degree n. The Funk-Hecke formula implies that
Ih(Yn)(�) = (Kh)

^(n)Yn(�), � 2 
. Thus,

0 = lim
h!1;
h<1

kYn � Ih(Yn)kC(
) = lim
h!1;
h<1

j1� (Kh)
^(n)j kYnkC(
);

and (2) follows because of kYnkC(
) 6= 0 for all spherical harmonics Yn 6� 0 of degree n 2 N0 .
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(=: Let Yn 2 Harmn(
), n 2 N0 , be arbitrary. We know that Ih(Yn)(�) = (Kh)
^(n)Yn(�) for all � 2 
,

for all n 2 N0 , and all h 2 (�1; 1). Furthermore, limh!1; h<1(Kh)
^(n) = 1 for all n 2 N0 . Thus,

lim
h!1;

h<1

kYn � Ih(Yn)kC(
) = lim
h!1;

h<1

j1� (Kh)
^(n)j kYnkC(
) = 0:

So the assertion limh!1; h<1 kF � Ih(F )kC(
) = 0 is true for all spherical harmonics Yn of degree n 2 N0 .
Let F 2 C(
) be arbitrary. We have to show, that for every " > 0 there exists an h0 so that for every

h 2 [h0; 1) the estimate kF � Ih(F )kC(
) � " holds. This is done in the following way: Let " > 0 be

arbitrary. Choose a complete orthonormal system fYn;jg of spherical harmonics in L2(
). Then F can

be approximated arbitrarily well (with respect to k � kC(
)) by �nite linear combinations of the Yn;j . Let
LF be such a linear combination, so that kF � LFkC(
) � minf"=3; "=(3M)g, where M is the constant

given in (1). By the triangle inequality we get

kF � Ih(F )kC(
) � kF � LFkC(
) + kLF � Ih(LF )kC(
) + kIh(LF )� Ih(F )kC(
): (3)

The �rst summand in (3) can be estimated by "=3. For the second summand, we use that

LF (�) =

1X
n=0

2n+1X
j=1

ln;j Yn;j(�);

where only a �nite number of the coe�cients ln;j is di�erent from zero. By virtue of the linearity of Ih,

jLF (�)� Ih(LF )(�)j =

������
1X
n=0

2n+1X
j=1

ln;j

�
Yn;j(�)� Ih(Yn;j)(�)

�������
�

1X
n=0

2n+1X
j=1

jln;j j jYn;j(�) � Ih(Yn;j)(�)j:

Let N be the number of coe�cients ln;j , which are not zero. All these coe�cients can be estimated by

some constant C which depends only on LF . Choose h0 so, that for all h 2 [h0; 1), and for all tuples (n; j)
with ln;j 6= 0 the norm kIh(Yn;j)� Yn;jkC(
) � "=(3NC). Then for all h 2 [h0; 1), kLF � Ih(LF )kC(
) �
NC("=(3NC)) = "=3. To estimate the last summand in (3), the L1-uniform boundedness of the kernels

Kh is used:

jIh(LF )(�) � Ih(F )(�)j =

����Z



Kh(� � �) (LF (�)� F (�)) d!(�)

����
�

Z



jKh(� � �)j jLF (�)� F (�)j d!(�)

� kLF � FkC(
) 2�
Z 1

�1

jKh(t)j dt

� ("=(3M))M = "=3

Hence, (2) implies limh!1;h<1 kF � Ih(F )kC(
) = 0 for all F 2 C(
).
In case of fKhgh2(�1;1) � L2([�1; 1]) the proof can be given as follows:

=): This part of the proof is identical to the one for fKhgh2(�1;1) � L1([�1; 1]), only the k � kC(
)-norm
has to be replaced by the k � kL2(
)-norm.
(=: The L1-uniform boundedness (1) of the functions Kh, h 2 (�1; 1), and jPn(t)j � 1 for all t 2 [�1; 1]
and all n 2 N0 imply that

(Kh)
^(n) � 2�

Z 1

�1

jKh(t)j jPn(t)j dt � 2�

Z 1

�1

jKh(t)j dt �M;

(Kh)
^(n) � �2�

Z 1

�1

jKh(t)j jPn(t)j dt � �2�
Z 1

�1

jKh(t)j dt � �M:
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Hence, (Kh)
^(n) 2 [�M;M ] for all n 2 N0 and all h 2 (�1; 1), and therefore,

kF � Ih(F )k2L2(
) =
1X
n=0

2n+1X
j=1

�
1� (Kh)

^(n)
�2 �

F^(n; j)
�2
� (M + 1)2 kFk2

L2(
)

for all h 2 (�1; 1) and all F 2 L2(
). As the upper bound (M + 1) of j1� (Kh)
^(n)j is independent of

h 2 (�1; 1), the limit for h! 1 and the sum may be interchanged. Hence,

lim
h!1;
h<1

kF � Ih(F )kL2(
) =

0@ 1X
n=0

2n+1X
j=1

lim
h!1;
h<1

�
1� (Kh)

^(n)
�2 �

F^(n; j)
�21A1=2

= 0

for all F 2 L2(
). 2

Restricting our attention to non-negative kernels fKhgh2(�1;1), i. e. all Kh, h 2 (�1; 1), satisfy Kh(t) � 0

for almost all t 2 [�1; 1], more equivalent characterizations of an approximate identity are deducible.

The main advantage of non-negative kernels fKhgh2(�1;1) is that the property (Kh)
^(0) = 1 implies

1 = (Kh)
^(0) = 2�

Z 1

�1

Kh(t) dt = 2�

Z 1

�1

jKh(t)j dt = 2� kKkL1([�1;1]) ;

i. e. the L1-uniformly boundedness condition (1) is valid with the sharp bound M = 1.

Theorem 2.3 Let fKhgh2(�1;1) be a family of functions in L1([�1; 1]) or in L2([�1; 1]), which satisfy

(Kh)
^(0) = 1 and which are non-negative. Let fIhgh2(�1;1) be the spherical singular integral de�ned in

De�nition 2.1. Then the following properties are equivalent:

(i) fKhgh2(�1;1) is a non-negative scaling function,

(ii) fIhgh2(�1;1) is an approximate identity,

(iii) limh!1; h<1(Kh)
^(n) = 1 for all n 2 N0 ,

(iv) limh!1; h<1(Kh)
^(1) = 1,

(v) fKhgh2(�1;1) satis�es the localization property limh!1; h<1

R
�

�1
Kh(t) dt = 0 for all � 2 (�1; 1).

Proof: The following proof is valid for both cases, fKhgh2(�1;1) � L1([�1; 1]) and fKhgh2(�1;1) �
L2([�1; 1]).
The statements (i) and (ii) are equivalent by de�nition and the equivalence of (ii) and (iii) was proved

in Theorem 2.2. Obviously, (iii) implies (iv). It remains to show, that (v) follows from (iv) and that (v)

implies (iii).

(iv) =) (v): Let � 2 (�1; 1) be arbitrary. Because of the non-negativity of Kh,

0 �
Z �

�1

Kh(t) dt � 1

(1� �)

Z �

�1

(1� t)Kh(t) dt

� 1

(1� �)

Z 1

�1

(1� t)Kh(t) dt

=
1

2�

1

(1� �)

�
(Kh)

^(0)� (Kh)
^(1)

�
:

Taking the limit for h! 1 the localization property follows from (iv).

(v) =) (iii): Property (iii) is equivalent to the following assertion: For every n 2 N, and for every

" > 0, there exists h0 = h0("; n) 2 (�1; 1) such that 1 � " � (Kh)
^(n)) � 1 for all h 2 [h0; 1). By the

non-negativity of Kh and the estimate jPn(t)j � 1 for all n 2 N0 ,

(Kh)
^(n) = 2�

Z 1

�1

Kh(t)Pn(t) dt � 2�

Z 1

�1

Kh(t) dt = (Kh)
^(0) = 1:
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Let n 2 N and " > 0 be arbitrary. For � 2 (�1; 1),

(Kh)
^(n) = 2�

Z �

�1

Kh(t)Pn(t) dt+ 2�

Z 1

�

Kh(t)Pn(t) dt:

As Pn(1) = 1, � 2 (�1; 1) can be chosen so close to 1, that Pn(t) �
p
1� ("=2) for all t 2 [�; 1]. Thus,

(Kh)
^(n) � 2�

Z
�

�1

Kh(t)Pn(t) dt+ 2�
p
1� ("=2)

Z 1

�

Kh(t) dt: (4)

As jPn(t)j � 1, for all � 2 (�1; 1)

�2�
Z

�

�1

Kh(t) dt � 2�

Z
�

�1

Kh(t)Pn(t) dt � 2�

Z
�

�1

Kh(t) dt:

Therefore the localization property (v) implies that there exists h1 2 (�1; 1), such that the estimate

2�
R �
�1

Kh(t)Pn(t) dt � �"=2 is valid for all h 2 [h1; 1). On the other hand, (Kh)
^(0) = 1 for all

h 2 (�1; 1), and the localization property implies

1

2�
= lim

h!1;
h<1

Z 1

�1

Kh(t) dt = lim
h!1;
h<1

Z �

�1

Kh(t) dt+ lim
h!1;
h<1

Z 1

�

Kh(t) dt = lim
h!1;
h<1

Z 1

�

Kh(t) dt:

Hence, there exists h2 2 (�1; 1) such that 2�
R 1
�
Kh(t) dt �

p
1� ("=2) for all h 2 [h2; 1). Equation (4)

implies 1� " � (Kh)
^(n) � 1 for all h 2 [h0; 1) where h0 := maxfh1; h2g. 2

Finally, it is worth mentioning that a non-negative scaling function fKhgh2(�1;1) � L1([�1; 1]), and
fKhgh2(�1;1) � L2([�1; 1]), respectively, which ful�lls the assumptions of Theorem 2.3, satis�es the

estimate kKh � FkX (
) � kFkX (
) for all h 2 (�1; 1) and for all F 2 X (
), where X (
) = C(
), and
X (
) = L2(
), respectively.

2.2 Approximate Identities Generated by [h; 1]-Locally Supported Scaling

Functions

In this subsection approximate identities generated by so-called (non-negative) [h; 1]-locally supported

kernels fKhgh2(�1;1) are investigated. Due to their non-negativity and local support, i. e. supp(Kh) =

[h; 1], such kernels generate an approximate identity, and therefore, are scaling functions. The approxi-

mation error kF�Ih(F )kC(
) will be estimated for approximate identities generated by such non-negative
[h; 1]-locally supported scaling functions fKhgh2(�1;1) � L1([�1; 1]). Finally we shall present some ex-

amples, namely the Haar scaling function, and the smoothed Haar scaling functions. Illustrations of

these examples will be shown in Subsection 3.2, together with the �gures of the corresponding di�er-

ence wavelets. We note that all the examples are at least piecewise continuous and consequently also

L2-scaling functions. Non-negative [h; 1]-locally supported scaling functions have several advantages in

wavelet approximation as it will be explained in detail in Section 3 and Section 4 of this paper.

Our considerations start with the de�nition of [h; 1]-locally supported kernels.

De�nition 2.4 Let fKhgh2(�1;1) be a family of functions in L1([�1; 1]) or in L2([�1; 1]) that satisfy
(Kh)

^(0) = 1 for all h 2 (�1; 1) and supp(Kh) = [h; 1] for all h 2 (�1; 1). Then fKhgh2(�1;1) is called
an [h; 1]-locally supported kernel.

Next we mention the following important property of non-negative [h; 1]-locally supported kernels.

Theorem 2.5 Suppose fKhgh2(�1;1) � L1([�1; 1]) or fKhgh2(�1;1) � L2([�1; 1]) is a non-negative

[h; 1]-locally supported kernel. Then the family fIhgh2(�1;1) de�ned in De�nition 2.1 is an approximate

identity corresponding to the [h; 1]-locally supported non-negative scaling function fKhgh2(�1;1).
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Proof: The family fKhgh2(�1;1) satis�es the assumptions of Theorem 2.3 and obeys the localization

property because of supp(Kh) = [h; 1]. Thus the assertion follows from Theorem 2.3. 2

Lemma 2.6 Let fKhgh2(�1;1) � L1([�1; 1]) be a non-negative [h; 1]-locally supported scaling function.

Suppose that fIhgh2(�1;1), Ih : C(
)! C(
), F 7! Ih(F ) := Kh �F is the approximate identity generated

by fKhgh2(�1;1). Assume that F is of class C(
). Then,

jF (�)� Ih(F )(�)j �
 
2�

Z eh

h

Kh(t) dt

!
sup
�2
;

h�����eh

jF (�)� F (�)j (5)

+

�
2�

Z 1

eh

Kh(t) dt

�
sup
�2
;

eh�����1

jF (�)� F (�)j

for every eh 2 [h; 1] and for all � 2 
. If F 2 C(
) is additionally Lipschitz-continuous with Lipschitz-

constant CF , then

kF � Ih(F )kC(
) � 2�
p
2CF

" Z
eh

h

Kh(t) dt

!
(1� h)1=2 +

�Z 1

eh

Kh(t) dt

�
(1� eh)1=2# (6)

for every eh 2 [h; 1].

Proof: Let F 2 C(
) be arbitrary. For � 2 
 �xed but arbitrary, kKh(� � �)kL1(
) = (Kh)
^(0) = 1. This

implies

jF (�)� Ih(F )(�)j =

�����
Z

�2
;

h�����1

Kh(� � �) (F (�) � F (�)) d!(�)

�����
�

Z
�2
;

h�����eh

Kh(� � �) jF (�)� F (�)j d!(�) +
Z

�2
;
eh�����1

Kh(� � �) jF (�) � F (�)j d!(�)

�
 
2�

Z eh

h

Kh(t) dt

!
sup
�2
;

h�����eh

jF (�)� F (�)j+
�
2�

Z 1

eh

Kh(t) dt

�
sup
�2
;

eh�����1

jF (�)� F (�)j

for every eh 2 [h; 1] and for all � 2 
. This proves (5). To verify (6) note that j�� �j2 = (�� �) � (�� �) =
2(1� � � �) for all �; � 2 
. If the function F is additionally Lipschitz-continuous, then jF (�) � F (�)j �
CF

p
2 j1 � � � �j1=2 � CF

p
2 (1 � h)1=2 for all �; � 2 
 satisfying h � � � � � 1, and jF (�) � F (�)j �

CF
p
2 (1� eh)1=2 for all �; � 2 
 satisfying eh � � � � � 1. Hence, (6) follows from (5). 2

The reason for the introduction of the parameter eh 2 [h; 1] in the previous lemma is the following: In

many cases the kernel Kh will assume only very small values on a certain subset [h;eh] of [h; 1] and grow

extremely fast on [eh; 1]. Therefore the subdivision of the interval [h; 1] into [h;eh] and [eh; 1], eh 6= 1; h

chosen suitably, will yield much better results than the cases eh = 1 or eh = h in estimate (6).

In what follows, we present some examples of non-negative [h; 1]-locally supported scaling functions.

The Legendre coe�cients, the supremum norm, and Lipschitz-constants of the examples are calculated,

because these constants will be needed for our later considerations (in Section 4 and Section 5).

Example 2.7 The Haar scaling function fHhgh2(�1;1) � L2([�1; 1]), Hh : [�1; 1] ! R, t 7! Hh(t), is
given by

Hh(t) :=

8<: 0 if t 2 [�1; h)
1

2�

1

(1� h)
if t 2 [h; 1]:
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Obviously, Hh(t) � 0 for all t 2 [�1; 1] and (Hh)
^(0) = 2� kHhkL1([�1;1]) = 1 are ful�lled. Thus

fHhgh2(�1;1) generates an approximate identity in C(
) (and in L2(
)). Further properties of the Haar

scaling function follow in the next example by specialization.

Example 2.8 Let k 2 N0 . The smoothed Haar scaling function fL(k)

h
gh2(�1;1) � Ck�1([�1; 1]) is de�ned

by L
(k)

h
: [�1; 1]! R, t 7! L

(k)

h
(t),

L
(k)

h
(t) := ((B

(k)

h
)^(0))�1B

(k)

h
(t) with B

(k)

h
(t) :=

8><>:
0 if t 2 [�1; h)
(t� h)k

(1� h)k
if t 2 [h; 1]:

By de�nition, L
(k)

h
is non-negative, has the support [h; 1], and satis�es (L

(k)

h
)^(0) = 1. Hence it is a

non-negative [h; 1]-locally supported scaling function. The function L
(0)

h
, h 2 (�1; 1), coincides with the

Haar function Hh. The Legendre coe�cients of B
(k)

h
and, hence, L

(k)

h
, h 2 (�1; 1), k 2 N0 , can be

calculated recursively (cf. [FrGeSchr]):

(B
(k)

h
)^(0) = 2�

�
1� h

k + 1

�
6= 0; (B

(k)

h
)^(1) = 2�

�
1� h

k + 1

��
1� 1� h

k + 2

�
; (7)

(B
(k)

h
)^(n+ 1) =

�
2n+ 1

n+ k + 2

�
h (B

(k)

h
)^(n) +

�
k + 1� n

n+ k + 2

�
(B

(k)

h
)^(n� 1): (8)

It can be shown that j(L(k)

h
)^(n)j = O

�
[n(1� h)]�(3=2)�k

�
for n ! 1. The functions L

(k)

h
, h 2 (�1; 1),

k 2 N0 , assume their maximum in t = 1. For k > 2 the Lipschitz-constant C
(k)

h
for L

(k)

h
can be chosen as

the maximum of the �rst derivative, which is also taken in the point t = 1. Thus, we obtain

kL(k)

h
kC([�1;1]) = L

(k)

h
(1) =

1

2�

(k + 1)

(1� h)
; k 2 N0 ;

and

C
(k)

h
:= k(L(k)

h
)0kC([�1;1]) = (L

(k)

h
)0(1) =

1

2�

k(k + 1)

(1� h)2
; k � 2: (9)

The function L
(0)

h
is constant on its support. Consequently, Equation (9) is also valid for k = 0 on

supp(L
(0)

h
) = [h; 1]. For k = 1 the function L

(k)

h
is continuous and piecewise linear, thus the Lipschitz-

constant C
(1)

h
can be chosen as the �rst derivative of L

(1)

h
on supp(L

(1)

h
). Hence, Equation (9) is also true

for k = 1.

3 Spherical Di�erence Wavelets

A scaling function fKhgh2(�1;1) generates an approximate identity, which provides nothing else than a

sequence of low-pass �lters. In this section so-called spherical di�erence wavelets will be introduced to

describe the di�erence between such low-pass �lters. In other words, spherical di�erence wavelets are

understood to act as band-pass �lters as the di�erence of two smoothings.

In Subsection 3.1 the basic de�nitions will be given and the decomposition and the reconstruction of

the approximation Ih(F ) := Kh � F of F with spherical di�erence wavelets will be developed. It will

be explained why such a reconstruction of the approximation is not only of theoretical value but is also

useful in practical applications. In Subsection 3.2 the spherical di�erence wavelets will be computed for

all examples of [h; 1]-locally supported non-negative scaling functions known from Subsection 2.2.

3.1 Reconstruction Formula

De�nition 3.1 Let fIhgh2(�1;1) be an approximate identity in C(
) or L2(
), generated by the scaling

function fKhgh2(�1;1) � L1([�1; 1]), and fKhgh2(�1;1) � L2([�1; 1]), respectively. Let fhjgj2N0 �
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(�1; 1] be a strict monotonically increasing sequence with limj!1 hj = 1. De�ne the sequence fTjgj2N0
of bounded linear operators

Tj : X (
)! X (
); F 7! Tj(F ) := Ihj (F ) = Khj � F;

where X (
) = C(
) for fKhgh2(�1;1) � L1([�1; 1]), and X (
) = L2(
) for fKhgh2(�1;1) � L2([�1; 1]),
respectively. The family f	jgj2N0 � L1([�1; 1]), and f	jgj2N0 � L2([�1; 1]), respectively, given by

	j := Khj+1 �Khj

is called spherical di�erence wavelet (corresponding to the scaling function fKhjgj2N0). Furthermore,

de�ne a family fRjgj2N0 of bounded linear operators

Rj : X (
)! X (
); F 7! Rj(F ) := 	j � F:

Note that the spherical di�erence wavelet f	jgj2N0 (corresponding to a scaling function fKhgh2(�1;1))
satis�es

R 1
�1

	j(t) dt = 0 for all j 2 N0 because of (Kh)
^(0) = 1 for all h 2 (�1; 1).

De�nition 3.2 Let fKhgh2(�1;1) � L1([�1; 1]) or fKhgh2(�1;1) � L2([�1; 1]) be an [h; 1]-locally sup-

ported scaling function, and let fhjgj2N0 � (�1; 1] be a strict monotonically increasing sequence with

limj!1 hj = 1. Then f	jgj2N0 is called an [h; 1]-locally supported spherical di�erence wavelet (corre-

sponding to the [h; 1]-locally supported scaling function fKhjgj2N0).
For the remainder of this paper we will call the spherical di�erence wavelets brie
y wavelets, because

they are the only type of wavelets regarded in this paper. The next theorem shows, that the low-pass

�lter TJ , J 2 N0 , can be decomposed into a sum of the low-pass �lter TJ0 and the band-pass �lters Rj ,

j 2 fJ0; J0 + 1; : : : ; J � 1g and, thus, be reconstructed as a sum of the latter.

Theorem 3.3 Let the assumptions and the notation be as in De�nition 3.1. Then,

lim
J!1

kF � TJ(F )kX (
) = 0 for all F 2 X (
);

where

TJ(F ) = TJ�1(F ) +RJ�1(F ) = TJ0(F ) +

J�1X
j=J0

Rj(F ) (10)

for all J; J0 2 N0 , 0 � J0 � J � 1. Equation (10) is called a reconstruction of the approximation TJ(F ).
Particularly,

F = TJ0(F ) +

1X
j=J0

Rj(F ) (11)

in X (
)-sense.

Proof: Equation (10) is a consequence of the de�nitions of the operators Tj and Rj :

TJ(F ) = KhJ � F = (KhJ�1 +	J�1) � F = TJ�1(F ) +RJ�1(F ):

This proves the �rst equality. The second equality follows analogously by repeating this process for

TJ�1(F ); : : : ; TJ0+1(F ). Equation (11) is a consequence of Equation (10) and the fact that TJ(F ) con-
verges to F (in X (
)) for J !1. 2

Usefulness of the reconstruction (10) in practical applications. Suppose the function F 2 C(

)

describes some geophysically relevant quantity in a technical problem, which is measured in a huge number

of points on a sphere 

 of radius 
 around the origin. (Measurements done by satellites surrounding

the earth, whose orbits cover approximately the sphere 

 at orbital height, are a typical example of

such a situation.) Modelling the function F amounts to gaining a good approximation of F from the
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measured data. The approximation of F can be performed with the techniques1 introduced in Section 2,

where the evaluation of (K


h
� F )(x), x 2 

 , has to be done by aid of a suitable numerical integration

scheme. Some reasons should be listed why it is interesting to use the above reconstruction theorem in

the aforementioned applications.

Wavelet thresholding. It might be useful to reconstruct the approximation TJ(F ) = K


hJ
� F as

the sum of a `low-frequency approximation' TJ0(F ) and the `meso-frequency approximations' Rj(F ),
j = J0; J0 + 1; : : : ; J � 1, for doing wavelet thresholding (cf. [FrMiSt]). This is particularly interesting,

when the sequences f(K


hj
)^(n)gj2N0 of Legendre coe�cients of the generating scaling function fK


hj
gj2N0

are strict monotonically increasing for all n 2 N0 .
Improving an existing model (locally). Suppose h0 is chosen such that T0(F ) = K


h0
�F is the best

available model that could be gained from the measured data. If the quantity F is in a certain small

area D � 

 less smooth than on the rest of the sphere, then the accuracy of the approximation T0(F )
of F on D will in general not be as good as on 

 n D. Using an [
2h; 
2]-locally supported scaling

function fK


h
gh2(�1;1) the integration in (K


h
� F )(x) is actually an integration over the spherical cap

�
2h(x) := fw 2 

 j 
2h � x � w � 
2g. To improve the model of F on D it is only necessary to make

additional measurements in a certain neighborhood of D. With these new data R0(F )(x) = (	



0 � F )(x)
is calculated for points x 2 D and added to the old approximation T0(F )(x) in x 2 D. (The parameter h1
has to be chosen in adaptation to the new data and the properties of the numerical integration formula.)

T1(F )(x) = T0(F )(x) +R0(F )(x), x 2 D, is an improved local model of F on D. The same procedure as
described above can be carried out, if there is already an existing model T0(F ) and more data become

available on a suitable neighborhood of a subset D. Calculating R0(F )(x), x 2 D, and adding it to

T0(F )(x) delivers locally (on D) a better approximation. In particular, an already existing global model

T0(F ) can be improved by calculating and adding R0(F ) if more data become available everywhere on



 . Furthermore, data of scattered data coverage density can be used.

3.2 Examples of [h; 1]-Locally Supported Di�erence Wavelets

In this subsection the spherical di�erence wavelets are computed for the examples of [h; 1]-locally sup-

ported scaling functions known from Subsection 2.2. In all the examples the same strict monotonically

increasing sequence fhjgj2N0 , hj := 1� 2�j , is used. Additionally (an estimate of) the supremum norm

k	jkC([�1;1]) and Lipschitz-constants for 	j are deduced explicitly, because these constants are needed

in Section 4.

Example 3.4 For the sequence fhjgj2N0 , hj := 1 � 2�j , the Haar scaling function fHhjgj2N0 �
L2([�1; 1]) is given by

Hhj (t) :=

8<: 0 if t 2 [�1; 1� 2�j)

(2�)�1 2j if t 2 [1� 2�j ; 1]:

The corresponding Haar wavelet is the family f	H

j
gj2N0 � L2([�1; 1]) of functions 	H

j
: [�1; 1] ! R,

t 7! 	H

j
(t), given by

	H

j
(t) :=

8>><>>:
0 if t 2 [�1; 1� 2�j)

�(2�)�1 2j if t 2 [1� 2�j ; 1� 2�(j+1))

(2�)�1 2j if t 2 [1� 2�(j+1); 1]:

Obviously k	H

j
kC([�1;1]) = (2�)�1 2j = kHhjkC([�1;1]). The function 	H

j
is not Lipschitz-continuous on

its support, because of the jump at t = 1�2�(j+1), but it is Lipschitz-continuous with Lipschitz-constanteC(0)
j

= 0 on each subset of its support, where 	H
j
is constant, i. e. on the intervals [1� 2�j ; 1� 2�(j+1))

and [1� 2�(j+1); 1].

1These techniques can be easily adapted to spheres 

 of arbitrary radius 
 as it will be sketched brie
y at the beginning

of Section 5. Referring to the remarks in Section 5, we will denote a scaling function and the corresponding wavelet for the

approximation of functions F 2 C(

) with an upper index 
.
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The Haar wavelet has additionally the property, thatZ 1

�1

	H

j
(t)	H

k
(t) dt = 0; j; k 2 N0 ; j 6= k; (12)Z 1

�1

Hh0(t)	
H

j (t) dt = 0; j 2 N0 : (13)

This implies that Hh0(� � �);	H
0 (� � �);	H

1 (� � �); : : : as functions of � 2 
, where � 2 
 is kept �xed,

are orthogonal. Equations (12) and (13) follow easily from the de�nition 	H

j
(t) = Hhj+1(t) � Hhj (t),

t 2 [�1; 1], and calculating the integrals.
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Figure 1: Haar functions for j = 1; 2; 3; 4 and the corresponding Haar wavelet functions

Example 3.5 For the sequence fhjgj2N0 , hj := 1�2�j, the smoothed Haar scaling functions fL(k)

hj
gj2N0 �

Ck�1([�1; 1]), k 2 N0 , are de�ned by

L
(k)

hj
(t) :=

8<: 0 if t 2 [�1; 1� 2�j)

(2�)�1 (k + 1) 2j(k+1)(t� 1 + 2�j)k if t 2 [1� 2�j ; 1]:

The supremum norm and a Lipschitz-constant C
(k)
j

of L
(k)

hj
are given by

kL(k)

hj
kC([�1;1]) =

1

2�
(k + 1) 2j ; k 2 N0 ; and C

(k)
j

:=
1

2�
k(k + 1) 22j ; k 2 N:

The corresponding smoothed Haar wavelets are the families f	(k)

j
gj2N0 � Ck�1([�1; 1]), k 2 N0 , of

functions 	
(k)
j

: [�1; 1]! R, t 7! 	
(k)
j
(t), given by

	
(k)
j
(t) :=

8>><>>:
0 if t 2 [�1; 1� 2�j)

�(2�)�1(k + 1)2j(k+1)(t� 1 + 2�j)k if t 2 [1� 2�j ; 1� 2�(j+1))

(2�)�1(k + 1)2j(k+1)
�
2k+1(t� 1 + 2�(j+1))k � (t� 1 + 2�j)k

�
if t 2 [1� 2�(j+1); 1]:

An estimate for the supremum norm of 	
(k)
j

and a Lipschitz-constant eC(k)
j

for 	
(k)
j
, k 2 N, can be

obtained by using that 	
(k)

j
and its (piecewise de�ned) �rst derivative (	

(k)

j
)0 are each the di�erence of

two non-negative functions. Thus, k	(k)
j
kC([�1;1]), and k(	(k)

j
)0kC([�1;1]) respectively, are not larger than

the maximum of the supremum norms of the two non-negative functions. Hence,

k	(k)
j
kC([�1;1]) � kL(k)

hj+1
kC([�1;1]) =

1

2�
(k + 1) 2j+1;
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eC(k)
j

:= k(L(k)

hj+1
)0kC([�1;1]) = (L

(k)

hj+1
)0(1) =

1

2�
k(k + 1) 22j+2 = C

(k)
j+1:

f	(0)

j
gj2N0 is the Haar wavelet, which was discussed in Example 3.4 in detail.
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Figure 2: Smoothed Haar functions in case k = 1 for j = 1; 2; 3 and the corresponding smoothed Haar

wavelet functions
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Figure 3: Smoothed Haar functions in case k = 2 for j = 1; 2; 3 and the corresponding smoothed Haar

wavelet functions

4 Numerical Computation of the Approximation

In this section we will focus our attention on the numerical aspects of approximate identities in C(
)
and their wavelet reconstruction. The approximation TJ(F ) of F 2 C(
) and its reconstruction from

TJ0(F ) by means of Rj(F ), j = J0; J0 + 1; : : : ; J � 1, will be discussed from numerical point of view.

An approximate integration rule for the evaluation of the convolution integrals Tj(F )(�), and Rj(F )(�),
respectively, will be derived, where the integrands are supposed to be at least continuous. This is no

serious restriction as the functions Kh can be chosen continuous and the approximated functions F can

be assumed to be continuous in the practical applications we are interested in. As mentioned above, the

theory in this paper is meant for satellite problems, where huge amounts of data are given, i. e. F is known

at a very large set of points on the (orbital) sphere, and where the data are equidistributed on the (orbital)
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sphere in the sense of Weyl (see [We]). There are various integration rules for the numerical evaluation

of the convolution integrals (Khj � F )(�) and (	j � F )(�), but most of these integration techniques are

not applicable to problems, where millions of data occur. In such cases summing up the values of the

integrand in the data points with identical integration weights seems to be a suitable way to cope with

the large amount of data.

In Subsection 4.1 the approximate integration rule including an error estimate will be formulated and

applied to the reconstruction of a continuous function. In Subsection 4.2 the additional advantages of

approximate identities generated by an [h; 1]-locally supported scaling function fKhgh2(�1;1) will be in-
vestigated. Finally, Subsection 4.3 will deal with the implications of these considerations on our examples.

4.1 An Approximate Integration Rule For Large Equidistributed Data Sets

First, some terminology connected with point sets and partitions will be introduced. After that the

approximate integration rule, based on Weyl's law of equidistribution (cf. [We]), will be presented includ-

ing some error estimates. Finally, the numerical computation of TJ(F )(�) reconstructed as the sum of

TJ0(F )(�) and RJ0(F )(�); RJ0+1(F )(�) : : : ; RJ�1(F )(�) will be outlined and the approximation error will

be estimated. To discuss the e�ciency of our approximate integration rule we will determine the number

of elementary operations that are needed. Here, an elementary operation consists of one multiplication

and one addition.

De�nition 4.1 Let U � 
 be a measurable subset of 
 and let XU

N
:= f�N1 ; �N2 ; : : : ; �NN g � U andeXU

N
:= fe�N1 ; e�N2 ; : : : ; e�NN g � U be two subsets of N points in the set U . XU

N
and eXU

N
are called equivalent,

if there exists a permutation p of f1; 2; : : : ; Ng such that e�N
p(j) = �N

j
for all j = 1; : : : ; N . An equivalence

class with respect to this equivalence relation is called an ensemble of U . An ensemble of U is identi�ed

with its elements. (It is a set of N points in U without any ordering.)

De�nition 4.2 Let XU

N
:= f�N1 ; �N2 ; : : : ; �NN g be an ensemble of a measurable subset U � 
. A set

PXU
N

:= fU�N1 ;U�N2 ; : : : ;U�NN g is called an associated partition of U to the ensemble XU

N
, if the following

four conditions are satis�ed: (i) U�N
j

is measurable and kU�N
j

k > 0 for all j = 1; 2; : : : ; N , (ii) �N
j
2 U�N

j

for all j = 1; : : : ; N , (iii)
SN

j=1 U�N
j

= U , and (iv) U�N
i

\ U�N
j

= ; for all i; j = 1; 2; : : : ; N , i 6= j. An

associated partition PXU
N

of U to the ensemble XU

N
is called equidistributed, if

kU�N
j

k =
Z
U
�
N

j

d!(�) =
kUk
N

for all j 2 f1; : : : ; Ng:

The set of all equidistributed partitions PXU
N

of U to XU

N
is denoted by �XU

N

. The partition size of the

ensemble XU

N
of U is de�ned by

�(XU

N ) := inf
P
X
U
N

=fU
�
N

1
;:::;U

�
N

N

g2�
X
U
N

max
j=1;:::;N

sup
�2U

�
N

j

j� � �Nj j:

Theorem 4.3 Let U be a measurable subset of 
, let XU

N
:= f�N1 ; : : : ; �NN g � U be an ensemble of U ,

and let PXU
N

:= fU�N1 ; : : : ;U�NN g be an arbitrary equidistributed, associated partition of U to the ensemble

XU

N
. Suppose that G is a continuous, real valued function on U which is bounded on U . Then����� 1

kUk

Z
U

G(�)d!(�) � 1

N

NX
k=1

G(�N
k
)

����� � inf
P
X
U
N

2�
X
U
N

max
k=1;:::;N

sup
�2U

�
N

k

jG(�) �G(�N
k
)j: (14)

Proof: The de�nition of an equidistributed associated partition of U to XU

N
implies that

1

kUk

Z
U

G(�) d!(�) � 1

N

NX
k=1

G(�N
k
) =

1

kUk
NX
k=1

Z
U
�
N

k

�
G(�) �G(�N

k
)
�
d!(�) (15)
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holds true. The estimate (14) follows from (15) by estimating the integrals by the supremum of the in-

tegrand multiplied with kU�N
j

k = kUk=N , and by taking the in�mum over all equidistributed associated

partitions PXU
N

of U to XU

N
. 2

Corollary 4.4 Let U � 
 be a measurable subset. Suppose that fNjgj2N0 � N is a strict monotonically

increasing sequence. Assume that fXU

Nj
gj2N0 is a sequence of ensembles XU

Nj
:= f�Nj

1 ; �
Nj

2 ; : : : ; �
Nj

Nj
g of

U satisfying limj!1 �(XU

Nj
) = 0. Then, for G 2 C(U),

lim
j!1

������ 1

kUk

Z
U

G(�) d!(�) � 1

Nj

NjX
k=1

G(�
Nj

k
)

������ = 0: (16)

If G 2 C(U) is additionally Lipschitz-continuous with Lipschitz-constant CG, then������ 1

kUk

Z
U

G(�) d!(�) � 1

Nj

NjX
k=1

G(�
Nj

k
)

������ � CG �(XU

Nj
):

Proof: For a Lipschitz-continuous function G the statement is a consequence of the estimate (14) in

Theorem 4.3. If G is assumed to be continuous only, Equation (16) follows from the estimate (14) in

Theorem 4.3 and the fact that G is uniformly continuous on U . 2

Corollary 4.4 shows that the mean value of the function values of a continuous function G 2 C(U) in the

points of a suitable ensemble XU

N
of U � 
 yields an approximation of the integral 1

kUk

R
U
G(�) d!(�),

i. e. an approximate integration rule for continuous integrands G 2 C(U):

1

kUk

Z
U

G(�) d!(�) � 1

N

NX
k=1

G(�N
k
): (17)

This approximate integration rule is useful for very large and (in the sense of Weyl) equidistributed point

sets, because all the data can be used and the number of elementary operations is just N for a dataset

f(�N1 ; G(�N1 )); (�N2 ; G(�
N
2 )); : : : ; (�

N

N
; G(�N

N
))g.

Now we are able to apply this approximate integration rule for the evaluation of the approximation TJ(F ),
F 2 C(
), as indicated by Theorem 3.3.

Theorem 4.5 Assume that fNjgj2N0 � N is a strict monotonically increasing sequence. Let fX

Nj
gj2N0 ,

X

Nj

:= f�Nj

1 ; �
Nj

2 ; : : : ; �
Nj

Nj
g, be a sequence of ensembles of 
 that is hierarchical, i. e. �

Nj

i
= �

Nj+1

i
for all

i = 1; 2; : : : ; Nj and for all j 2 N0 , and that satis�es limj!1 �(X

Nj
) = 0. Let fKhgh2(�1;1) � C([�1; 1])

be a continuous scaling function. Suppose fhjgj2N0 � (�1; 1] is a strict monotonically increasing sequence

with limj!1 hj = 1. Let Tj and Rj , j 2 N0 , denote the operators de�ned in De�nition 3.1 corresponding

to the sequence fhjgj2N0 and the scaling function fKhgh2(�1;1). Denote Uj(�) := f� 2 
 jKhj (� � �) 6= 0g,eUj(�) := f� 2 
 j	j(� � �) 6= 0g, j 2 N0 , and de�ne bXU

Nj
:= X


Nj
\U , j 2 N0 , for an arbitrary measurable

subset U of 
 and regard bXU

Nj
as an ensemble of U . Suppose F is in C(
). Then Tj(F ), and Rj(F ),

j 2 N0 , respectively, can be evaluated approximately by the formulae
2

Tj(F )(�) � kUj(�)k
#( bXUj(�)

Nj
)

X
�2 bX

Uj (�)

Nj

F (�)Khj (� � �); (18)

Rj(F )(�) � keUj(�)k
#( bX eUj(�)

Nj+1
)

X
�2 bX

eUj (�)

Nj+1

F (�)	j(� � �) (19)

2If Y is a �nite point set then #(Y ) denotes the number of points in Y .
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for all � 2 
. An arbitrary prescribed accuracy of the right-hand side of (18) and (19) can be obtained

uniformly in � 2 
 by choosing the sequence fX

Nj
gj2N0 in an appropriate way. The function F 2 C(
)

can be approximated by FJ : 
! R, � 7! FJ (�), as follows:

FJ (�) :=
kUJ0(�)k

#( bXUJ0 (�)

NJ0
)

X
�2 bX

U
J0

(�)

N
J0

F (�)KhJ0
(� � �) +

J�1X
j=J0

keUj(�)k
#( bX eUj(�)

Nj+1
)

X
�2 bX

eUj (�)

Nj+1

F (�)	j(� � �); (20)

J > J0. If F and the functions Kh are additionally Lipschitz-continuous, the error of the approximation

FJ can be estimated as follows:

kF � FJkC(
) � kF � TJ(F )kC(
) + kUJ0(�)k
�
CJ0 kFkC(
) + CF kKhJ0

kC([�1;1])
�
�( bXUJ0 (�)

NJ0
)

+

J�1X
j=J0

k eUj(�)k� eCj kFkC(
) + CF k	jkC([�1;1])
�
�( bX eUj(�)

Nj+1
); (21)

where CF , CJ0 , and eCj , j = J0; J0 + 1; : : : ; J � 1, respectively, are Lipschitz-constants for the functions

F , KhJ0
, and 	j , j = J0; J0 + 1; : : : ; J � 1, respectively.

Proof: The approximation formulae (18) and (19) are immediate consequences of the numerical integra-

tion rule (17). That every prescribed accuracy of the right-hand side of (18) can be obtained uniformly

in � 2 
 by choosing the sequence fX

Nj
gj2N0 in an appropriate way follows from the uniform continuity

of F and Khj and from the estimate

jKhj (� � �)F (�) �Khj (� � �)F (�)j � kKhjkC([�1;1]) jF (�)� F (�)j
+ kFkC(
) jKhj (� � �)�Khj (� � �)j

for all � 2 
. The argumentation for (19) is similar. These formulae combined with Theorem 3.3 imply

that FJ (�) is a suitable approximation for TJ(F )(�) and consequently for F (�), � 2 
, provided the

sequence fX

Nj
gj2N0 is chosen in adaptation to the growth of the functions Khj .

To prove the estimate of the approximation error in case F , Kh, and 	j , j 2 N0 are Lipschitz-continuous

we �rst determine Lipschitz-constants for the integrands in Tj(F )(�) and Rj(F )(�), � 2 
 �xed but

arbitrary:

jF (�)Khj (� � �)� F (�)Khj (� � �)j �
�
Cj kFkC(
) + CF kKhjkC([�1;1])

�
j� � �j;

jF (�)	j(� � �)� F (�)	j(� � �)j �
� eCj kFkC(
) + CF k	jkC([�1;1])

�
j� � �j

for all �; � 2 
, where CF , Cj , and eCj respectively, are the Lipschitz-constants of the functions F , Khj ,

and 	j respectively. The triangle inequality yields

jF (�)� FJ (�)j � jF (�)� TJ(F )(�)j + jTJ(F )(�) � FJ(�)j:
The second term can be estimated with the help of the triangle inequality, the reconstruction theorem,

and Corollary 4.4.

jTJ(F )(�) � FJ (�)j �
�����TJ0(F )(�)� kUJ0(�)k

#( bXUJ0 (�)

NJ0
)

X
�2 bX

U
J0

(�)

N
J0

F (�)KhJ0
(� � �)

�����
+

J�1X
j=J0

�����Rj(F )(�) �
k eUj(�)k

#( bX eUj(�)

Nj+1
)

X
�2 bX

eUj (�)

Nj+1

F (�)	j(� � �)
�����

� kUJ0(�)k
�
CJ0 kFkC(
) + CF kKhJ0

kC([�1;1])
�
�( bXUJ0 (�)

NJ0
)

+

J�1X
j=J0

k eUj(�)k � eCj kFkC(
) + CF k	jkC([�1;1])
�
�( bX eUj(�)

Nj+1
)

2
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The estimate (21) in Theorem 4.5 implies that an approximation FJ with "-accuracy can be obtained, if J
is chosen so large, that kF �TJ(F )kC(
) � "=2 and if the hierarchical sequence fX


Nj
gj2N0 is chosen such

that the �(X

Nj
), j = J0; : : : ; J , get so small, that each of the other summands in (21) becomes smaller

than "=(2(J � J0 + 1)). The same can be done in the case of continuous (but not Lipschitz-continuous)

integrands, but in this case the theorem yields no quantitative error estimate. The partition sizes �(X

Nj
),

j = J0; : : : ; J , that are needed for a prescribed accuracy depend on the growth behavior of the kernel

and on the undulations of the integrand. Generally it can be said that, the larger the index j the faster
the growth of the kernel Khj , and consequently a smaller partition size, i. e. more discretization points,

is needed.

In practical applications a function F will be known on a large (in the sense of Weyl) equidistributed

point set X

NJ

. The continuous scaling function fKhgh2(�1;1), as well as the sequence fhjgj2N0 and

the hierarchical point sets X

Nj

� X

NJ

, j = J0; : : : ; J � 1, have then to be chosen in adaptation to the

problem and the given dataset. It is desirable to choose the numbers Nj so that they satisfy the relations

Nj � Nj+1=2 for J0 � j � J�1, because in this case the approximation TJ(F ) of F can be reconstructed

with at most 2NJ elementary operations.

One di�culty in this approach is the choice of the hierarchical point sets X

Nj
, j = J0; : : : ; J � 1, from

the given set of points X

NJ

, where the function F is known. It is by no means a trivial problem to �nd a

method for creating a suitable hierarchical sequence of point sets without a time-consuming strategy for

the selection of the points. The authors do not want to investigate this problem further in this paper.

Some considerations can be found in [Br] and [G�o].

4.2 Improvements for Locally Supported Kernels

All results from the previous section can be applied to our examples of approximate identities generated

by non-negative [h; 1]-locally supported scaling functions. In this case the number of needed elementary

operations is even much smaller because of the local support of the integrand in the convolution integrals.

This enables the calculation of FJ in Theorem 4.5 for fhjgj2N0 chosen as hj := 1�2�j with approximately
2�J0+1NJ elementary operations (for NJ given data points) without hierarchical point sets, as it will be

explained in detail below.

In the examples of non-negative [h; 1]-locally supported scaling functions (Subsections 2.2 and 3.2) the

sequence fhjgj2N0 , given by hj := 1 � 2j , was chosen. Thus, Uj(�) = �hj (�), and eUj(�) = �hj (�) in
Theorem 4.5, where �h(�) := f� 2 
 jh � � � � � 1g is the spherical cap with center � and size 1 � h.

Obviously k�h(�)k = 2� (1 � h), hence, #( bXUj(�)

Nj
) � 2�j�1#(X


Nj
), and #( bX eUj(�)

Nj+1
) � 2�j�1#(X


Nj+1
),

j = J0; : : : ; J . This means that the total amount of elementary operations in Theorem 4.5 is approxi-

mately

2�J0�1#(X

NJ0

) +

J�1X
j=J0

2�j�1#(X

Nj+1

) = 2�J0�1NJ0 +

J�1X
j=J0

2�j�1Nj+1 (22)

in case of an [h; 1]-locally supported scaling function and the sequence fhjgj2N0 given by hj := 1� 2j .

To use these advantage in practical applications it is necessary to �nd a quick strategy to decide whether

a point � 2 
 lies in the the spherical cap �h(�). We will not elaborate on this point here further. Some

considerations on a similar problem can be found in [FrGlSchr].

Using such a strategy the approximation FJ given in Theorem 4.5 can also be calculated with ap-

proximately 2�J0+1NJ elementary operations without the use of hierarchical point sets for [h; 1]-locally
supported kernels and the sequence fhjgj2N0 , hj := 1 � 2j : To achieve this, the di�erent sets X


Nj
in

Theorem 4.5 are all replaced by X

NJ

, and the formula (22) yields at most 2�J0+1NJ elementary opera-

tions. This means on the one hand that some of the convolution integrals are calculated with unnecessary

accuracy, but on the other hand the problem of the choice of the hierarchical point sets does no longer

occur. Additionally the error estimate gets much simpler.
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4.3 Error Discussion of the Examples

The estimates of the approximation error in case of hierarchical point sets given in Theorem 4.5 will be

applied to the approximate identities generated by the smoothed Haar scaling functions (k � 1). The

case of the Haar scaling function will be treated separately because of the discontinuity.

In this subsection we make the following assumptions: Let fNjgj2N � N be a strict monotonically

increasing sequence, and let fX

Nj
gj2N, where X


Nj
:= f�Nj

1 ; �
Nj

2 ; : : : ; �
Nj

Nj
g, be a hierarchical sequence

of ensembles of 
, such that limj!1 �(X

Nj
) = 0. Moreover, the notation from Theorem 4.5 will be

adopted.

Lemma 4.6 Let fL(k)

h
gh2(�1;1), k 2 N, be the smoothed Haar scaling functions introduced in Example

2.8, and de�ne fhjgj2N as usual by hj := 1 � 2�j. Assume that F 2 C(
) is a Lipschitz-continuous

function with Lipschitz-constant CF . Then the error of the approximation F
(k)

J
of F de�ned in Theorem

4.5 by (20) can be estimated by

kF � F
(k)

J
kC(
) �

0@ J�1X
j=J0�1

(k + 1)
�
2j+2 k kFkC(
) + 2CF

�
�( bX eUj(�)

Nj+1
)

1A+
p
2CF

min
eh2[1�2�J ;1]

h
2J(k+(1=2))(eh� (1� 2�J))k+1 +

�
1� 2J(k+1) (eh� (1� 2�J))k+1

�
(1� eh)1=2i ;

where eUj(�) := �hj (�) for j = J0; : : : ; J � 1, eUJ0�1(�) := �hJ0 (�), and �h(�) := f� 2 
 jh � � � � � 1g.

The second summand in the estimate of the approximation error is the estimate of kF � TJ(F )kC(
)
developed in Lemma 2.6.

Lemma 4.7 Let fHhgh2(�1;1) be the Haar scaling function introduced in Example 2.7, and de�ne fhjgj2N
by hj := 1� 2�j . Assume that F 2 C(
) is a Lipschitz-continuous function with Lipschitz-constant CF .
Then the error of the approximation FH

J
: 
! R, � 7! FH

J
(�) of F , de�ned by

FH

J (�) :=
1

#( bX eUJ0 (�)

NJ0
)

X
�2 bX

eU
J0

(�)

N
J0

F (�)

+
1

2

J�1X
j=J0

 
1

#( bX eUj+1(�)

Nj+1
)

X
�2 bX

eUj+1(�)

Nj+1

F (�) � 1

#( bX eUj(�)neUj+1(�)

Nj+1
)

X
�2 bX

eUj (�)n
eUj+1(�)

Nj+1

F (�)

!
;

can be estimated by

kF � FH

J
kC(
) � CF

0@�( bX eUJ0 (�)

NJ0
) +

1

2

J�1X
j=J0

h
�( bX eUj+1(�)

Nj+1
) + �( bX eUj(�)neUj+1(�)

Nj+1
)
i1A

+ min
eh2[1�2�J ;1]

p
2CF

h
2J=2 (eh� (1� 2�J)) + 2J (1� eh)3=2i ;

where eUj(�) := �hj (�) for j = J0; : : : ; J , and �h(�) := f� 2 
 jh � � � � � 1g.

Proof: FH

J
(�) can also be written in the following form

FH

J
(�) =

keUJ0(�)k
#( bX eUJ0 (�)

NJ0
)

X
�2 bX

eU
J0

(�)

N
J0

F (�)HhJ0
(� � �)

+

J�1X
j=J0

 
keUj+1(�)k
#( bX eUj+1(�)

Nj+1
)

X
�2 bX

eUj+1(�)

Nj+1

F (�)	H

j
(� � �) + k eUj(�) n eUj+1(�)k

#( bX eUj(�)neUj+1(�)

Nj+1
)

X
�2 bX

eUj (�)n
eUj+1(�)

Nj+1

F (�)	H

j
(� � �)

!
:
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Hence, FH

J
is a suitable approximation for F according to Theorem 4.3. To verify the error estimate we

proceed similarly as in the proof of Theorem 4.5. By the triangle inequality we �nd

jF (�)� FH

J
(�)j � jF (�)� TH

J
(F )(�)j + jTH

J
(F )(�)� FH

J
(�)j:

The estimate of the �rst term is a consequence of Lemma 2.6. Applying the triangle inequality to the

second term yields

jTH

J
(F )(�) � FH

J
(�)j �

�����TH

J0
(F )(�) � k eUJ0(�)k

#( bX eUJ0 (�)

NJ0
)

X
�2 bX

eU
J0

(�)

N
J0

F (�)HhJ0
(� � �)

�����
+

J�1X
j=J0

 �����
Z
eUj+1(�)

F (�)	H

j
(� � �) d!(�) � keUj+1(�)k

#( bX eUj+1(�)

Nj+1
)

X
�2 bX

eUj+1(�)

Nj+1

F (�)	H

j
(� � �)

�����
+

�����
Z
eUj(�)neUj+1(�)

F (�)	H

j
(� � �) d!(�) � keUj(�) n eUj+1(�)k

#( bX eUj(�)neUj+1(�)

Nj+1
)

X
�2 bX

eUj (�)n
eUj+1(�)

Nj+1

F (�)	H

j
(� � �)

�����
!
:

Note that k eUj(�) n eUj+1(�)k = k eUj+1(�)k because of the de�nition of the sequence fhjgj2N and that the

function HJ0 as well as the wavelet functions 	
H

j
are constant in each term. Hence these constants can

be put outside the absolute value and each term can be estimated by applying Corollary 4.4.

jTH

J
(F )(�) � FH

J
(�)j � keUJ0(�)k

2� (1� hJ0)
CF �( bX eUJ0 (�)

NJ0
)

+

J�1X
j=J0

k eUj+1(�)k
2� (1� hj)

CF

�
�( bX eUj+1(�)

Nj+1
) + �( bX eUj(�)neUj+1(�)

Nj+1
)
�

Inserting keUj(�)k = 2� (1� hj) = 2� 2�j for j = J0; : : : ; J yields the desired assertion. 2

5 Multiscale Inversion of Pseudodi�erential Equations of Mod-

ern Satellite Geodesy

Finally our purpose is to apply our theory of [h; 1]-locally supported di�erence wavelets to pseudodi�er-

ential equations of modern satellite technology. Therefore, we need to transfer the theory developed in

Sections 2 to 4 from the unit sphere 
 to an arbitrary sphere 
r of radius r. This is a straightforward

procedure, and we will just sum up brie
y the results.

Let fYn;jg be a complete orthonormal system in L2(
) and let 
r be the sphere of radius r with center

in the origin. Then the set fY r

n;j
g given by Y r

n;j
(x) := 1

r
Yn;j(x=r), x 2 
r, n 2 N0 , j = 1; : : : ; 2n + 1,

is a complete orthonormal system in L2(
r). The Fourier coe�cients of a function F 2 L2(
r) with

respect to this system will be denoted by F^r (n; j) := (F; Y r
n;j

)L2(
r). For K 2 L1([�r2; r2]), the number
K^(n) := 2�

R
r
2

�r2
K(s)Pn(s=r

2) ds, n 2 N0 , is called n-th (generalized) Legendre coe�cient.

The theory of approximate identities extends to 
r in the following way. A family fKr

h
gh2(�1;1) in

L1([�r2; r2]) or in L2([�r2; r2]) that satis�es (Kr

h
)^(0) = 1 for all h 2 (�1; 1) is called a scaling function

(i.e. generates an approximate identity in X (
r)) if limh!1; h<1 kF �
R

r

F (y)Kr

h
(x �y) d!r(y)kX (
r) = 0

for all F 2 X (
r), where X (
r) = C(
r), and X (
r) = L2(
r), respectively. There is an isomorphism

from the set of all Lj-scaling functions fKhgh2(�1;1) � Lj([�1; 1]), j = 1; 2, (for the unit sphere 
) onto
the set of all scaling functions fKr

h
gh2(�1;1) � Lj([�r2; r2]) (for the sphere 
r) given by

Kr

h
(s) :=

1

r2
Kh(s=r

2); s 2 [�r2; r2]: (23)
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The Legendre coe�cients of the image fKr

h
gh2(�1;1) of fKhgh2(�1;1) are the same as those of fKhgh2(�1;1),

i. e. (Kr

h
)^(n) = (Kh)

^(n) for all n 2 N0 . Therefore, we will from now on regard a scaling func-

tion fKr

h
gh2(�1;1) (for 
r) as speci�ed via Equation (23) by some scaling function fKhgh2(�1;1) for

the unit sphere, and we will denote the Legendre coe�cients of Kr

h
also by (Kh)

^(n). An [h; 1]-locally
supported scaling function fKhgh2(�1;1) (for the unit sphere 
) is mapped onto an [r2h; r2]-locally sup-

ported scaling function fKr

h
gh2(�1;1) for 
r, i. e. supp(K

r

h
) = [r2h; r2] for all h 2 (�1; 1). We mention

that fKr

h
gh2(�1;1) � L2([�r2; r2]) regarded as radial basis function has the representation

Kr

h(x � y) =
1X
n=0

(Kh)
^(n)

2n+1X
k=1

Y r

n;k(x)Y
r

n;k(y); x; y 2 
r:

The spherical di�erence wavelets corresponding to a scaling function fKr

h
gh2(�1;1) are introduced in an

analogous manner, and the numerical results presented in Section 4 are completely applicable with the

necessary slight changes in formalism.

5.1 The Operator Equation

Suppose, as it will be done in modern satellite geodesy, that � : L2(
R) ! L2(

), R < 
, is a linear

(rotation-invariant) pseudodi�erential operator given by

�F =

1X
n=0

�^(n)

2n+1X
k=1

F^R (n; k)Y



n;k
; F 2 L2(
R);

with the following additional properties:

(i) (�)^(n) 6= 0 for all n 2 N0 ,
(ii)

1P
n=0

(2n+ 1) (�^(n))
2
<1.

The sequence f�^(n)gn2N0 is called the `symbol' of �, it is in the language of functional analysis the

system of singular values of �. Under these assumptions it is clear that � represents an injective,

bounded, compact linear operator with im(�) = L2(

). The image im(�) of � is equal to the Sobolev-

like subspace �(L2(
R)) = H(f(�^(n))�1g; 

) of L2(

) (for more notational details the reader is

referred to [FrGeSchr]). Therefore, the theory of inverse problems (see, for example, [Lo]) tells us that

��1 is not bounded on im(�).

Let fK


h
gh2(�1;1) be a (piecewise) continuous [
2h; 
2]-locally supported scaling function. Furthermore,

suppose that fhjgj2N0 � (�1; 1] is a strict monotonically increasing sequence satisfying limj!1 hj = 1.

Consider a multiscale approximation GJ of a function G 2 L2(

) given (analogously to Theorem 4.5)

by

GJ (x) :=
4� 
2

NJ0

NJ0X
k=1

G(w
NJ0

k
)K


hJ0
(x � wNJ0

k
) +

J�1X
j=J0

4� 
2

Nj+1

Nj+1X
k=1

G(w
Nj+1

k
)	




j
(x � wNj+1

k
); (24)

x 2 

 , corresponding to the data f(wNJ

1 ; G(wNJ

1 )); : : : ; (wNJ

NJ
; G(wNJ

NJ
))g, where the point set X




NJ

=

fwNJ

1 ; : : : ; wNJ

NJ
g � 

 is equidistributed (in the sense of Weyl) and fX



Nj
gj=J0;:::;J forms a suitable

hierarchical sequence of subsets X



Nj

= fwNj

1 ; : : : ; w
Nj

Nj
g of X



NJ
. In Equation (24), we do not make use of

the local support of the integrand (as in Theorem 4.5), because the support depends on x 2 

 . Instead,

we need an approximation of G as linear combination of the functions K


hJ0
(x �wNJ0

k
), k = 1; 2; : : : ; NJ0 ,

	



j
(x � wNj+1

k
), k = 1; 2; : : : ; Nj+1, j = J0; J0 + 1; : : : ; J � 1, that is valid for all x 2 

 .

It is known that the problem

�FJ = GJ ; FJ 2 L2(
R); (25)

is solvable if and only if GJ is a member of im(�), i. e. GJ has to satisfy the spectral condition

1X
n=0

2n+1X
k=1

�
(GJ )

^

 (n; k)

�^(n)

�2

<1: (26)
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In the approach presented in this paper the last condition, of course, is a restriction on the (piecewise)

continuous [h 
2; 
2]-locally supported scaling function fK


h
gh2(�1;1). To be more speci�c, the operator

equation (25) is uniquely solvable corresponding to the left hand side (24) by the function

FJ(y) =
4� 
2

NJ0

NJ0X
k=1

G(w
NJ0

k
) (��1K


hJ0
)(y � wNJ0

k
) +

J�1X
j=J0

4� 
2

Nj+1

Nj+1X
k=1

G(w
Nj+1

k
) (��1	


j
)(y � wNj+1

k
); (27)

y 2 
R, (where �
�1K


hJ0
is meant in the sense that ��1

x
is applied to K


hJ0
(x �wNJ0

k
) regarded as function

of x, and analogously in the case ��1	



j
) if and only if

1X
n=0

2n+ 1

4� 
2

�
(Khj )

^(n)

�^(n)

�2

<1; j = J0; : : : ; J: (28)

As signi�cant examples of an operator equation (25) we mention two important methods of modern

satellite technology, namely satellite-to-satellite tracking (SST), and satellite gravity gradiometry (SGG).

5.2 Satellite Problems

The problem of determining the earth's gravitational potential FJ on the `earth's sphere' 
R (with

radius R) from satellite data GJ at the `orbital sphere' 

 (with radius 
 > R) can be formulated by an

operator equation �FJ = GJ , where the symbol f�^(n)gn2N0 of the operator � is given by

�^(n) =

8><>:
�
R




�n
n+1


; n = 0; 1; : : : in case of SST�

R




�n
(n+1)(n+2)


2
; n = 0; 1; : : : in case of SGG

(see [Fr]). Obviously, the properties (i) and (ii) are satis�ed by the operator �. The solvability condition

(28) generally is not ful�lled by a (piecewise) continuous [h 
2; 
2]-locally supported scaling function

fK


h
gh2(�1;1). Consequently, FJ cannot be calculated by application of ��1 to the formula (24). Instead

we have to `regularize', i. e. Equation (27) has to be replaced by the formula

F reg
J

(y) =
4� 
2

NJ0

NJ0X
k=1

G(w
NJ0

k
) (��1Kreg

hJ0
)(y � wNJ0

k
) +

J�1X
j=J0

4� 
2

Nj+1

Nj+1X
k=1

G(w
Nj+1

k
) (��1	

reg
j
)(y � wNj+1

k
);

y 2 
R, where the family f��1Kreg
hj
gj2N0 is the so-called regularization scaling function, de�ned by

(��1Kreg
hj

)(y � w) =
1X
n=0

(��1Kreg
hj

)^(n)

2n+1X
k=1

Y R

n;k(y)Y



n;k
(w); y 2 
R; w 2 

 ;

and f��1	reg
j
gj2N0 is the associated regularization di�erence wavelet, which is de�ned by ��1	

reg
j

:=

��1Kreg
hj+1

� ��1Kreg
hj

, j 2 N0 . By construction ��1Kreg
hj

is rotation-invariant.

Typically truncated singular value decomposition may be used as regularization procedure, i. e.

(��1Kreg
hj

)^(n) :=

8<: (Khj )
^(n)(�^(n))�1 if n = 0; 1; : : : ; Lj

0 if n = Lj + 1; Lj + 2; : : : ;
(29)

j 2 N0 , with a sequence of integers fLjgj2N0 satisfying Lj < Lj+1 for all j 2 N0 .

In the case of smoothed Haar scaling functions, all (��1Kreg
hj

)(y � wNj+1

k
), (��1Kreg

hj
)(y � wNj

k
), y 2 
R,

can be calculated recursively from their Legendre expansions using the recursion relations (7), (8).
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5.3 Regularization by Truncated Singular Value Decomposition Wavelets

Finally a few words shall be made about regularization by truncated singular value decomposition

regularization wavelets (cf. [Fr], [Schn]). For that purpose we start with the sequence of symbols

ff(��1Kreg
hj

)^(n)gn2N0gj2N0 given by (29) for a sequence fLjgj2N0 satisfying Lj < Lj+1 for all

j 2 N0 and limj!1 Lj = 1. Moreover, we consider the rotation-invariant pseudodi�erential opera-

tors fTjgj=J0;J0+1;:::, Tj : L2(

)! L2(
R), given by

TjG =

LjX
n=0

(��1Kreg
hj

)^(n)

2n+1X
k=1

G^
 (n; k)Y
R

n;k: (30)

(The function F reg
J

given in the last subsection is a numerical approximation of TJG.) The condition

sup
n

j(��1Kreg
hj

)^(n)j = C(hj) <1;

implies that

sup
G2L2(

 );

G 6=0

kTjGkL2(
R)
kGkL2(

)

= sup
G2L2(

 );

G6=0

�
1P
n=0

2n+1P
k=1

�
(��1Kreg

hj
)^(n)

�2 �
G^
 (n; k)

�2�1=2

�
1P
n=0

2n+1P
k=1

�
G^
 (n; k)

�2�1=2
� C(hj) <1:

In other words, Tj is bounded on L2(

) for all j = J0; J0 + 1; : : :. For G 2 im(�) we have

lim
j!1

k��1G� TjGk2L2(
R) = lim
j!1

 
1X
n=0

�
1� (Ktrunc

hj
)^(n)

�2
(�^(n))

�2 �
G^


(n; k)

�2!
;

where fKtrunc
hj

gj2N0 denotes the truncated kernel fKhjgj2N0 , more precisely

(Ktrunc
hj

)^(n) =

8<: (Khj )
^(n) if n = 0; 1; : : : ; Lj

0 if n = Lj + 1; Lj + 2; : : : ;

j 2 N0 : In order to interchange the limit and the in�nite sum we observe that�
1� (Ktrunc

hj
)^(n)

�2
� C

uniformly in j and n for all scaling functions fKhgh2(�1;1) that satisfy the assumptions of Theorem 2.2.

Especially, the limit and in�nite sum may be interchanged for all our examples. Consequently, because

of limj!1(Khj )
^(n) = 1 for all n 2 N0 we obtain

lim
j!1

k��1G� TjGkL2(
R) = 0:

Summarizing our results we are therefore led to the following conclusion.

Theorem 5.1 The sequence fTjgj=J0;J0+1;:::, Tj : L2(

) ! L2(
R), as de�ned by (30), is a regular-

ization of ��1 in the following sense:

(i) Tj is bounded on L2(

) for all j = J0; J0 + 1; : : :,

(ii) lim
j!1

TjG = ��1G provided that G 2 im(�).
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