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Abstract. Linearized ows past slender bodies can be asymptotically de-

scribed by a linear Fredholm integral equation. A collocation method to solve

this equation is presented. In cases where the spectral representation of the

integral operator is explicitly known, the collocation method recovers the spec-

trum of the continuous operator. The approximation error is estimated for

two discretizations of the integral operator and the convergence is proved. The

collocation scheme is validated in several test cases and extended to situations

where the spectrum is not explicit.

1. Introduction

Low{Reynolds{number ows past slender �bers can be asymptotically described

by a Fredholm integral equation [5,11]. Assuming a long, slender �ber with circular

cross{section exposed to a free{ow one deduces from asymptotic expansions the

model

8�� (u0(s)� u1(s)) = C(s)'(s) +

Z 1

0

'(t)

R0

�
'(s)

js� tj
+
M0'(t)

R3
0

�
etet

0
'(s)

js� tj
dt;

(1)

where u0 is the velocity of the �ber, u1 is a free{stream velocity pro�le, � > 0

the viscosity of the uid and s 2 [0; 1] is the normalized arc length parameter. The

function C : [0; 1]! R is given by C(s) = (I+ etet
0)L(s) + (I� 3etet

0). Here I is

the identity matrix in R3 , et 2 R3 the unit tangent vector (depending on s) to the

�ber's centerline and et
0 its transpose; L(s) = ln

s(1�s)

4a2�2(s)
depends on the slenderness

ratio a � 1 and the local radius �(s) of the �ber. By R0 = kR0k2 we denote the

distance between two points x0(t) and x0(s) on the centerline x0 : [0; 1] ! R
3 ,

where R0 = x0(t) � x0(s). The matrix M0 2 R
3�3 is de�ned by M0 = R0R0

0.

Strictly speaking R0, R0 andM0 depend on both s and t. However, for the sake of

shorter notation we skip this dependence henceforth. The unknown function '(s)

equals to the force acting on the �ber.

In particular, if a straight �ber is exposed to an uniform free{ow normal to it,

we obtain

(C + S)['] = f; and S['](s) =

Z 1

0

'(t)� '(s)

jt� sj
dt;(2)

where C(s) = ln
�
s(1�s)

a2�2(s)

�
+ 1 and f = 8�� (u0(s)� u1(s)) in the setting of (1).

Considering a �ber with ellipsoidal shape, i.e. �(s) = k
p
s(1� s) for some k > 0,

the function C(s) reduces to a constant c > 0, cf. [5].

Some of the assumptions that are met in deriving (1) can be relaxed, e.g. allowing

a non{circular cross{section of the �ber [12,15]. These models are applied in various

�elds ranging from �ber{spinning [5,14] and biouiddynamics [13] to the rheological
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2 THOMAS G�OTZ

investigations of �ber{reinforced materials [1, 3, 4] and phase transitions of liquid

crystals [17].

An extension to Oseen ow and to the description of the temperature �eld around

a heated �ber is also possible [5]. Both Oseen's equation (for the ow{�eld) and

the heat equation including linearized convection yield similar integral equations.

In [6,7] a complete theory of (2) is derived. The results are based on the explicit

knowledge of the spectrum of the integral operator S :

�(S) = f�Lk : k 2 N0g :(3)

Here, Lk =
P

k

i=1 2=i and by convention L0 = 0. The associated eigenfunctions are

the Legendre polynomials rescaled to the interval [0; 1], cf. [5, 7]. This knowledge

suggest an application of spectral methods to solve (2). Existence and uniqueness

of solutions ' belonging to L2 as well as C1 can be shown using the tools provided

by spectral theory; for details we refer to [5, 7].

However, in the general case (1) neither the spectrum nor the eigenfunctions

of the involved integral operator are available and thus spectral techniques cannot

be applied. Computing the solution via successive approximations is not possible,

since the integral operator is unbounded, see [5,7]. Hence, we propose a collocation

method to solve (1).

The paper is organized as follows. In Section 2 we introduce the grid used for

the collocation scheme and two suitable approximations for the integral operator.

These approximations use piecewise constant ansatz functions and evaluate the

integral either exactly or by the midpoint quadrature yielding the discretizations
~S0 and S0 of the integral operator S. In the case of (2) the approximation error

is estimated in Section 3. The approximation using the midpoint integration turns

out to be of second order in the collocation points whereas the method with explicit

evaluation of the integral yields an error of O(h lnh). In Section 4 we prove the

main result. We show, that the approximation S0 conserves the spectrum of the

continuous integral operator S. This result enables us to derive the convergence of

the proposed collocation method in Section 5. Theoretically a convergence rate of

3=2 is obtained. The collocation method is compared to the spectral method [5] in

Section 6. This comparison shows quadratic convergence. In Section 7 we consider

the treatment of the general equation (1) and construct a similar collocation scheme.

This method is applied in Section 8 to a test case considered �rst by Cox [2]. The

force acting on a �ber, that is bent to a circular arc, is computed.

2. Collocation Schemes

De�nition 1 (Collocation points). Let n 2 N. By �n we de�ne an equidistant

grid on the interval [0; 1] with a mesh width h = 1=n and grid nodes si = ih

for i = 0; : : : ; n. With this grid the cells Zi = [si�1; si) for i = 1; : : : ; n � 1 and

Zn = [sn�1; sn] are associated.

Their midpoints are denoted by �i = (i � 1=2)h for i = 1; : : : ; n and the set of all

collocation points is called X = f�i; i = 1; : : : ; ng.

Let I � R denote an interval. In the following we will need the functions spaces

B(I) :=
�
f : I 7! R : kfk

1
:= sup

x2I

jf(x)j � 1
�
;

Ck(I) := ff : I 7! R : f is k{times continuously di�erentiableg ;

Pn := ff : I 7! R : f is a polynomial of maximal degree ng ;

Ppw
n := ff : I 7! R : f jZi

2 Pn for all grid cells Zi, i = 1; : : : ; ng :
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De�nition 2 (Restriction and extension operator). Let ' 2 B[0; 1]. We de�ne the

restriction operator R : B[0; 1] 7! R
n by (R['])

i
:= '(�i) and R['] is called the grid

function associated to '.

For  2 R
n the piecewise constant extension operator E0 : R

n 7! Ppw
0 is de�ned by

(E0[ ]) (s) :=  i for s 2 Zi and i = 1; : : : ; n.

A grid function can be identi�ed with a vector in Rn . We introduce the norms

k k
p
:=

 
nX
i=1

j ij
p

!1=p

;(4)

k k := max
i=1;:::;n

j ij :(5)

Lemma 1. For the restriction and the piecewise constant extension operator intro-

duced in De�nition 2 the following holds:

R �E0 = I and k(E0 �R) [']� 'k
1
� h k'0k

1
8' 2 C1[0; 1]:

Here, we denote by I the identity matrix in R
n�n

.

In the following, integrals will often be evaluated numerically by applying the

midpoint rule. We have [16, p. 171]

Lemma 2. Let f 2 C2[a; b], then there exists � 2 [a; b] such thatZ b

a

f(x) dx = f(a+b
2
)(b� a) +

(b�a)3

24
f
00(�):(6)

The basic idea of collocation methods is to replace the continuous equation (2)

by a �nite number of equations (C + S)['](�) = f(�) at the collocation points

� 2 X . Choosing an appropriate space of ansatz functions and a suitable numerical

quadrature, we can approximate the integral operator S by a matrix, call it S0, and

the multiplication operator C by another matrix called C. Hopefully, the resulting

system (C+ S0) = R[f ] can be solved now, yielding an approximation  for '.

In the subsequent sections we will discuss two di�erent discretizations of the

integral operator S. Both discretizations are based on a piecewise constant approx-

imation to the function '.

De�nition 3. In the situation of De�nitions 1 and 2 we de�ne the approximation

S0 := E0S0R; where (S0 )j :=
X
i6=j

 i �  j

j�i � �j j
h(7)

or alternatively

~S0 := SE0R;
~S0 = RSE0 and

�
~S0 

�
j

:=
X
i6=j

( i �  j)

����ln si � �j

si�1 � �j

���� :
(8)

The multiplication operator C is approximated by

Ci;j := C(�i)�i;j :(9)

Since we have chosen our collocation points � 2 X as the midpoints of the grid

cells Z, it is quite natural to approximate the integral by the midpoint rule. This

approach yields the approximation S0. Plugging the piecewise constant extension

of a grid function into the integral operator S yields the alternative approximation
~S0. In contrast to the operator S0, that uses the midpoint rule for the integration,

the operator ~S0 performs an exact integration.
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3. Approximation Errors

Using the approximation (7), we obtain for su�ciently smooth functions second{

order accuracy in the collocation points � 2 X .

Proposition 1. Let ' 2 C3[0; 1] and n 2 N, h = 1
n
. Then

en := k(R � S)[']� S0(R')k � Kh
2
;(10)

with a constant K � k'000k
1
=72 + k'00k

1
=8.

Proof. Let s; t 2 [0; 1]. We de�ne �s(t) =
'(t)�'(s)

jt�sj
with the convention �s(s) = 0.

Let j 2 f1; : : : ; ng. We split the integral in S into the parts over [0; sj�1), [sj�1; sj ]

and (sj ; 1]. Similarly, we split the sum into the parts for i < j and i > j. For the

second integral we obtain the estimate

Z
�j

sj�1

��j (t) dt = �
Z

�j

sj�1

'
0(�j) +

t� �j

2
'
00(��j ;�) dt = �

�
'
0(�j)

2
h�

'
00(��j ;�)

16
h
2

�
;

with ��j ;� 2 [sj�1; �j ] and analogouslyZ
sj

�j

��j (t) dt =

�
'
0(�j)

2
h+

'
00(��j ;+)

16
h
2

�

with ��j ;+ 2 [�j ; sj ]. Addition yields�����
Z

sj

sj�1

��j (t) dt

����� =
��'00(��;�) + '

00(��j ;+)
�� h2
16

� k'00k
1

h
2

8
:

For the �rst integral and the �rst summand we obtainZ sj�1

0

��j (t) dt�
X
i<j

��j (�i) =
X
i<j

�00
�j
(��j ;i)

h
2

24

�
�j �

h

2

�
;

and for the last integral and last summandZ 1

sj

��j (t) dt�
X
i>j

��j (�i) =
X
i>j

�00
�j
(��j ;i)

h
2

24

�
1� �j �

h

2

�
:

Furthermore for � < s

�00
s (�) =

'
00(�)(s� �)2 + 2(s� �)'0(�) + 2('(�)� '(s))

(s� �)3

=
1

(s� �)3

�
�
(s� �)3

3
'
000(~�)

�
= �

'
000(~�)

3
;

with some ~� 2 (�; s). Analogously, we obtain for � > s and ~� 2 (s; �), that �00
s (�) =

'
000(~�)=3. Finally

k(R � S)[']� S0(R')k �

0
@
�00

�j


1

24
+
k'00k

1

8

1
Ah

2 �
�
k'000k

1

72
+
k'00k

1

8

�
h
2
:

Choosing K = k'000k
1
=72 + k'00k

1
=8 �nishes the proof.

Now the question arises, whether this second{order is a super{convergence in the

collocation points or if it is uniform. The term \super{convergence" expresses the

well{known fact, that collocation methods can yield a higher convergence order in

the collocation points than on the rest of the interval [9, pp. 133{134].
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Lemma 3. Let ' 2 C2[0; 1]. Then

kS[']� S0[']k1 � Kh

for some K > 0.

Proof. Let s 2 Zj for j 2 f1; : : : ; ng. Analogously to the previous proof, we split

the integral into its di�erent parts. For the integral over Zj we obtainZ
sj

sj�1

�s(t) dt = '
0(s) (sj + sj�1 � 2s) + '

00(�s;�)
(s� sj�1)

2

4
+ '

00(�s;+)
(s� sj)

2

4

� K k'0k
1
h:(�)

This already gives a hint on the super{convergence of the piecewise constant ap-

proximation for cell{centered collocation. Considering the remaining part of the

integral, one deduces for the �rst partZ
sj�1

0

�s(t) dt�
X
i<j

��j (�i)h =
X
i<j

Z
si

si�1

�s(t)���j (�i) dt

=
X
i<j

h
�
�s(�i)� ��j (�i)

�
�
X
i<j

h
2 k'00k

1
;

and a similar result for the integral from sj to 1, resp. the sum over i > j. Including

(�) yields������
Z 1

0

�s(t) dt�
X
i6=j

��j (�i)h

������ �
X
i6=j

h
2 k'00k

1
+Kh k'0k

1
� hK:

Thus, we obtain only �rst{order convergence for s 2 Zj .

Concerning the alternative approximation ~S0, one might expect a better approx-

imation, since the integration is performed exact rather than using the midpoint

rule. The next proposition states the rather surprising result, that this is not the

case.

Proposition 2. Let ' 2 C2[0; 1]. The discretization with analytic calculation of the

integrals, i.e. the operator ~S0, approximates the integral operator S with an error

bounded by the estimate

~en :=
(R � S)[']� ~S0(R') � Kh ln

1

h
;

where K > 0 is some constant.

Proof. Analogously to the proof of Proposition 1, we �x a collocation point �j 2 X
and split the integral into the part over Zj and the rest. For the integration over

Zj �����
Z
Zj

��j (t) dt

����� � k'00k
1

h
2

8
(�)

holds, using the notations from the proof of Proposition 1.

For the remaining integration we use

j'(t)� '(�i)j � k'0k
1

h

2
;
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Approximation S0
'(s)

n = 50 n = 100 n = 200 

s
3 2:64 E-4 6:64 E-5 1:66 E-5 2:00

s
2 1:00 E-4 2:50 E-5 6:25 E-6 2:00

s
1 1:53 E-15 3:33 E-15 5:11 E-15

1 3:48 E-15 7:91 E-15 1:14 E-14

Approximation ~S0
'(s)

n = 50 n = 100 n = 200 ~

s
3 8:76 E-3 4:47 E-3 2:26 E-3 0:98

s
2 5:96 E-3 3:02 E-3 1:52 E-3 0:99

s
1 3:03 E-3 1:53 E-3 7:63 E-4 1:00

1 1:37 E-15 2:04 E-15 2:73 E-15

Table 1. Absolute error and convergence rates in the collocation points for

the test cases (11) using the approximations S0 (7) and ~S0 (8).

where t 2 Zi and obtain������
X
i6=j

Z
Zi

'(t)� '(�i)

jt� �j j
dt

������ � k'0k
1

h

2
ln
�j(1� �j)

h2=4
� k'0k

1
h ln

1

h
;

which dominates the error (�).

Similar to Lemma 3 one can show, that the operator ~S0 approximates the oper-

ator S up to �rst order on the whole interval [0; 1].

Table 1 shows the results for the approximations S0 and ~S0 using the test cases

S['](s) = �Lnsn +
n�1X
k=0

1

n� k
s
k for '(s) = s

n
;(11)

where �Ln = �
P

n

k=1
2
k
for n 2 N0 are the eigenvalues of S, see [7] or Equation (3).

By convention we have L0 = 0.

The errors en and ~en are de�ned in the Propositions 1 and 2. The numerical

convergence order  or ~ is de�ned as

n := log2
en=2

en
resp. ~n := log2

~en=2

~en

where log2 denotes the logarithm with respect to base 2. The expected O(h2){error
in the collocation points for the midpoint rule (operator S0) is clearly visible as

well as the almost linear convergence for the method with exact calculation of the

integrals (operator ~S0). For '(s) = 1 and '(s) = s the midpoint rule is exact up to

machine precision, whereas the other method is only exact for the trivial constant

case.

4. Spectral Properties

The discrete spectrum and the associated eigenfunctions of the continuous oper-

ator S are explicitly known. An interesting property of the midpoint{discretization

S0 is, that it recovers the spectrum of S.

We need a preliminary result.
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Lemma 4. Let n; k 2 N0 . Then

nX
j=1

(2j � 1)k =
2knk+1

k + 1
�

bk=2cX
�=1

C�;kn
k+1�2�

;

where brc := maxn2N0 fn � rg denotes the Gauss{bracket,

C�;k =
B2�

2�
2k+1�2�

�
22��1 � 1

� �
k

2��1

�
and Bn are the Bernoulli{numbers, see [8,

Formula 0.122].

Theorem 1. The spectrum of the �nite{dimensional approximation S0 to the in-

tegral operator S is given by

�(S0) = f�Lk; k = 0; : : : ; n� 1g:(12)

Proof. Let s=
�
i�1=2

n

�
i=1;:::;n

2Rn and sl=
�
s
l

i

�
i=1;:::;n

for l=0; : : : ; n� 1.

Then
�
s
0
; : : : ; s

n�1
	
is a basis of Rn , since the matrix with columns

�
s
l
�
l=0;:::;n�1

is a Vandermonde{matrix.

Obviously, s0 2 kerS0.

Next, we show that for l 2 f1; : : : ; n� 1g we have S0s
l = �Llsl + pl�1, where

pl�1 2 spanfs0; : : : ; sl�1g. De�ne i0 = i� 1=2 and j0 = j � 1=2. Then

(S0s
l)i =

1

nl

X
i6=j

(j � 1
2
)l � (i� 1

2
)l

jj � ij

=
1

nl

0
@ nX

j=1

+�i;j � 2

iX
j=1

1
A
 

l�1X
k=0

i
0l�k�1

j
0k

!

=
l(i0)l�1

nl
�

2

nl2l�1

l�1X
k=0

(2i0)l�k�1
iX

j=1

(2j � 1)k +
1

nl2l�1

l�1X
k=0

(2i0)l�k�1
nX

j=1

(2j � 1)k

=
l(i0)l�1

nl
�

2

nl2l

l�1X
k=0

(2i0)l�k�1

 
(2i)k+1

k + 1
�
X
�

2C�;ki
k+1�2�

!

+
1

nl2l

l�1X
k=0

(2i0)l�k�1

 
(2n)k+1

k + 1
�
X
�

2C�;kn
k+1�2�

!

=
l(i0)l�1

nl
�

2

nl2l

l�1X
k=0

(2i0)l�k�1

"
(2i)k+1

k + 1
+

1

k + 1

k+1X
m=1

�
k + 1

m

�
(�1)m(2i)k+1�m

�
1

k + 1

k+1X
m=1

�
k + 1

m

�
(�1)m(2i)k+1�m �

X
�

2C�;ki
k+1�2�

#

+
1

nl2l

l�1X
k=0

(2i0)l�k�1

 
(2n)k+1

k + 1
�
X
�

2C�;kn
k+1�2�

!

=
l(i0)l�1

nl
�

2

nl2l

"
(2i0)l

l�1X
k=0

1

k + 1| {z }
(�)

�
l�1X
k=0

(2i0)l�k�1 �

�

 
1

k + 1

k+1X
m=1

�
k + 1

m

�
(�1)m(2i)k+1�m +

X
�

2C�;ki
k+1�2�

!#

+
1

nl2l

l�1X
k=0

(2i0)l�k�1

 
(2n)k+1

k + 1
�
X
�

2C�;kn
k+1�2�

!
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= �Llsl + pl�1:

Note, that the term (�) is the only term that contains the vector sl. All the other

terms are linear combinations of the vectors s0; : : : ; sl�1. Thus, writing S0 in the

basis
�
s
k
	
k=0;:::;n�1

, we obtain the following upper diagonal form

S0 =

2
66664

0 � � � � �
0 �L1 � � � �
...

...
. . .

...

0 0 � � � �Ln�1

3
77775 ;

where the entries marked by � correspond to the representation of pl�1 with respect
to the basis

�
s
k
	
k=0;:::;n�1

. The eigenvalues of this upper triangular matrix are the

entries along the diagonal.

0 50 100 150 200
−14

−12

−10

−8

−6

−4

−2

0

n

λ n

σ(S
0
) 

exact integration
quadratic splines

Figure 1. The spectra of the matrices S0 (`|'), ~S0 (`{ {') and from a collo-

cation scheme based on quadratic splines (`� � � ') are plotted. The spectrum
of S0 is identical to the spectrum of the integral operator S, see Theorem 1.

The two other spectra are computed numerically for di�erent discretizations

yielding matrices of size n � n, where n 2 f50; 100; 200g. The di�erences

in the spectra are signi�cant, especially for the collocation based on spline{

approximation.

Remark 1. Theorem 1 as well as its proof are the discrete analogon of a similar

result in the continuous case [7]. The basis vectors sl are, so to speak, discrete

monomials and p 2 span
�
s
l
; l = 0; : : : ; k for k � n� 1

	
might be called a discrete

polynomial of degree k, if psk 6= 0. The statement of Theorem 1 can be reformulated

as :

S0
�
span

�
s
l
; l = 0; : : : ; k

	�
= span

�
s
l
; l = 0; : : : ; k

	
for all k � n � 1. The matrix S0 maps discrete polynomials onto discrete polyno-

mials.

Using Gram{Schmidt orthogonalization, we can construct a basis fu0; : : : ;un�1g
of eigenvectors that diagonalizes S0.
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1. De�ne u0 := s
0. Then S0u0 = �L0u0.

2. De�ne uk := sk +
P

k�1

j=0 r
j

k�1uj , where r
j

k�1 = �pj
k�1=(Lk � Lj)

and pk�1 =
Pk�1

j=0 p
j

k�1uj .

The resulting sequence (uk)k=0;:::;n�1 is a basis of eigenvectors, that diagonalizes

S0.

From the theoretical investigation of S performed in [5,7] we know, that there ex-

ist eigenfunctions ~Pk 2 Pk such that S[ ~Pk] = �Lk ~Pk and ~Pk = s
k +

Pk�1

j=0 w
j

k�1
~Pj .

Furthermore S[sk] = �Lksk+qk�1(s) where qk�1 2 Pk�1. Now the question arises,

whether the numerical eigenvectors uk of S0 converge for �xed k and h! 0 to the

eigenfunctions ~Pk of the operator S.

The following Lemma 5 and Proposition 3 give the a�rmative answer to this ques-

tion.

Lemma 5. Let k 2 N0 and n > k. Then

kpk�1 �R[qk�1]k �
k(k � 1)

8

�
1 +

k � 2

9

�
h
2
;

for grid size h! 0.

Proof. Recall, that S0s
k = �Lksk + pk�1 and (R � S)[sk] = �LkR[sk] +R[qk�1].

Thus

kpk�1 �R[qk�1]k �
S0sk � (R � S)[sk]

 � Kh
2

where

K �

(sk)000
1

72
+

(sk)00
1

8
�
k(k � 1)(k � 2)

72
+
k(k � 1)

8
:

Proposition 3. Let k 2 N0 and n > k. Then

uk �R[ ~Pk]
 � k(k � 1)

8

�
1 +

k � 2

9

�
h
2

k�1X
j=0

1

Lk � Lj
:

Proof. Using the results uk = s
k +

Pk�1

j=0 r
j

k�1uj and r
j

k�1 = �
p
j

k�1

Lk�Lj
as well as

pk�1 =
Pk�1

j=0 p
j

k�1uj , we obtain the estimate

uk �R[ ~Pk]
 � k�1X

j=0

rj
k�1uj � w

j

k�1R[
~Pj ]
 � k�1X

j=0

pj
k�1uj � q

j

k�1R[
~Pj ]


Lk � Lj

�
k�1X
j=0

kpk�1 �R[qk�1]k
Lk � Lj

and �nally by Lemma 5

uk �R[ ~Pk]
 � k(k � 1)

8

�
1 +

k � 2

9

�
h
2

k�1X
j=0

1

Lk � Lj
:

As a summary :

The numerical discretization S0 exactly reproduces the spectrum of the continuous

operator. The eigenvectors of the numerical scheme converge to the eigenfunctions

of the continuous operator.
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5. Convergence

We will exploit the spectral properties of S0 and of S to derive convergence

results for a numerical scheme.

The continuous equation

(C + S)['] = f; where S['](s) =

Z 1

0

'(t) � '(s)

jt� sj
dt(13)

is replaced by the numerically solvable equation

(C+ S0) = f ;(14)

where f = R[f ] is the grid function associated to f .

Theorem 2. Let C = c = const. and c 6= Lk for k 2 N0 . Let ' be the solution of

(13). Let  be the solution of the discrete equation (14) and by e = R['] �  we

denote the error. Then there exists K > 0, such that

kek � Kh
3=2
:

Proof. In a collocation point �i 2 X we obtain

(C + S) ['](�i) =

nX
j=1

(C+ S0)i;j  j :

Since C is a multiplication operator and according to De�nition 3, the matrix C

is a diagonal matrix. Hence C['](�i) = C(�i)'(�i) =
Pn

j=1Ci;j(R')j . Setting

M = C+ S0 yields X
j

Mi;jej = S0(R['])� (R � S)[']:

The eigenvalues of M are given by fc� Lk : k = 0; : : : ; n� 1g. Due to our as-

sumption c 6= Lk for k 2 N0 the matrix M is invertible and

ei =
X
j

M�1
i;j

(S0(R['])� (R � S)['])
j
:

Thus we obtain the estimate

kek �
M�1


1
� k(R � S)[']� S0(R['])k :

The second factor is bounded by Kh2 for some K > 0 due to Proposition 1. Con-

sidering the �rst term, let �(M) denote the spectral radius and �min(M) be the

eigenvalue of M with minimal absolute value. We have

kMk1 �
p
n �(M):

For kM�1k1 we obtain

kM�1k1 �
p
n �(M�1) �

p
n �min(M)�1:

Since C = c = const., the smallest eigenvalue of M is given by

�min(M) = min
�2�(S0)

jc+ �j:

If n is large enough, i.e. if c� Ln < 0, this term is independent of n and bounded

by some constant K > 0. Summarizing the results, we obtain

kek � K
p
nh

2 = Kh
3=2
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Thus we have a convergence rate of at least 3=2. The numerical results given

in Table 2 exhibit a convergence rate of approximately 2. So there might be some

space for slight improvements.

What about the case C 6= const. ? Until now, we used in deriving lower bounds

for the eigenvalues of M, that C(s) = c = const.:

In the case of non{constant C, we use a perturbation argument, reducing the case

of non{constant C to the situation for C = const.

Lemma 6. Let A 2 R
n�n

be regular and E 2 R
n�n

be a perturbation, such that

kA�1k � kEk � 1. Then A+E is again regular and the estimate

k(A+E)�1k �
kA�1k

1� kA�1k � kEk
:

holds in any matrix{norm k � k, see [16, p. 63].

If C 6= const., we de�ne c = 1
n

n�1P
i=0

(RC)i, � = C � cI M = C + S0 and

M̂ = cI+ S0.

Corollary 1. If kM̂�1k � k�k � 1, then due to Lemma 6

kM�1k �
kM̂�1k

1� kM̂�1k � k�k

holds. Especially

kM�1k1 �
p
n

�min(M̂)� max
i=0;:::;n�1

jCi � cj)
:

Remark 2. The result of Corollary 1 restricts to the case

max
i=0;:::;n�1

jCi � cj � �min(M̂) = min
k2N0

jc� Lk�1j:

For example, if c = 5, then we have mink2N0 jc � Lk�1j = 0:1 and for c = 14 even

mink2N0 jc� Lk�1j � 6:986 � 10�4 for k = 615.

6. Numerical Results

We compare the collocation method with a spectral method proposed in [7]. The

right hand side of (2) is given by the functions

f(s) := � sin(2�s)

h�(s) :=
1

�
arctan

�
2s� 1

�

�
+

1

2
:

The Legendre coe�cients of the reference solution are obtained using MAPLE V

Release 4. The expansion in the Legendre polynomial basis is cut o� with a

L2{error less than 10�5. For the function f(s) = � sin(2�s) the �rst 11 coe�-

cients guarantee a L2{approximation with an error of approximately 8:4 �10�6. For
h�(s) =

1
�
arctan( 2s�1

�
) + 1

2
with � = 5 the �rst 39 coe�cients are needed and yield

a L2{error of about 7:8 � 10�6. Again, the parameter c = 5 is chosen. With this

choice, the solution is computed with L2{error less than 10�5.

The collocation method uses 50 up to 400 collocation points, i.e. the mesh width

is between h = 0:02 and 0:0025. The computation of the solution requires the

inversion of a full but symmetric matrix of dimension n� n.

Table 2 lists the errors between the reference solution and the numerical ones

in the L1{ and L2{norm (both normalized with the L1{ resp. L2{norm of the

reference solution). For the error e1 the numerical convergence order  is also given.
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Table 2. L1{error e1 along with the convergence order  and L2{error
e2 for f(s) and h1=5(s).

Test case f Test case h1=5
n =

e1  e2 e1  e2

50 1.3225 E-2 1.8765 E-3 2.9890 E-2 9.8854 E-4

100 3.6285 E-3 1:87 4.6120 E-4 8.5338 E-3 1:81 2.3864 E-4

200 9.5020 E-4 1:93 1.0672 E-4 2.2858 E-3 1:90 5.1680 E-5

400 2.4409 E-4 1:96 1.8061 E-5 5.9209 E-4 1:95 4.9725 E-6

Table 3. L1{error ~e1 along with the convergence order ~ and L2{error
~e2 for f(s) and h1=5(s) using the alternative approximation ~S0.

Test case f Test case h1=5
n =

~e1 ~ ~e2 ~e1 ~ ~e2

50 3.1178 E-2 6.7005 E-3 6.9975 E-2 3.4469 E-2

100 1.9763 E-2 0:65 2.0394 E-3 4.3879 E-2 0:67 1.8684 E-2

200 1.1858 E-2 0:74 6.0923 E-4 2.5837 E-2 0:76 7.5078 E-3

400 5.4897 E-3 1:11 1.8528 E-4 1.1865 E-2 1:12 2.5611 E-2

This table shows nearly quadratic numerical convergence rates for the collocation

scheme.

Table 3 shows the analogous result for the alternative approximation ~S0 to the

integral operator S.

7. Numerical Treatment of the general equation

The considerations up to now are concerned with a straight �ber exposed to

normal or tangential ow, i.e. Equation (2). In this section we briey discuss the

numerical treatment of Equation (1) rewritten as

f (s) = (C1(s)I+ C2(s)etet
0)'(s) +

Z 1

0

'(t)

R0

�
'(s)

js� tj
+
M0'(t)

R
3
0

�
etet

0
'(s)

js� tj
dt:

(15)

First, we note, that for a C2{function x0 describing the centerline of the �ber,

we obtain

R0 = kx0(s)� x0(t)k = js� tj+
�

2
js� tj2 +O(js� tj3) for t! s;

as well as

M0

R
2
0

=

�
R0

R0

��
R0

R0

�0
= etet

0 +
�

2
js� tj et
en +O(js� tj2) for t! s;

where � is the curvature of the centerline and a
b := ab0+ ba0 is the symmetrized

dyadic product of a; b 2 R
3 . The integral of (15) exists for �{H�older{continuous

functions ' 2 C0;�[0; 1] where � 2 (0; 1], i.e. for t ! s, the integrand of (15)

\reduces" to that of (13). For t \away" from s, the integrand of (15) reects the

shape of the �ber's centerline. If the centerline of the �ber does not reapproach

itself, i.e. if kx0(t)� x0(s)k � Kjs� tj, then the terms containing R�1
0 and R�3

0 in

(15) cannot have singularities for t 6= s.
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As already stated, an explicit spectral theory of (15) is presently not available.

Nevertheless, since the collocation method using piecewise constant ansatz functions

and midpoint integration works well in the case of (2), we construct a similar method

for solving (15).

Rewriting (15) componentwise with respect to the global coordinate system in

R
3 , we obtain a system of three coupled integral equations for the components

('1; '2; '3) = '. Using a piecewise constant ansatz for each component and dis-

cretizing the integrals with the midpoint quadrature formula, we obtain after some

calculations a linear system
�
C+ Sfull

0

�
' = f ,0

B@
S11
0

S12
0

S13
0

S21
0

S22
0

S23
0

S31
0

S32
0

S33
0

1
CA
0
B@
'1

'2

'3

1
CA =

0
B@
f1

f2

f3

1
CA ;

for the components of '.

In the case of (2)
�
e.g. the �ber is aligned to the z{axis and f = (f1; 0; 0)

�
,

the o�{diagonal blocks S12
0
;S13

0
;S21

0
;S23

0
;S31

0
;S33

0
of the matrix C+Sfull

0
drop out,

and we obtain the familiar discretization (cI + S0)'1 = f1, yielding the only force

component in x{direction.

Remark 3. Usually the matrix C + Sfull
0

is a full and non{symmetric matrix of

dimension (3n)2. If the �ber lies in a plane, i.e. if the torsion of the centerline

vanishes, and if the right hand side f has also only components in this plane, then

the local coordinate system spanned by the tangent et and the normal en of the

�ber shall be used. In this situation, the binormal vector eb is constant along the

�ber. Using the decomposition of ' and f in the tangential and normal component,

we obtain a reduced system of dimension (2n)2.

8. Circular Arc in Translational Flow

In [2], Cox considers the force acting on an ellipsoid with minor axis a, bent to a

circular arc between the angles �0 and �1. The free{stream velocity is u1 = e1, see

Figure 2. Cox gives an expression for the force acting on this body as an expansion

in terms of 1= lna. In [10], Johnson considers the same situation. He gives an

approximative solution, obtained from an iteration procedure applied to an integral

equation similar to (15). Using a discretization with n = 400 collocation points,

minor axis a = 10�4 and the angles �0 = 20� and �1 = 130�, the resulting force,

based on equation (15) is computed numerically. Figure 3 shows the results. Good

agreement is found between Johnson's approximation and the numerical solution.

The result, published by Cox, is in less agreement, especially near to the ends of

the �ber. A reason for this might be an inaccurate treatment of the �ber shape at

the ends.

9. Conclusion

The integral equations arising from ow past slender �bers are numerically solved

by a collocation method. In the case of a straight �ber the collocation scheme

exactly recovers the eigenvalues and the eigenvectors converge to the eigenfunctions

of the continuous operator.

The collocation scheme is applied to �bers with arbitrary centerlines. A treat-

ment of the integral equations arising from the slender{body approximations of

Oseen's equation is seemingly possible.
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