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Abstract

In this paper we derive nonparametric stochastic volatility models in dis-

crete time. These models generalize parametric autoregressive random variance

models, which have been applied quite successfully to �nancial time series.

For the proposed models we investigate nonparametric kernel smoothers. It is

seen that so-called nonparametric deconvolution estimators could be applied

in this situation and that consistency results known for nonparametric errors-

in-variables models carry over to the situation considered herein.

1 Introduction

Many methods of �nancial engineering like option pricing or portfolio management

crucially depend on the stochastic model of the underlying asset. If S(t) denotes

the stock price at time t, then, e.g., the Black-Scholes approach to option pricing is

based on modelling log S(t) as a Wiener process with drift � and di�usion coe�cient

or volatility � :

d(log S(t)) = �dt + �dW (t)

where W (t) is a standard Wiener process. This particular model is known to be

inappropriate in various circumstances. For instance, � can no longer be assumed

to be constant if the time up to exercising the option is rather short. Replacing the

constant � by a positive stochastic process �(t) we arrive at the following equation

for the asset price:

d(log S(t)) = � dt+ �(t)dW (t):(1.1)

In the literature, several speci�c parametric models for the stochastic volatility �(t)

have been proposed and used for option pricing. Here, we restrict ourselves to models
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which characterize �(t) as the solution of a stochastic di�erential equation for log �(t)

known up to a few parameters. An example is the equation

d(log �(t)) = �(� � log �(t))dt+ dW �(t)(1.2)

considered by Scott (1987, 1991), Wiggins (1987) and Chesney and Scott (1989).

Here, W �(t) is another standard Wiener process correlated with W (t) of (1.1)

dW (t) dW �(t) = � dt;

and � of (1.1), �; �;  and � are the unknown model parameters. Other models of a

similar structure have been proposed in the literature.

To help to answer the question which stochastic volatility model is appropriate for a

particular data set we consider a rather general type of model avoiding the assump-

tion of a particular parametric form of the equation de�ning �(t): At the beginning,

we discretize time, as is also frequently done for parametric models for the purpose of

estimating the model parameters. The log-volatility will then satisfy a general non-

linear stochastic di�erence equation or nonlinear autoregressive scheme. As �(t) is

not directly observable, the now quite familiar kernel estimates for the autoregression

function are not applicable. We use instead nonparametric deconvolution estimators

similar to those discussed in regression analysis by Fan and Truong (1993). These

estimators are consistent and provide a convenient tool for exploratory data ana-

lysis helping in the decision which particular parametric model to choose for further

analysis of the data.

2 A nonparametric stochastic volatility model

We consider some asset with price S(t) at time t and, following Taylor (1994), de�ne

the return from an integer time t� 1 to time t as

Rt = log
S(t)

S(t� 1)
:

To estimate a stochastic volatility model like (1.1) and (1.2), discretized versions of

these equations are considered. Wiggins (1987) and Chesney and Scott (1989) use

the Euler approximation

Rt = � + �t�1Wt(2.1)

log �t = �+ �flog �t�1 � �g+ #W �

t(2.2)

(Wt;W
�

t ) denote i.i.d. bivariate standard normal random variables with zero mean

and correlation �: In (2.1), the lagged quantity �t�1 appears as the stochastic volat-

ility for period t. This is rather advantageous for statistical purposes, as we will
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clearly see later on.

As another simpli�cation of (1.1), Taylor (1994) considers

Rt = �+ �tWt;(2.3)

and he called (2.1), (2.2) a lagged autoregressive random variance (LARV) model,

as log �t follows a linear autoregressive scheme. Analogously, (2.3), (2.2), together,

is called a contemporaneous autoregressive random variance (CARV) model.

In this paper, we consider nonparametric generalizations of these models. We start

with the lagged case and study it in detail, whereas we give a short discussion of the

contemporaneous case at the end of Section 3.

We replace (2.2) by a nonlinear nonparametric model for �t = log �t :

�t = m(�t�1) + �t;(2.4)

where �t denote i.i.d. zero-mean normal random variables with variance �2�; and m

is an arbitrary autoregression function for which we only require certain smoothness

assumptions.

In order to ensure that the Markov chain (�t) possesses nice probabilistic properties

- e.g. geometric ergodicity and �-mixing (absolute regularity) or �-mixing (strongly

mixing) with geometrically decaying mixing coe�cients - it su�ces (because of the

assumption of normally distributed innovations �t) to assume an appropriate drift

condition on m, e.g.

lim sup
jxj!1

����m(x)

x

���� < 1;(A1)

cf. Doukhan (1994), Proposition 6 (page 107). Then, in particular, �t has a unique

stationary distribution with density p�:

We want to estimate m using kernel-type estimates. The usual Nadaraya-Watson

estimates are, however, not applicable as we cannot observe the volatility �t or its

logarithm �t directly. The available data are the asset prices St or the returns Rt

which are related to �t by (2.1). Taking logarithms and using the abbreviations

Xt =
1

2
log(Rt � �)2 � �"; "t =

1

2
logW 2

t � �"

with �" = E (1
2
logW 2

t ) = �0:63518::: (Scott (1987)), we get

Xt = �t�1 + "t;(2.5)

where the "t are i.i.d. zero-mean random variables distributed as 1
2
times the log-

arithm of a �2
1-random variable centered around 0. The correlation between the
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standard normal random variable Wt, appearing in the de�nition of "t; and �t of

(2.4) is �. (2.4), (2.5), together, form a nonparametric autoregressive model with

errors-in-variables as �t cannot be observed directly but is known only through its

convolution with the i.i.d. random variables "t. Plugging (2.5) into (2.4) we obtain

the following equation for Xt alone

Xt = m(Xt�1 � "t�1) + �t�1 + "t:(2.6)

RemarkAssumption (A.1) also implies geometric ergodicity including geometrically

� - and strong mixing for the process (Xt):

3 Kernel estimates for the autoregressive volatil-

ity function

Fan and Truong (1993) have studied a nonparametric regression model with errors-

in-variables similar to the nonparametric autoregressive model (2.4), (2.5). Follow-

ing their approach, we construct nonparametric estimates for m based on a sample

X1; : : : ;XT : Let us assume that the parameter �, which is the expectation of the

returns Rt; is known such that the Xt are observable. From applications it can be

justi�ed that this expectation is close to zero. In case � 6= 0; the returns have to be

centered before the procedure described below should be applied.

If we could observe �1; : : : ; �T then we could estimate their stationary density, p�(x)

by the kernel estimate

p̂�(x; h) =
1

Th

TX
t=1

K(
x� �t

h
);

where K denotes a probability density and h > 0 denotes the bandwidth. The

strongly mixing property of (�t); which is ensured by (A1), immediately implies

consistency via a covariance inequality.

As we only observeX1; : : : ;XT ; whose stationary density is the convolution of p� with

the known density of the i.i.d. random variables "t; we have to use a deconvolution

density estimate instead:

p̂(x; h) =
1

2�

Z
1

�1

e�iwx�K(wh)
�̂x(w)

�"(w)
dw(3.1)

with

�"(w) = E eiw"1; the characteristic function of "t;

�K(w) =
R
1

�1
eiwxK(x)dx; the Fourier transform of the kernel K,

�̂x(w) =
1
T

PT

t=1
eiwXt; the sample characteristic function of X1; : : : ;XT :

The bandwidth h, depending on the sample size T , acts as a smoothing parameter

as usual. For i.i.d. observations �1; : : : ; �T , the estimate p̂(x; h) for p�(x) has been
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investigated in detail by Stefanski and Carroll (1990), Carroll and Hall (1988), Fan

(1991a,b) and Liu and Taylor (1989). Note that (3.1) can be written as a kernel

estimator similar to p̂�(x; h); namely

p̂(x; h) =
1

Th

TX
t=1

Kh(
x�Xt

h
)

with a kernel Kh depending on h and on the known distribution of the "t

Kh(x) =
1

2�

Z
1

�1

e�iwx
�K(w)

�"(w=h)
dw:(3.2)

Remark. It should be noted, that without knowing anything of the distribution of

the "t it is completely impossible to recover the stationary density p�:

Now, the nonparametric estimate for m(x) is de�ned as a Nadaraya-Watson estimate

with kernel Kh and with Xt replacing �t, more exactly

m̂(x; h) =
1

Th
�

TX
t=1

Kh(
x�Xt

h
)Xt+1=p̂(x; h):(3.3)

In order to apply this estimator it is necessary to evaluate the characteristic function

�" of "t and to make use of a kernel K for which the Fourier transform �K takes a

convenient form. Concerning the explicit form and the asymptotic behaviour of �"
we have the following result.

Lemma 3.1: Assume W � N (0; 1); and let the density of the standard normal

distribution be ': The distribution of the centered random variable " = 1
2
logW 2��"

possesses the following density

p"(x) = 2 '(ex+�") ex+�"; x 2 R:

Here �" = (�+ log 2)=2 � 0:63518 (� denotes Eulers constant).
Let us denote by � the Gamma function. We have

�"(w) =
e(

log 2

2
��")iw

p
�

�(
1 + iw

2
); w 2 R:

Concerning the tail behaviour of �" we have for all d0; d1 with 0 < d0 <
p
2 < d1 <

1 :

d0 e
�jwj�=4 � j�"(w)j � d1e

�jwj�=4 as jwj �! 1:(3.4)
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Proof: The explicit expressions for p" and �" can be obtained by direct computation,

while (3.4) is an immediate consequence of the tail-behaviour of �, which can be found

for example in Gradstein and Ryshik (1981) (No. 8.328, page 331).

Now, let us investigate the asymptotic behaviour of the kernel estimator m̂(�; h), cf.
(3.3). We have

m̂(x; h)�m(x) =
1
Th

P
t Kh(

x�Xt

h
)(Xt+1 �m(x))

1
Th

P
t
Kh(

x�Xt

h
)

:(3.5)

The following lemmas imply the consistency of m̂(�; h):

Lemma 3.2: Assume that m is twice continuously di�erentiable and that p� is
continuously di�erentiable. Assume that �K has a bounded support, [�M0;M0] say,
and that h = h(T ) = c= log T where c > M0�=2:

(i) E 1
Th

P
t Kh(

x�Xt

h
)(Xt+1 �m(x)) =

R
1

�1
fm(u)�m(x)g 1

h
K(x�u

h
)p�(u)du

= O(h2)

(ii) Var
�

1
Th

P
t
Kh(

x�Xt

h
)(Xt+1 �m(x))

�
= o(1):

Lemma 3.3: Assume that p� is twice times continuously di�erentiable. Assume
that �K has a bounded support, [�M0;M0]; say, and that h = h(T ) � c= log T where

c > M0�=2: Then

(i) E 1
Th

P
t Kh(

x�Xt

h
) =

R
1

�1
p�(u)

1
h
K(x�u

h
) du

= p�(x) +O(h2)

(ii) Var
�

1
Th

P
t
Kh(

x�Xt

h
)
�

= o(1):

As an immediate consequence of Lemma 3.2 and 3.3 we obtain

Theorem 3.4: Under the assumptions of Lemma 3.2 and 3.3 we obtain for all

x 2 R
(log T )2(m̂(x; h)�m(x)) = Op(1):

The nonparametric generalization of the contemporaneous autoregressive random

variance model, where

Xt = �t + "t(3.6)
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holds instead of (2.5), while the structure of (�t) stated in (2.4) remains valid, is

much more complicated to deal with. The problems arise from the fact that �t and

"t are not independent (as �t�1 and "t were before). To see this recall that �t depends

on �t which itself is correlated to Wt (correlation �) appearing in the de�nition of

"t: Thus, the stationary density of our observations Xt is for the contemporaneous

case not the convolution of p� (which we are interested in) with the known density

of the i.i.d. random variables "t: To overcome the di�culties one could assume that

� = 0 which together with the assumption of normality for the distribution of (�;W )

implies independence even of "t and �t: Under this assumption � = 0 all above results

remain valid as can be easily seen.

In case we want to stay with the assumption � 6= 0 one has to look for another

possibility to estimate p�. One proposal may be as follows. Since

Xt = �t + "t = m(�t�1) + (�t + "t)

we could estimate the characteristic function of L(m(�o)) by �̂x(w)=��+"(w): Here

��+" denotes the characteristic function of the known distribution of �1 + "1: Now

�1 = m(�0) + �1 which suggests the following deconvolution estimator for p�

~p(x; h) =
1

2�

Z
1

�1

e�iwx�K(wh)
�̂x(w)

��+"(w)
��(w)dw

=
1

Th

TX
t=1

~Kh (
x�Xt

h
)

where ~Kh(n) =
1

2�

Z
1

�1

e�iwn�K(w)
��(w=h)

��+"(w=h)
dw:

Finally, as a nonparametric estimator for m we propose

~m(x; h) =
1

Th

TX
t=1

~Kh(
x�Xt

h
)Xt+1=~p(x; h):

We have, as before

Lemma 3.5: Under suitable assumptions we have

E ~p(x; h) =

Z
R

p�(x� hu)K(u)du = p�(x) +O(h2):

In order to obtain consistency of p̂(x; h) we computed above the variance and ob-

tained that it converges to zero. For the proof (cf. proof of Lemma 3.3) it was rather

essential to know the asymptotic behaviour of the characteristic function �" appear-

ing in the denominator of Kh. Similarily, we need for a consistency result for ~p(x; h)

some information on the asymptotic behaviour of �"+�, which seems to be a rather
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delicate problem. A direct computation of �"+�(w) leads to explicit expressions con-

taining functions related to the so-called parabolic-cylinder functions D� (x). The

argument w appears in the argument and in the parameter of D; and we were not

able to quantify the asymptotic behaviour of such functions as jwj �! 1:

The same problems arise when dealing with the numerator of ~m(x; h); For the numer-

ator even the computation of its expectations does not lead to such nice expressions

as in the lagged case.

Proofs.

Proof of Lemma 3.2:

(i) The expectation is equal to

1

h
E Kh(

x�X1

h
)(X2 �m(x))

=
1

h
E Kh(

x� �0 � "1

h
)(m(�0) + �1 + "2 �m(x))

=
1

h
E Kh(

x� �0 � "1

h
)(m(�0)�m(x)) +

1

h
E Kh(

x� �0 � "1

h
) �1:

Recall that E "2 = 0 and that "2 is independent of �0 and "1: Unfortunately

�1 and "1 are not independent. But, because of the independence of �0 and

("1; �1) = (1
2
logW 2

1 � �"; �1) and W1 � N (0; 1)

E Kh(
x� �0 � "1

h
) �1

=

Z
R3

Kh(
x� u� 1

2
logw2 + �"

h
) v p�(u) p�jW=w(v)'(w)du dv dw

=

Z
R2

Kh(
x� u� 1

2
logw2 + �"

h
) ���w p�(u) '(w) du dw

since the conditional distribution of � given W = w is N (���w; �
2
�(1 � �2))

by our assumptions. The latter integral is equal to zero by symmetry argu-

ments (recall that the normal density ' is a symmetric function). Thus, the

expectation under investigations equals

1

h
E Kh(

x� �0 � "1

h
)(m(�0)�m(x))

=
1

h

Z
R2

Kh(
x� u� v

h
)(m(u)�m(x)) p�(u) p"(v) du dv

=
1

2�h

Z
R3

e�i
w

h
(x�u�v)�K(w)

�"(
w

h
)
(m(u)�m(x)) p�(u) p"(v) du dv dw

=
1

2�h

Z
R2

e�i
w

h
(x�u)�K(w)(m(u)�m(x)) p�(u) du dw

=
1

h

Z
R

f
Z
R

1

2�
e�iw(x�u)=h�K(w) dwg (m(u)�m(x)) p�(u) du:
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The expression in curly bracket is by Fourier inversion equal to K((x� u)=h);

thus we have proved the �rst part of (i).

A Taylor-expansion of m and p� up to second (�rst) order yields because ofR
R
v K(v) dv = 0 :Z

R

fm(u)�m(x)g
1

h
K(

x� u

h
) p�(u) du

=

Z
R

K(v)f�h v m0(x) +
1

2
h2v2m00(x̂1)gfp�(x)� h v p0�(x̂2)g dv

= O(h2):

x̂1 and x̂2 denote suitable values between x�h v and x, possibly depending on

v:

(ii) Concerning the variance we obtain

var

 
1

Th

X
t

Kh(
x�Xt

h
)(Xt+1 �m(x))

!

=
1

Th2
� var

�
Kh(

x�X1

h
)(X2 �m(x))

�
+

+
2

T 2h2
�
X
s<t

cov

�
Kh(

x�Xs

h
)(Xs+1 �m(x)); Kh(

x�Xt

h
)(Xt+1 �m(x))

�
:

Using a covariance-inequality for strongly mixing sequences with geometrically

decaying mixing coe�cient (cf. Bosq (1996), Corollary 1.1 (page 19) we obtain

the following bound of the above expression

1

Th2
sup
u2R

jKh(u)j2E(X2 �m(x))2 +
O(1)

Th2

�
EjKh(

x�X1

h
)(X2 �m(x))j

� 2
2+�

for � > 0 arbitrarily small. Since

�
EjKh(

x�X1

h
)(X2 �m(x))j2+�

� 2
2+�

� sup
u2R

jKh(u)j2 �
�
EjX2 �m(x)j2+�

� 2
2+� ;

and since, from Fan and Truong (1993), (7.8), we have for � = 1
4
M0� > 0

sup
u2R

jKh(u)j = O(h) +O(
exp(�=h)

h
);

we can bound the variance through O( exp(2�=h)
Th4

): This expression converges to

zero for h = c= log T and c > 2�:
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Proof of Lemma 3.3:

(i) We have by independence of �0 and "1

E
1

h
Kh(

x�X1

h
)

=
1

h
E Kh(

x� �0 � "1

h
)

=
1

h

Z
R2

Kh(
x� u� v

h
) p�(u) p"(v) du dv

=
1

2�h

Z
R2

e�i
w

h
(x�u)�K(w) p�(u) du dw

=
1

h

Z
R

K(
x� u

h
) p�(u) du

=

Z
R

p�(x� h v) K(v) dv = p�(x) +O(h2):

The last equality is based on a second order Taylor-approximation of p�:

(ii) Along the same lines as in the proof of Lemma 3.2 we obtain the wanted as-

sertion.

Proof of Lemma 3.5:

E
1

h
~Kh(

x�X1

h
) =

1

h
E ~Kh(

x�m(�0)� "1 � �1

h
)

=
1

2�h

Z
R4

e�iw
x�r�s�t

h �K(w)
��(w=h)

��+"(w=h)
dPm(�0)(r)dP (";�)(s; t) dw

=
1

2�h

Z
R2

e�iw
x�r

h

Z
R2

eiw
s+t
h dP (";�)(s; t) dPm(�0)(r) �K(w)

�
(w=h)
�

��+"(w=h)
dw

=
1

2�h

Z
R2

e�iw
x�r

h �K(w) ��(w=h) dw dPm(�0)(r)

=
1

h

Z
R2

h

��
'

�
x�r

h
� u

��=h

�
K(u) du dPm(�0)(r)

because �K(w)���(w=h) is the characteristic function of K�N (0; �2�=h
2) with density

h

��

R
R
'( ��u

��=h
) K(u) du: (' denotes the density of the standard normal distribution)
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and the Fourier inversion formula.

=

Z
R

�
1

��

Z
R

'(
x� hu� r

��
) dPm(�0)(r)

�
K(u) du

The term in curly brackets is the density of L(m(�0) + �1) which is p�

=

Z
R

p�(x� hu) K(u) du = p�(x) +O(h2)

using the usual arguments and

Z
R

u K(u) du = 0:
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