
PORTFOLIO MANAGEMENT AND MARKET RISK

QUANTIFICATION USING NEURAL NETWORKS

Prof. Dr. J�urgen Franke

Department of Mathematics

Universit�at Kaiserslautern

Erwin-Schr�odinger-Str.

67663 Kaiserslautern

Germany

Abstract

We discuss how neural networks may be used to estimate conditional

means, variances and quantiles of �nancial time series nonparametrically.

These estimates may be used to forecast, to derive trading rules and to

measure market risk.

1 Introduction

Neural networks are now a well-established tool in �nancial engineer-
ing. The main applications, considered up to now, are to classi�cation,

forecasting and portfolio management, but also to option pricing (com-

pare, e.g., Anders1, Bol et al.2 and Refenes et al.11). In this paper, we
�rst introduce the basic concepts, relating them to nonlinear time series

models. Then, we give a short review of asymptotic theory, including

a study of an appropriate resampling method. To illustrate the poten-
tial of neural network based procedures in practice, we also discuss too

realistic case studies from stock and FX markets.

In the last two sections, we propose procedures which allow to es-

timate conditional variances and quantiles of nonlinear time series us-

ing neural networks. These nonparametric approaches may be used to
quantify the risk of �nancial assets either by estimating the conditional

volatility or the conditional value-at-risk. The kind of information condi-

tioned upon may be rather arbitrary and of a high-dimensional structure.

2 Nonlinear time series models based on neural networks

One of the well-known stylized facts about �nancial time series is their

serial uncorrelatedness, i.e. the univariate data appear to be white noise.
Hence, we expect only nonlinear predictors to show any reasonable per-

formance, and, additionally, we should use in forecasting not only past

observations of the time series of interest, but also other economic in-
formation from the past. For forecasting the time series St, we therefore

consider as basic model a nonlinear AR(�) - process with exogeneous

1

components Xt 2 Rd

St+1 = m(St; St�1; :::;St�� ; Xt) + "t+1 (1)

The conditional expectation of the "t given information up to time t is
0. More speci�c assumptions on these innovations will be made later

on. The d-variate exogeneous component Xt consists of values of other

�nancial and economic time series up to time t. We do not assume a
particular parametric form of the predictor function m which is the con-

ditional expectation of St+1 given St; St�1; :::;St�� ;Xt. Therefore, we

have to estimate it nonparametrically if we want to use it in forecasting
St+1. As we have situations in mind where the autoregressive order �+1

and the dimension d are large, familiar smoothing methods like kernel

estimators, discussed e.g. by Kreiss9, are not applicable without assum-
ing a particular, e.g. additive, structure of the function m on R�+1+d .

Neural networks o�er an alternative class of estimators which are
exible

and computationally feasible.

To keep the notation simple, we �rst give a short review of neural

network function estimators in the context of a heteroscedastic regression
model similar to the time series model (1):

Zt = m(Xt) + "t (2)

where X1;X2; : : : are independent identically distributed with density

p(x); x 2 Rd; and the residuals "1; "2; : : : are independent with

Ef"tjXt = xg = 0 ; Ef"2t jXt = xg = �
2
"(x) <1:

We assume that the conditional mean m(x) and the conditional variance

�2"(x) of Zt given Xt = x are continuous and bounded functions.

We want to estimate the function m on Rd using feedforward neural

networks with one hidden layer. As the basic building block we consider

the so-called neuron as a nonlinear transformation of a linear combina-
tion of the inputs x = (x1; :::; xd)

0 :

x 7! (b + u1x1 + :::udxd)

 is a �xed activation function; in the following we always choose the
centered sigmoid function

 (s) =
2

1 + e�s
� 1:

Combining H neurons, we get the network function

fH(x; #) = v0 +

HX
h=1

vh (bh +w
0

hx)

2

where # = (b1; : : : ; bH ; w
0

1; : : : ; w
0

H ; v0; : : : ; vH)
0 denotes the parameter

vector consisting of the network weights with w0h = (w1h; : : : ; wdh); h =

1; : : : ;H:

fH(x; #) speci�es a mapping from the input space Rd to the output

space which, in our case, is one-dimensional. Such network functions

are universal approximators (Hornik et al.7), i.e. any regression function
m(x) may be approximated arbitrarily well using a large enough num-

ber H of neurons and appropriate parameters #. In practice, feedforward

networks with more than one hidden layer of neurons may provide a more
parsimonious �t to m. As the theory and numerical practice is essen-

tially the same for this more general case, we restrict our considerations

here mainly to networks with only one hidden layer.

To estimate the conditional expectation m(x) = EfZtjXt = xg from
a sample (X1; Z1); :::; (XN ; ZN), we �x the number H of neurons and

calculate the nonlinear least squares estimate b#N of the parameter # by

solving

bDN (#) � 1

N

NX
t=1

(Zt � fH(Xt; #))
2 = min

#2�H

!

b#N is consistent in the sense that b#N �! #0 for N ! 1, where #0 is the

parameter for which the given network provides the best approximation

of m, i.e.

E(m(Xt)� fH(Xt; #))
2 = min

#2�H

!

Under the above conditions, b#N is asymptotically Gaussian:

Theorem: For N ! 1,

p
N(#̂N � #0) �! N (0;�1 +�2):

with covariance matrices
�i = A(#0)

�1
Bi(#0)A(#0)

�1
; i = 1; 2; where A(#) = r2D0(#);

B1(#) = 4 �
Z
�
2
"(x)rfH(x;#)r0

fH(x;#)p(x)dx;

B2(#) = 4 �
Z
(m(x)� fH(x; #))

2rfH(x; #)r0

fH(x;#)p(x)dx:

The second part �2 of the asymptotic covariance matrix represents

the e�ect of misspeci�cation due to �tting a network function with given

H to an arbitrary regression function m. In the correctly speci�ed case,
where m(x) = fH(x; #0), we have �2 = 0:

3

A simple proof of the theorem is given by Franke and Neumann6 . A

much more general result, which, under appropriate assumptions, also

covers the time series model (1), has been given by White13 . An imme-
diate consequence of the theorem is

fH(x; b#N) �! fH(x; #0) for N !1:

By the universal approximation property of neural networks, fH(x; #0)

converges to m(x) for H ! 1 . Therefore, fH(x; b#N) should become a

consistent nonparametric estimate of m(x) if H increases with N with

an appropriate rate. White14 has proven a corresponding result. In
practice, H is chosen by comparing the performance of the function

estimators fH(x; b#N) for various H on a validation set of data, which

has not been used in calculating the estimate b#N . Alternatively, one

could use the neural information criterion of Murata et al.10 which is a

version of Akaike's AIC adapted to neural network based regression and

autoregression models.

Resampling may be used to improve the asymptotic normal approx-
imation for the law of fH(x; b#N), where, for practical purposes, the co-
variance matrices �1 and �2 would have to be estimated anyhow. We

4

present a residual-based bootstrap for the simple nonlinear autoregres-

sion of order 1 or NLAR(1)

St+1 =m(St) + "t; (3)

but the generalization to higher order models is straightforward. We

start the procedure with some initial estimate bmN which may be a neural

network function estimate itself or some other consistent estimate for m.
It allows for calculating sample versions of the innovations "t by

b"t = Yt � bmN (Xt) ; t = 1; : : : ;N;

which have to be centered around 0:

e"t = b"t � 1

N

NX
k=1

b"k ; t = 1; : : : ;N:

Let eFN denote the empirical distribution given by e"1; : : : ; e"N :
To generate the bootstrap resamples of the original time series, we

�rst draw independent bootstrap innovations "�1; : : : ; "
�

N from eFN , i.e.
"�t = e"k with probability

1

N
; k = 1; : : : ;N:

Then, we generate the bootstrap data as

S
�

t+1 = bmN(S
�

t) + "
�

t ; t = 1; : : : ;N:

Using standard Monte Carlo techniques, we may mimic the behaviour

of any quantity of interest based on a whole family of independent boot-

strap resamples S�0 (i); : : : ; S
�

N (i); i = 1; : : : ;B: The mean-squared error

of the function estimate at x ,

mse(x) = E(m(x)� fH(x; b#N))2;
may, e.g., be approximated by its bootstrap analogue

mse
�

(x) =
1

B

BX
i=1

(bmN(x)� fH(x; b#�N;i))2
where b#�N;i is the weight vector estimated from �tting the network func-
tion to the i-th bootstrap resample. The validity of this bootstrap

approach has been shown for the regression model (2) by Franke and

Neumann6. The proof can be generalized to the autoregressive case, too.
However, the innovations "t have to be independent and identically dis-

tributed as, otherwise, the �rst step of drawing independent, identically

5

distributed bootstrap innovations would make no sense. In the heteros-

cedastic case, other bootstrap procedures have to be considered.

We illustrate the performance of neural network estimates for non-

linear autoregressive functions and of the bootstrap approximations for

their distribution with a small Monte Carlo study. The data S0; : : : ; SN ;
where N = 200; were generated by the NLAR(1)-scheme (3) with inde-

pendent Gaussian innovations "t with mean 0 and standard deviation

�" = 0:3. The autoregressive function is a bump function

m(x) = 0:7x� 0:1 + 1:5�(x); (4)

where � denotes the standard normal density. On the interval [�1;+1],
where the stationary law of St is mainly concentrated, m is quite well

approximated by a neural network function f3(x; #0) with H = 3 hid-

den neurons and, therefore, 10-dimensional parameter vector #0. Figure
1 shows m(x), the network function estimate f3(x; b#N) and, for sake of
comparison, a Nadaraya-Watson-type kernel estimate bm(x; b) with band-

width b = 0:7. The latter also served as initial estimate of the bootstrap
procedure.

To investigate the performance of the bootstrap, we approximated
the distribution of d(x) = f3(x; b#N)�m(x) by the distribution of d�(x) =

f3(x; b#�N) � bm(x; b). The quantities of interest were calculated from

M = 500 independent Monte Carlo copies of the true sample and from
B = 500 bootstrap resamples from the original data set S0; :::;SN ;N =

200 resp. Figure 2a shows the function m together with the "true" 90 %

- con�dence band for m based on 500 Monte Carlo runs, where the band
is not a uniform one, but formed by interpolating con�dence intervals for

m(x) for various x. The neural network provides a good estimate of the

autoregression function m, in particular around the origin where most of

the observations are concentrated. Figure 2b compares this "true" con-

�dence band with the corresponding 90 % - bootstrap con�dence band.

Remembering that the bootstrap is based on only one medium-sized time

series sample, both bands agree remarkably well. Finally, for 4 di�erent

x Figure 3a-d show kernel density estimates, each with Gaussian kernel

and bandwidth b = 0:02, of the estimation error d(x) and its bootstrap

approximation d�(x). Again, the performance of the bootstrap is quite

satisfactory.

6

7

3 Managing portfolios using neural networks

To illustrate the performance of neural networks in real applications

which are of considerable complexity we give a short sketch of two case

studies. In the �rst example, the task was to predict stock prices three
months (60 trading days) ahead where the main goal was to generate

trading signals for managing a portfolio of those stocks. The candidates

for inclusion in the portfolio were 28 Dutch stocks dominating the CBS

index. The available data were daily closing prices of all those stocks

from 1993 to 1996. For model building and network parameter estima-

tion, the data up to the end of 1995 were used. The data of 1996 were

put aside for model validation.

As potential arguments for the forecasting function fH(x; b#N) sev-
eral linear and nonlinear transformations of past stock prices St�� ; :::;St,

were considered, e.g. moving averages, envelopes, average directional
movement indicators and other familiar tools of technical market ana-

lysis. Additionally, as exogeneous variables Xt in (1), the CBS index

itself, foreign exchange rates, international interest rates, the MG base
metal price and other intermarket data were taken into account. More

than 60 candidates were investigated as potential coordinates of the in-

8

put vector x. The �nal inputs were selected using experience of expert

traders and statistical model selection procedures. More details are given

by Franke4. The best network consisted of only H = 3 hidden neurons,
but used 25-dimensional input vector x. The total number of parameters,

therefore, was dim(b#N) = 82:

The point forecasts of stock prices varied considerably which is not
surprising in view of the long forecasting period of 60 lags. However,

they were condensed to a mere trend forecast, i.e. the information used

in trading was solely if the stock price will
- increase signi�cantly (by more than 5 %)

- decrease signi�cantly (by more than 5 %)

- stay at approximately the same level.

Using these forecasts, capital was allocated to the 28 stocks at the

beginning of each quarter in the validation year 1996, and the resulting

portfolio was held for 3 months unchanged. Only those stocks were in-
cluded in the portfolio for which the prices were predicted to increase

signi�cantly up to the end of the holding period. This buy-and-hold

strategy relying on neural network forecasts of stock prices was com-
pared with the simple strategy of just buying the CBS index. Figure 4

shows the returns in percent for the network portfolio (solid bars) and

the index portfolio (shaded bars). In each quarter, the network port-
folio outperformed the index portfolio considerably which is even more

remarkable as stock prices generally increased during the whole year of

9

1996, a situation in which it is not easy to beat the index.

In the second example, the task was to construct a rule for allocating

capital in a portfolio of three major currencies (US-Dollar, British Pound

and Japanese Yen). A weekly buy-and-hold strategy was considered, i.e.

at a particular day of the week, e.g. Tuesday, the portfolio composition

was decided upon, based on the output of a neural network, and then

the portfolio was held unchanged for one week. As inputs for the net-

work, technical indicators calculated from past foreign exchange rates

and intermarket data as in the above example were considered. Data

from 1989 - 1995 were used for model building and parameter estima-

tion, and the performance of the resulting allocation rules were evaluated

using data from 1996 - September 1997. In this case, feedforward neural

networks with more than one hidden layer proved to be more e�cient
than networks with only one layer of hidden neurons considered else-

where in this paper. A typical network showing a good performance had

two hidden layers with H1 = 9 and H2 = 5 neurons, respectively, and a
17-dimensional input vector x, resulting in dim(b#N) = 230 parameters

to be estimated from the data. The details are given by Franke and

Klein5 .

The network allocation rules were compared with various other port-

folios, those consisting of one currency only, an equilibrium allocation of

one third of the capital to each of the currencies and a well-established

10

portfolio from real trading. For the validation period 1996 - Septem-

ber 1997, Figure 5 shows the annualized accumulated return in per-

cent of one particular network allocation (solid bars) compared to the
best of the competitors (shaded bars) which, during that period, always

happened to be the portfolio containing only the, then, strong British

pound. The performance is given for alle 5 possible weekly holding peri-
ods 1: Monday-Monday, 2: Tuesday-Tuesday, ... , 5: Friday-Friday.

That particular network outperformed all other allocations for the �rst

three periods, but did not do so well for Thursdays and Fridays. This ob-
servation is not so surprising as di�erences in general trading behaviour

between the start and the end of a week are well known. Therefore, in

practice, one neural network did not su�ce, but a system of networks,
one for each day of the week, had to be developped.

4 Neural network estimates of volatility

The last two sections have illustrated that neural networks provide good

estimates for the conditional mean of a �nancial time series even given a

rather complex information set. In this section, we show how estimates

of the conditional variance and volatility may be constructed following

the same kind of approach. We now consider the following nonlinear

heteroscedastic time series model:

St+1 =m(St; St�1; :::;St�� ;Xt) + �t�t+1 (5)

where �1; �2; : : : are independent identically distributed with mean 0 and

variance 1. We assume that the stochastic volatility �t is of a similar

functional form as the conditional mean

�t = �(St; St�1; :::;St�� ;Xt) (6)

Time series satisfying (5) and (6) are nonlinear AR-ARCH-processes

with exogeneous components Xt 2 Rd: The familiar parametric AR-

ARCH-models are just a special case of this general type of stochastic
process.

We construct a nonparametric estimate of the volatility function �

using neural networks as in section 2. As �2 is the conditional variance

of St+1 given the past we could �t a neural network function with inputs
St; St�1; :::;St�� ;Xt as before and with outputs S2t+1 instead of St+1 to

the data. We would get an estimate of the conditional second moment

and, subtracting the squared neural network estimate fH(x; b#N) for the
conditional mean, an estimate of the conditional variance, too. For kernel

estimates, however, Fan and Yao3 have shown that it is more e�cient

11

to use fH(x; b#N) instead to calculate squared sample residuals and to

smooth them instead of S2t+1 to get a nonparametric estimate of the

conditional variance. We follow their approach in the neural network
setting. To simplify notation, we describe the procedure for the nonlinear

AR(1)-ARCH(1)-model

St+1 =m(St) + �(St)�t+1 (7)

only. The generalization to time series models given by (5) and (6) is

straightforward. In a �rst step, we calculate estimates of the innovations

"t = �(St)�t+1 using the estimate fH(x; b#N) for m(x) from section 2:

b"t+1 = St+1 � fH(St; b#N); t = 1; : : : ;N:

As �2(x) = Ef"2t jSt = xg, we can estimate this function by �tting a
neural network function fG(x;
) with G neurons in the hidden layer to

the data S0; :::;SN , where the parameter estimate b
N is given by

1

N

NX
t=1

(b"t 2 � fG(St�1;
))
2 = min

2�G

!

The square root of fG(x;b
N) is, the, a neural network based estimate of
the volatility function �(x), i.e. of the conditional standard deviation of

St+1 given St = x. The consistency of this estimate for increasing sample

size N and suitably increasing number G of hidden neurons again fol-
lows essentially from the work of White (1989, 1990) on neural network

estimates for conditional expectations involving time series.

We study the performance of the neural network volatility estimates

in a simulation study where we generate M = 500 Monte Carlo samples
S0; :::;SN with N = 500 from the nonlinear AR(1)-ARCH(1)-model (7).

The sample size has to be larger as in section 2 as variances are harder

to estimate than means in general. The �t are standard normal random
variables, the autoregressive function m(x) is the same bump function

(4) as in section 2, and the conditional variance function is chosen as in

a common ARCH(1)-model as

�
2(x) = 0:1 + 0:7x2:

Figure 6a shows the true function m and a 90 % - con�dence band

based on the neural network function estimates fH(x; b#N) for the inter-
val [�2;+2], which contains the majority of the data. Comparing it to

Figure 2a, we remark that the neural network estimates of the conditional

expectations perform still reasonably well in the heteroscedastic case, in
particular, if one recalls the heavy-tailedness of the stationary distribu-

tion of the St introduced by the ARCH(1)-innovations "t = �(St)�t+1.

12

Even the mean standard deviation Ef�(Stg is about 0.95 and, therefore,
more than three times as large as in the simulation study of section 2.

Figure 6b shows the true squared volatility function �2 together with

a 90 % - con�dence band from the Monte Carlo study. Considering the

heavy-tailed law of the data St and the general di�culty of estimating
variances the neural network estimates does reasonably well. Addition-

ally, the simulation still su�ers from numerical problems. In contrast to

the homoscedastic model considered in section 2, the numerical proced-
ure (a quasi-gradient method) for calculating the nonlinear least-squares

parameters b#N and b
N was prone to end up in local extrema with quite a
bad performance of the corresponding function estimates. We solved this

problem by starting the minimization routine with lots of di�erent ran-

domly selected initial values. Using an appropriate numerical algorithm

like simulated annealing would be an alternative.

We conclude this section by applying the estimators to a real data

set. We selected the British FTSE100 index from January 4, 1993 to

November 4, 1994, totalling 480 observations Zt. Then, we �tted the
model (7) to the daily returns St = (Zt � Zt�1)=Zt�1 estimating the

conditional mean m and the conditional variance �2 by neural networks

13

with H = G = 3 hidden neurons, corresponding to 10 parameters each.

We also tried networks with up to 7 hidden neurons, but the estimates

essentially did not change. Figure 7a and 7b show the estimates of condi-
tional mean and variance of St given St�1. The mean is almost, but not

exactly linear whereas the variance resembles an ARCH(1)-term apart

from the asymmetry.

5 Estimating conditional value-at-risk with neural networks

Apart from volatility, another popular measure for �nancial hazards is
the value at risk (VaR) as a bound which is exceeded by losses with

small probability � only. There are various de�nitions of VaR (compare,

e.g., Jorion8), but the crucial quantity is always the �-quantile of the
return distribution of the �nancial asset. We consider here conditional

quantiles given the information up to the present time t, and we dis-

cuss how to estimate them using neural networks. For our exposition,
we concentrate on the simple nonlinear autoregression of order 1 given

by (3). Generalizations to more complicated models are again straight-

forward. The conditional �-quantile function q�(x) is given as solution
of F (q�(x)=x) = �, where F (s=x) denotes the conditional distribution

function of St+1 given St = x

F (s=x) = prfSt+1 � sjSt = xg

Nonparametric conditional quantile estimates based on common smooth-

ing methods are closely related to kernel density estimates. Following,

e.g., Samanta12 , we could estimate the joint density of St+1 and St
and the marginal density of St by kernel smoothing, getting the con-

ditional density as a ratio. By integration, we get an estimate FN (s=x)

for F (s=x). Then, an estimate q�;N (x) for the conditional quantile func-

tion q�(x) is derived by solving FN(q�;N (x)=x) = �.

We could mimick this approach using neural networks. F (s=x) is a

conditional expectation of the indicator function 1(�1;s] and could be

approximated by neural networks as the conditional mean and variance

in previous sections. However, for solving FN(q�;N (x)=x) = � numeric-

ally, we would have to train neural networks frequently to get FN (s=x)

for various values of s. If we are interested in estimating q�(x) for only

a few �; this approach is too cumbersome from a numerical point of

view. We, therefore, follow a di�erent approach which is based on the

observation that the conditional quantile function q�(x) solves

E
�
jSt � qj

�
�1[0;1](St � q) + (1� �)1(�1;0](St � q)

� ��St�1 = x
	
= min

q2R
!

14

We get a neural network estimate fQ(St�1; b�N) for q�(x) by minimizing
a sample version of this conditional expectation:

1

N

NX
t=1

��St � fQ(St�1; �)
����1[0;1](St � fQ(St�1; �))

+(1� �)1(�1;0](St � fQ(St�1; �))
�
= min

�2�G

!

fQ(x;�) denotes a network function as in section 2 with Q hidden neur-
ons. This approach has been studied by White15 who proved the con-

sistency of the conditional quantile estimate fQ if N and Q increase with

appropriate rates to 1:

15

We illustrate the performance of this quantile estimator with a simu-

lation study where the generated data follow exactly the same nonlinear

autoregression and speci�cations as in the Monte Carlo study of section

2. In particular, the sample size is N = 201 and the number of Monte

Carlo runs is M = 500. Figure 8 shows the true conditional 5 % -

quantile function q:05(x) for this time series together with a 90 % - con-

�dence band based on the neural network quantile estimates fQ(x; b�N)
with Q = 10. As for estimating the conditional mean, the performance

is quite good in this homoscedastic situation.

Finally, we estimate the conditional 5 % - quantile function for the
next return of the FTSE100-index series given the present return, where

we used the same data as in section 4. Figure 9 shows the resulting

estimate.

Acknowledgement:

section 3 is based on joint work with Commerzbank AG, Frankfurt, in
particular with D. Oppermann and U. Kern. The data, we used, were

provided by DATASTREAM.

16

References

1. U. Anders, Statistische neuronale Netze. (Vahlen, M�unchen, 1997)

2. G. Bol, G. Nakhaeizadeh and K.-H. Vollmer eds., Finanzmark-

tanalyse und -prognose mit innovativen quantitativen Verfahren.

(Physica-Verlag, Heidelberg, 1996)

3. J. Fan and Q. Yao, E�cient estimation of conditional variance

functions in stochastic regression. Biometrika. 85, 645-660 (1998).

4. J. Franke, Nonlinear and Nonparametric Methods for Analyzing

Financial Time Series. In: Operation Research Proceedings 98, P.

Kall und H.-J. Luethi eds. (Springer-Verlag, Berlin, 1999).

5. J. Franke and M. Klein, Optimal portfolio management using neural

networks - a case study. Report in Wirtschaftsmathematik (Uni-

versity of Kaiserslautern, 1999).

6. J. Franke and M. Neumann, Bootstrapping neural networks. Tent-

atively accepted for publication in Neural Computation.

7. K. Hornik, M. Stinchcombe and H. White. Multilayer feedforward

networks are universal approximators, Neural Networks 2, 359-366

(1989)

8. Ph. Jorion Value at Risk: The New Benchmark for Controlling

Market Risk. (Irwin, Chicago, 1996).

9. J. P. Kreiss, Nonparametric estimation and bootstrap for �nancial

time series. In: this volume.

10. N. Murata, S. Yoshizawa and S. Amari, Network information cri-

terion - Determining the number of hidden units for an arti�cial

neural network model. IEEE Trans. Neural Networks 5, 865-872

(1994).

11. A.-P.N. Refenes, A.D. Zapranis and J. Utans, Neural model iden-

ti�cation, variable selection and model adequacy. In: Neural Net-
works in Financial Engineering, A. Weigend et al. eds. (World

Scienti�c, Singapore, 1996)

12. M. Samanta, Nonparametric estimation of conditional quantiles.

Statistics & Probability Letters 7, 407-412 (1989).

13. H. White, Some asymptotic results for learning in single hidden-

layer feedforward network models. J. Amer. Statist. Assoc. 84,

1008-1013 (1989).

14. H. White Connectionist nonparametric regression: multilayer feed-
forward networks can learn arbitrary mappings. Neural Networks

3, 535-550 (1990).

15. H. White, Nonparametric estimation of conditional quantiles using
neural networks. In: Computing Science and Statistics, C. Page

and R. Le Page eds. (Springer-Verlag, Berlin, 1992).

17

