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Abstract

We consider some continuous-time Markowitz type portfolio problems that con-

sist of maximizing expected terminal wealth under the constraint of an upper bound

for the Capital-at-Risk. In a Black-Scholes setting we obtain closed form explicit so-

lutions and compare their form and implications to those of the classical continuous-

time mean-variance problem. We also consider more general price processes which

allow for larger uctuations in the returns.
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1 Introduction

It seems to be common wisdom that long term stock investment leads to an almost sure

gain over riskless bond investment. In the long run stock indices are growing faster than

riskless rates, despite the repeated occurrence of stock market crashes. One of our main

�ndings presented in this paper will be the demonstration that there is indeed a reasonable

portfolio problem with a solution that supports this empirical observation.

Traditional portfolio selection as introduced by Markowitz (1959) and Sharpe (1964) is

based on a mean-variance analysis. This approach cannot explain the above phenomenon:

the use of the variance as a risk measure of an investment leads to a decreasing proportion

of risky assets in a portfolio, when the planning horizon increases (see Example 2.9).

In recent years certain variants of the classical Markowitz mean-variance portfolio

selection criterion have been suggested. Such alternatives are typically based on the notion

of downside risk concepts such as lower partial moments. The lower partial moment of

order n is de�ned as

LPMn(x) =

Z
x

�1

(x� r)ndF (r) ; x 2 R ; (1.1)

where F is the distribution function of the portfolio return. Examples can be found in

Fishburn (1977) or Harlow (1991), who suggested for instance the shortfall probability

(n = 0), the expected target shortfall (n = 1), the target semi-variance (n = 2), and

target semi-skewness (n = 3). Harlow (1991) also discusses some practical consequences

of various downside risk measures.

In this paper we concentrate on the Capital-at-Risk (CaR) as replacement of the

variance in portfolio selection problems. We think of the CaR as the capital reserve in

equity. The CaR is de�ned via the Value-at-Risk; i.e. a low quantile (typically the 5%-

or 1%-quantile) of the pro�t-loss distribution of a portfolio; see e.g. Jorion (1997). The

CaR of a portfolio is then commonly de�ned as the di�erence between the mean of the

pro�t-loss distribution and the VaR. VaR has become the most prominent risk measure

during recent years. Even more, the importance of VaR models continues to grow since

regulators accept these models as basis for setting capital requirements for market risk

exposure. If the pro�t-loss distribution of a portfolio is normal with mean � and variance

�
2, then the CaR of the portfolio based on the �-quantile (� = 0:05 or � = 0:01) is

CaR = �� (�� �z�) ; (1.2)

where z� is the �-quantile of the standard normal distribution and it is assumed that �

is positive. In this paper we will use another de�nition of the CaR.

The crucial point in the application of CaR models for setting capital requirement

is the determination of reliable and accurate �gures for the VaR, in particular in the
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non-normal case. Consequently, VaR has attracted attention from a statistical point of

view; see e.g. Embrechts, Kl�uppelberg and Mikosch (1997) for estimation via extreme

value methods and further references, and Emmer, Kl�uppelberg and Tr�ustedt (1998) for

an example.

In the context of hedging, VaR has been considered as a risk measure by F�ollmer

and Leukert (1999); see also Cvitanic and Karatzas (1999). They replace the traditional

\hedge without risk" (perfect hedge) which typically only works in a complete market

setting by a \hedge with small remaining risk" (so-called quantile-hedging). This concept

can also deal with incomplete markets. In contrast to our problem, their main task consists

in approximating a given claim. Surprisingly, the existence of that target wealth makes

their problem more tractable than ours.

In a discrete world Zagst and Kehrbaum (1998) investigate the problem of optimizing

portfolios under a limited CaR from a practical point of view, they solve the problem by

numerical approximation and present a case study. This work is continued in Scheuenstuhl

and Zagst (1998). Under a mean-variance and shortfall preference structure of the investor,

they obtain optimal portfolios consisting of stocks and options via an approximation

method.

One aim of our paper is to show that a replacement of the variance by the CaR in a

continuous-time Markowitz-type model resolves exactly the above-mentioned contradic-

tion between theory and empirical facts. Furthermore, we aim at closed form solutions

and an economic interpretation of our results. In a Gaussian world, represented by a

Black-Scholes market, possibly enriched with a jump component, the mean-CaR selec-

tion procedure leads to rather explicit solutions for the optimal portfolio. It is, however,

not surprising that as soon as we move away from the Gaussian world, the optimization

problem becomes analytically untractable.

The paper is organized as follows. In Section 2 we highlight the consequences of the

introduction of the CaR as risk measure in a simple Black-Scholes market, where we can

obtain explicit closed form solutions. We also examine consequences for the investor when

introducing CaR in a portfolio optimization problem. This approach indeed supports the

above-mentioned market strategy to always invest into stock for long-term investment.

Section 3 is devoted to the study of the portfolio problem for more general models

for the stock price. As prototypes of models to allow for larger uctuations than pure

Gaussian models we study jump di�usions and generalized inverse Gaussian di�usion

processes. This also shows how the solution of the problem becomes much more involved

when the Black-Scholes assumptions are abandoned. In particular, we show how the opti-

mal portfolio under a CaR constraint reacts to the possibility of jumps. In the generalized

inverse Gaussian di�usion setting even the problem formulation becomes questionable as

3



we cannot ensure a �nite expected terminal wealth of the optimal portfolio. We give an

approximate solution, which allows for some interpretation, and also a numerical algo-

rithm.

2 Optimal portfolios and Capital-at-Risk in the Black-

Scholes setting

In this section, we consider a standard Black-Scholes type market consisting of one riskless

bond and several risky stocks. Their respective prices (P0(t))t�0 and (Pi(t))t�0 for i =

1; : : : ; d evolve according to the equations

dP0(t) = P0(t)rdt ; P0(0) = 1 ;

dPi(t) = Pi(t)
�
bidt+

P
d

j=1 �ijdWj(t)
�
; Pi(0) = pi ; i = 1; : : : ; d :

Here W (t) = (W1(t); : : : ;Wd(t))
0 is a standard d-dimensional Brownian motion, r 2 R

is the riskless interest rate, b = (b1; : : : ; bd)
0 the vector of stock-appreciation rates and

� = (�ij)1�i;j�d is the matrix of stock-volatilities. For simplicity, we assume that � is

regular and that bi � r for i = 1; : : : ; d.

Let �(t) = (�1(t); : : : ; �d(t))
0 2 R

d be an admissible portfolio process, i.e. �i(t) is the

fraction of the wealth X�(t), which is invested in asset i (see Korn (1997), Section 2.1 for

relevant de�nitions). Denote by (X�(t))t�0 the wealth process, then it follows the dynamic

dX
�(t) = X

�(t) f((1� �(t)01)r + �(t)0b)dt+ �(t)0�dW (t)g ; X
�(0) = x ; (2.1)

where x 2 R denotes the initial capital of the investor and 1 = (1; : : : ; 1)0 denotes the

vector (of appropriate dimension) with unit components. The fraction of the investment

into bond is �0(t) = 1 � �(t)01. Throughout the paper, we restrict ourselves to constant

portfolios �(t) = � = (�1; : : : ; �d) for all t 2 [0; T ]. This means that the fractions into

di�erent stocks and the bond remain constant in [0; T ]. The advantage of this is two-

fold: �rst we obtain, at least in a Gaussian setting, explicit results; and furthermore,

the economic interpretation of the mathematical results is comparably easy. Finally, let

us mention that for many other portfolio problems the optimal portfolios are constant

ones (see Sections 3.3. and 3.4 of Korn (1997)). It is also important to point out that

following a constant portfolio process does not mean that there is no trading. As the

bond and stock prices evolve in di�erent ways one has to trade at every time instant to

keep the fractions of wealth invested into the di�erent securities constant. Thus, following

a constant portfolio process still means to follow a dynamic trading strategy. The main

advantage of restricting to a constant portfolio for our considerations are the following
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explicit formulae for the wealth process which hold for all t 2 [0; T ].

X
�(t) = x exp

�
(�0(b� r1) + r � k�0�k2=2)t+ �

0
�W (t)

�
; (2.2)

E(X�(t)) = x exp ((�0(b� r1) + r)t) ; (2.3)

var(X�(t)) = x
2 exp (2(�0(b� r1) + r)t)

�
exp(k�0�k2t)� 1

�
: (2.4)

The norm k � k denotes the Euclidean norm in Rd .

De�nition 2.1 (Capital-at-Risk)

Let x be the initial capital and T a given time horizon. Let z� be the �-quantile of the

standard normal distribution. For some portfolio � 2 R
d and the corresponding terminal

wealth X�(T ) the �-quantile of X�(T ) is given by

�(x; �; T ) = x exp
�
(�0(b� r1) + r � k�0�k2=2)T + z�k�0�k

p
T

�
;

i.e. P (X�(T ) � �(x; �; T )) = �. Then we call

CaR(x; �; T ) = x exp(rT )� �(x; �; T )

= x exp(rT )
�
1� exp((�0(b� r1)� k�0�k2=2)T + z�k�0�k

p
T )
� (2.5)

the Capital-at-Risk of the portfolio � (with initial capital x and time horizon T ). 2

0 5 10 15 20

0
50

0
10

00

b=0.1
b=0.15

Figure 1: CaR(1 000; 1; T ) of the pure stock portfolio (one risky asset only) for di�erent appre-

ciation rates as a function of the planning horizon T ; 0 < T � 20. The volatility is � = 0:2. The

riskless rate is r = 0:05.
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Remark 2.2 (i) Our de�nition of the Capital-at-Risk limits the possibility of excess

losses over the riskless investment.

(ii) We typically want to have a positive CaR (although it can be negative in our de�nition

as the examples below will show) as the upper bound for the \likely losses" (in the sense

that (1��)� 100% of occurring \losses" are smaller than CaR(x; �; T )) compared to the

pure bond investment. Further, we concentrate on the actual amount of losses appearing

at the time horizon T . This is in line with the mean-variance selection procedure enabling

us to directly compare the results of the two approaches; see below.

In the following it will be convenient to introduce the function f(�) as

f(�) := z�k�0�k
p
T � k�0�k2T=2 + �

0(b� r1)T ; � 2 R
d
: (2.6)

By the obvious fact that

f(�)
k�0�k!1

�! �1

we have

sup
�2Rd

CaR(x; �; T ) = x exp(rT ) ;

i.e. the use of extremely risky strategies (in the sense of a high norm k�0�k) can lead to a

CaR which is close to the total capital. The computation of the minimal CaR is done in

the following proposition.

(iii) Note how crucial the de�nition of CaR depends on the assumption of a constant

portfolio process. Moving away from this assumption makes the problem untractable. in

particular, �(x; �; T ) is nearly impossible to obtain for a general random �(:). 2

Proposition 2.3 Let z� < 0, i.e. � < 0:5, and set � = k��1(b� r1)k.
(a) If bi = r for all i = 1; : : : ; d, then f(�) attains its maximum for �� = 0 leading to a

minimum Capital-at-Risk of CaR(x; ��; T ) = 0. Moreover, for arbitrary " > 0 and all �

with

k�0�k = " (2.7)

we have

f(�) = z�"

p
T � "

2
T=2: (2.8)

(b) If bi 6= r for some i 2 f1; : : : ; dg and

�

p
T < jz�j ; (2.9)
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then the minimal CaR equals zero and is only attained for the pure bond strategy.

(c) If bi 6= r for some i 2 f1; : : : ; dg and

�

p
T � jz�j ; (2.10)

then the minimal CaR is attained for

�
� =

�
� �

jz�jp
T

�
(��)�1(b� r1)

k��1(b� r1)k
(2.11)

with

CaR(x; ��; T ) = x exp(rT )

�
1� exp

�
1

2
(
p
T� � jz�j)2

��
< 0: (2.12)

Proof (a) Under the assumption of bi = r for all i = 1; : : : ; d the function f(�) is of the

form

f(�) = z�"

p
T � "

2
T=2

with " = k�0�k � 0. Since z� is negative by assumption, the maximum over all non-

negative " is attained for " = 0. Due to the regularity of � this is equivalent to � equalling

zero. By inserting (2.7) into f(�) representation (2.8) can be obtained immediately.

(b),(c) Consider the problem of maximizing f(�) over all � which satisfy the requirement

(2.7) for a �xed positive ". Over the (boundary of the) ellipsoid de�ned by (2.7) f(�)

equals

f(�) = z�"

p
T � "

2
T=2 + �

0(b� r1)T :

Thus, the problem is just to maximize a linear function (in �) over the boundary of an

ellipsoid. such a problem has the explicit solution

�
�

"
= "

(��0)�1(b� r1)

k��1(b� r1)k
(2.13)

with

f(��
"
) = �"2T=2 + "

�
�T � jz�j

p
T

�
: (2.14)

As every � 2 R
d satis�es relation (2.7) with a suitable value of " (due to the fact that �

is regular), we obtain the minimum CaR strategy �� by maximizing f(��
"
) over all non-

negative ". Due to the form of f(��
"
) the optimal " is positive if and only if the multiplier

of " in representation (2.14) is positive. Thus, condition (2.9) implies assertion (b). Under

assumption (2.10) the optimal " is given as

" = � �
jz�jp
T
:
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Inserting this into equations (2.13) and (2.14) yields the assertions (2.11) and (2.12) (with

the help of equations (2.5) and (2.6)). 2

Remark 2.4 (i) Part (a) of the proposition states that in a risk-neutral market the CaR

of every strategy containing stock investment is bigger than the CaR of the pure bond

strategy.

(ii) Part (c) states the (at �rst sight surprising) fact that the existence of at least one

stock with a mean rate of return di�erent from the riskless rate implies the existence of

a stock and bond strategy with a negative CaR as soon as the time horizon T is large.

Thus, even if the CaR would be the only criterion to judge an investment strategy the

pure bond investment would not be optimal if the time horizon is far away. On one hand

this fact is in line with empirical results on stock and bond markets. On the other hand

this shows a remarkable di�erence between the behaviour of the CaR and the variance

as risk measures. Independent of the time horizon and the market coeÆcients pure bond

investment would always be optimal with respect to the variance of the corresponding

wealth process.

(iii) The decomposition method to solve the optimization problem in the proof of parts

(b) and (c) of Proposition 2.3 will be crucial for some of the proofs in this paper. Note

how we use it to overcome the problem that f(�) is not di�erentiable in � = 0. 2

The rest of this section is devoted to setting up a Markowitz mean-variance type op-

timization problem where we replace the variance constraint by a constraint on the CaR

of the terminal wealth. More precisely, we solve the following problem:

max
�2Rd

E(X�(T )) subject to CaR(x; �; T ) � C ; (2.15)

where C is a given constant of which we assume that it satis�es

C � x exp(rT ) : (2.16)

Due to the explicit representations (2.4), (2.5) and a variant of the decomposition method

as applied in the proof of Proposition 2.3 we can solve problem (2.15) explicitly.

Proposition 2.5 Let � = k��1(b� r1)k and assume that bi 6= r for some i 2 f1; : : : ; dg.
Assume furthermore that C satis�es

0 � C � x exp(rT ) if �
p
T < jz�j; (2.17)
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x exp(rT )

�
1� exp

�
1

2
(
p
T� � jz�j)2

��
� C � x exp(rT ) if �

p
T � jz�j : (2.18)

Then problem (2.15) will be solved by

�
� = "

�
(��0)�1(b� r1)

k��1(b� r1)k

with

"
� = (� + z�=

p
T ) +

q
(� + z�=

p
T )2 � 2c=T ;

where c = ln
�
1� C

x
exp(�rT )

�
.

The corresponding maximal expected terminal wealth under the CaR constraint equals

E
�
X

��

(T )
�
= x exp

��
r + "

�k��1(b� r1)k
�
T
�
: (2.19)

Proof Note �rst that inequalities (2.17) and (2.18) ensure that there exist portfolios

� which are admissible for problem (2.15). Every admissible � for problem (2.15) with

k�0�k = " satis�es the relation

(b� r1)0�T � c+
1

2
"
2
T � z�"

p
T (2.20)

which is in this case equivalent to the CaR constraint in (2.15). But again, on the set

given by k�0�k = " the linear function (b� r1)0�T is maximized by

�" = "
(��0)�1(b� r1)

k��1(b� r1)k
: (2.21)

Hence, if there is an admissible � for problem (2.15) with k�0�k = " then �" must also

be admissible. Further, due to the explicit form (2.3) of the expected terminal wealth, �"

also maximizes the expected terminal wealth over the ellipsoid. Consequently, to obtain

� for problem (2.15) it suÆces to consider all vectors of the form �" for all positive " such

that requirement (2.20) is satis�ed. Inserting (2.21) into the left-hand side of inequality

(2.20) results in

(b� r1)0�"T = "k��1(b� r1)kT ; (2.22)

which is an increasing linear function in " equalling zero in " = 0. Therefore, we obtain

the solution of problem (2.15) by determining the biggest positive " such that (2.20) is

still valid. But the right-hand side of (2.22) stays above the right-hand side of (2.20) until

their unique positive point of intersection which is given by

"
� = (� + z�=

p
T ) +

q
(� + z�=

p
T )2 � 2c=T ;

The remaining assertion (2.19) can be veri�ed by inserting �� into equation (2.3). 2
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Remark 2.6 (i) Note that the optimal expected value only depends on the stocks via the

norm k��1(b�r1)k. There is no explicit dependence on the number of stocks. We therefore

interpret Proposition 2.3 as a kind ofmutual fund theorem as there is no di�erence between

investment in our multi-stock market and a market consisting of the bond and just one

stock with appropriate market coeÆcients b and �.

(ii) If instead of (2.15) we would consider the more general problem of

max
�2Rd

E(U(X�(T ))) subject to CaR(x; �; T ) � C ;

then the above method of solving the mean-CaR problem would still work as long as

E(U(X�(T ))) is of the form f(x) exp(h(�)) with h a linear function. This is e.g. the case

for the choice of the HARA function U(x) = x

=. It would also work for the log-utility

case; i.e. U(x) = lnx as then we would have

E(U(X�(T ))) = lnx+ rT + (b� r1)0�T � �
0
��

0
�T=2 :

Here, instead of looking at the exponent, we can also look at

lnx + rT � (b� r1)0�t� exp2
T=2 ;

which for all � with k�0�k = " is a linear function in �. However, for reasons of comparison

to the Markowitz type problems below we restrict ourselves to the mean-CaR problem.

2

Example 2.7 Figure 1 shows the dependence of CaR on the time horizon illustrated by

CaR(1 000,1,T). Note that the CaR �rst increases and then decreases with time, a be-

haviour which was already indicated by Proposition 2.3. It di�ers substantially from the

behaviour of the variance of the pure stock strategy, which increases with T . Figures 2

and 3 illustrate the behaviour of the optimal expected terminal wealth with varying time

horizon corresponding to the pure bond strategy, the pure stock strategy as functions of

the time horizon T . The expected terminal wealth of the optimal portfolio even exceeds

the pure stock investment. The reason for this becomes clear if we look at the correspond-

ing portfolios. The optimal portfolio always contains a short position in the bond as long

as this is tolerated by the CaR constraint (see Figure 4). 2

Quite remarkable is Figure 4 where we have plotted the optimal portfolio together

with the pure stock portfolio as function of the time horizon. For b = 0:15 the optimal

portfolio always contains a short position in the bond. For b = 0:1 and T > 5 the optimal
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Figure 2: Expected terminal wealth of di�erent investment strategies depending on the time

horizon T , 0 < T � 5. The parameters are d = 1, r = 0:05, b = 0:1, � = 0:2, and � = 0:05.

As the upper bound C of the CaR we used CaR(1 000; 1; 5), the CaR of the pure stock strategy

with time horizon T = 5.

portfolio (with the same CaR constraint as in Figures 2 and 3) again contains a long posi-

tion in both bond and stock (with decreasing tendency of � as time increases!). This is an

immediate consequence of the increasing CaR of the stock price. For the smaller appreci-

ation rate of the stock it is simply not attractive enough to take the risk of a large stock

investment. Figure 5 shows the mean-CaR eÆcient frontier for the above parameters with

�xed time horizon T = 5. As expected it has a similar form as a typical mean-variance

eÆcient frontier. 2

We will now compare the behaviour of the optimal portfolios for the mean-CaR with

solutions of a corresponding mean-variance problem. Before doing this we would like

to point out that in our continuous-time setting there are only few papers consider-

ing a mean-variance problem under the additional constraint of a non-negative terminal

wealth. Although the solution of the static counterpart of the problem is well-known since

Markowitz' pioneering work and also plays a prominent role in application, the continuous-

time problem under the non-negativity constraint was �rst solved in Korn and Trautmann

(1995). In its full dynamic generality (i.e. with arbitrary non-constant portfolios) the solu-

tion can only be found numerically. For this reason and also for the sake of comparability

with the mean-CaR problem, we consider the following simpler optimization problem:
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Figure 3: Expected terminal wealth of di�erent investment strategies depending on the time

horizon T , 0 � T � 20. The parameters are d = 1, r = 0:05, b = 0:1, � = 0:2, and � = 0:05.

As the upper bound C of the CaR we used CaR(1 000; 1; 5), the CaR of the pure stock strategy

with time horizon T = 5.

max
�2Rd

E(X�(T )) subject to var(X�(T )) � C : (2.23)

By using the explicit form (2.4) of the variance of the terminal wealth, we can rewrite the

variance constraint in problem (2.23) as

(b� r1)0�T �
1

2
ln

�
C

x2(exp("2T )� 1)

�
� rT =: h("); k�0�k = " (2.24)

for " > 0. More precisely, if � 2 R
d satis�es the constraints in (2.24) for one " > 0 then it

also satis�es the variance constraint in (2.23) and vice versa. Noting that h(") is strictly

decreasing in " > 0 with

lim
"#0

h(") =1 lim
"!1

h(") = �1

we see that left-hand side of (2.24) must be smaller than the right-hand one for small values

of " > 0 if we plug in �" as given by equation (2.21). Recall that this was the portfolio

with the highest expected terminal wealth of all portfolios � satisfying k�0�k = ". It even

maximizes (b� r1)0�T over the set given by k�0�k � ". If we have equality

(b� r1)0�
b"T = h(b") (2.25)
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pure stock

Figure 4: For the same parameters as in Figure 2 and di�erent appreciation rates the

�gure shows the optimal portfolio and the pure stock portfolio.

for the �rst time with increasing " > 0 then this determines the optimal b" > 0. To see

this, note that we have

E(X�(T )) � E(X�
b"(T )) for all � with k�0�k � b" ;

and for all admissible � with " = k�0�k > b" we obtain
(b� r1)0�T � h(") < h(b") = (b� r1)0�

b"T :

By solving the non-linear equation (2.25) for b" we have thus completely determined the

solution of problem (2.23):

Proposition 2.8 If bi 6= r for some i 2 f1; : : : ; dg, then the optimal solution of the

mean-variance problem (2.23) is given by

b� = b" (��0)�1(b� r1)

k��1(b� r1)k
;

where b" is the unique positive solution of the non-linear equation

k��1(b� r1)k"T �
1

2
ln

�
C

x2(exp("2T )� 1)

�
+ rT = 0 :

The corresponding maximal expected terminal wealth under the variance constraint equals

E(Xb�(T )) = x exp
�
(r + b" k��1(b� r1)k)T

�
: 2
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Figure 5: Mean-CaR eÆcient frontier with the mean on the horizontal axis and the CaR

on the vertical axis. The parameters are the same as in Figure 2.

Example 2.9 Figure 6 below compares the behaviour of b" and "
� as functions of the

time horizon. We have used the same data as in Example 2.7. To make the solutions of

problems (2.15) and (2.23) comparable we have chosen C di�erently for the variance and

the CaR risk measures in such a way that b" and "� concide for T = 5. Notice that C for

the variance problem is roughly the square of C for the CaR problem taking into account

that the variance measures an L2-distance, whereas CaR measures an L1-distance. The

(of course expected) bottom line of Figure 6 is that with increasing time the variance

constraint demands a smaller fraction of risky securities in the portfolio. This is also true

for the CaR constraint for small time horizons. For larger time horizon T (T � 20) "�

increases again due to the fact that the CaR decreases. In contrast to that b" decreases to
0, since the variance increases. 2

3 Capital-at-Risk portfolios and more general price

processes

In this section we consider again the mean-CaR problem (2.15), but drop the assumption

of log-normality of the stock price process. The self-�nancing condition, however, will still

manifest itself in the form of the wealth equation

dX
�(t)

X�(t�)
= (1� �

01)
dP0(t)

P0(t�)
+

dX
i=1

�i
dPi(t)

Pi(t�)
; t > 0 ; X

�(0) = x ;

14
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Figure 6: b" and "� as functions of the time horizon; 0 < T � 20. The parameters are the

same as in Figure 2.

where the Pi model the dynamic of the stock price i. Of course, the explicit form of the Pi

is crucial for the computability of the expected terminal wealth X�(T ). To concentrate on

these tasks we simplify the model in assuming d = 1, a bond price given by P0(t) = e
rt,

t � 0, as before and a risky asset price satisfying

dP (t)

P (t�)
= bdt+ dY (t) ; t > 0 ; P (0) = p ; (3.1)

where b 2 R and Y is a semimartingale with Y (0) = 0. Under these assumptions the

choice of the portfolio � leads to the following explicit formula of the wealth process

X
�(t) = x exp((r + �(b� r))t)E(�Y (t))

= x exp((r + �(b� r))t) exp
�
�Y

c(t)� 1
2
�
2 hY ci

t

� Y
0<s�t

(1 + ��Y (s)) ; t � 0 ;(3.2)

where Y c denotes the continuous part and �Y the jump part of the process Y (more

precisely, �Y (t) is the height of a (possible) jump at time t). This means that the wealth

process is a product of a deterministic process and the stochastic exponential E(�Y ) of
�Y (see Protter (1990)). Analogously to De�nition 2.1 we de�ne the CaR in this more

general context.

De�nition 3.1 Consider the market given by a riskless bond with price P0(t) = e
rt,

t � 0, for r 2 R and one stock with price process P satisfying (3.1) for b 2 R and a

semimartingale Y with Y (0) = 0. Assume that the dynamic of the wealth process is given

by (3.2).

15



Let x be the initial capital and T a given time horizon. For some portfolio � 2 R and the

corresponding terminal wealth X�(T ) the �-quantile of X�(T ) is given by

e�(x; �; T ) = x exp((�(b� r) + r)T + ez�) ;
where ez� is the �-quantile of eY (T ) = �Y (T ). Then we call

CaR(x; �; T ) = x exp(rT )(1� exp(�(b� r)T + ez�)) (3.3)

the Capital-at-Risk of the portfolio � (with initial capital x and time horizon T ). 2

One of our aims of this section is to explore the behaviour of the solutions to the

mean-CaR problem (2.15) if we model the returns of the price process by processes having

heavier tails than the Brownian motion.We present some speci�c examples in the following

subsections.

3.1 The Black-Scholes model with jumps

We consider a stock price process P , where the random uctuations are generated by both

a Brownian motion and a compound jump process, i.e. we consider the model (3.1) with

dY (t) = �dW (t) +

nX
i=1

(�idNi(t)� �i�idt) ; t > 0 ; Y (0) = 0 ; (3.4)

where n 2 N , and for i = 1; : : : ; n the process Ni is a homogeneous Poisson process with

intensity �i. It counts the number of jumps of height �i of Y . In order to avoid negative

stock prices we assume

�1 < �1 < � � � < �n <1 :

An application of Itô's formula results in the explicit form

P (t) = p exp

  
b�

1

2
�
2 �

nX
i=1

�i�i

!
t + �W (t) +

nX
i=1

(Ni(t) ln(1 + �i))

!
; t � 0 :(3.5)

In order to avoid the possibility of negative wealth after an \unpleasant" jump we have

to restrict the portfolio � as follows

� 2

8>>>>>><>>>>>>:

�
�

1

�n
;�

1

�1

�
if �n > 0 > �1 ;�

�1;�
1

�1

�
if �n < 0 ;�

�
1

�n
;1
�

if �1 > 0 :

(3.6)
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Figure 7: Optimal portfolios for Brownian motion with and without jumps depending on

the time horizon T , 0 < T � 20. The basic parameters are the same as in Figure 2. The

possible jump size is � = �0:1.

Under these preliminary conditions we obtain explicit representations of the expected

terminal wealth and the CaR corresponding to a portfolio � similar to the equations (2.3)

and (2.5).

Lemma 3.2 With a stock price given by equation (3.5) let X� be the wealth process

corresponding to the portfolio � satisfying (3.6). Then for initial capital x and �nite time

horizon T ,

X
�(T ) = x exp((r + �(b� r)�

nX
i=1

��i�i �
1

2
�
2
�
2)T + ��W (T ) +

nX
i=1

Ni(T ) ln(1 + ��i)) ;

E(X�(T )) = x exp((r + �(b� r))T ) ;

CaR(x; �; T ) = x exp(rT )

 
1� exp

  
�(b� r)�

nX
i=1

��i�i �
1

2
�
2
�
2

!
T + ez�

!!
;

where ez� is the �-quantile of

��W (T ) +

nX
i=1

(Ni(T ) ln(1 + ��i)) ;

i.e. the real number ez� satisfying

� = P

 
��W (T ) +

nX
i=1

(Ni(T ) ln(1 + ��i)) � ez�
!

=

1X
n1;:::;nn=0

 
�

 
1

j��j
p
T

 ez� � nX
i=1

(ni ln(1 + ��i))

!!
exp

 
�T

nX
i=1

�i

!
nY
i=1

(T�i)
ni

ni!

!
:

(3.7)
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Proof X�(T ) is a result of an application of Itô's formula. To obtain the expected value

simply note that the two processes

exp

�
�
1

2
�
2
t + �W (t)

�
and exp

0@� nX
i=1

�i�it+

nX
i=1

Ni(t)X
j=1

ln(1 + �i)

1A
are both martingales with unit expectation and that they are independent. Regarding

the representation of the CaR, only equation (3.7) has to be commented on. But this is

a consequence of conditioning on the number of jumps of the di�erent jump heights in

[0; T ]. 2

Unfortunately, ez� cannot be represented in such an explicit form as in the case without

jumps. However, due to the explicit form of E(X�(T )), it is obvious that the corresponding

mean-CaR problem (2.15) will be solved by the largest � that satis�es both the CaR

constraint and requirement (3.6). Thus for an explicit example we obtain the optimal

mean-CaR portfolio by a simple numerical iteration procedure, where we approximated

the in�nite sum in (3.7) by the �nite sum of its �rst 2[�T ] + 1 summands. Comparisons

of the solutions for the Brownian motion with and without jumps are given in Figure 7.

We have used the same parameters as in the examples of Section 2, but have included

the possibility of a jump of height � = �0:1, occuring with di�erent intensities. For

� = 0:3 one would expect a jump approximately every three years, for � = 2 even two

jumps per year. Notice that the stock has the same expected terminal value in both cases!

To explain this we rewrite equation (3.4) as follows:

dP (t)

P (t�)
=

 
b�

nX
i=1

�i�i

!
dt+ �W (t) +

nX
i=1

�idNi(t) ; t > 0 ; P (0) = p :

Whereas a jump occurs for instance for � = 0:3 on average only every three years, meaning

that with rather high probability there may be no jump within two years, the drift has

a permanent inuence on the dynamic of the price process. Despite this additional stock

drift of �� 0� the optimal portfolio for stock prices following a geometric Brownian motion

with jumps is always below the optimal portfolio of the geometric Brownian motion (solid

line). This means that the threat of a downwards jump of 10% leads an investor to a less

risky behaviour and the higher � is the less risky is the investor`s behaviour.
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Figure 8: Wealth corresponding to the optimal portfolios for Brownian motion with and

without jumps depending on the time horizon T , 0 < T � 5 (top) and 0 < T � 20

(bottom). The parameters are the same as in Figure 7. The possible jump size is again

� = �0:1.
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3.2 Generalized inverse Gaussian di�usion

Moving away from the Black-Scholes model towards more general di�usion models is

a rather obvious generalization. It is also necessary, since marginal distributions of the

log-returns of stock prices are often heavier tailed than normal. This has been shown

very convincingly, for instance, by a data analysis in Eberlein and Keller (1995). Various

models have been suggested e.g. by the Aarhus school: a simple hyperbolic model has

been investigated by Bibby and S�rensen (1997); a more general class of models has been

suggested by Barndor�-Nielsen (1998).

We consider a generalized inverse Gaussian di�usion model (for brevity we write GIG

di�usion) for the log-returns of stock prices. This class of di�usions has been introduced

in Borkovec and Kl�uppelberg (1998) and we refer to this source for details.

The following equations determine a general di�usion market.

dP0(t) = P0(t)rdt ; P0(0) = 1 ;

dP (t) = P (t)(bdt+ dY (t)) ; P (0) = p ;

Y (t) = U(t)� 1
2
�
2
R
t

0
U

2(s)ds� u ; Y (0) = 0 ;

(3.8)

In our case we now choose U as GIG di�usion given by the SDE

dU(t) =
1

4
�
2
U

2�2(t)
�
 + 2(2 + �� 1)U(t)� �U

2(t)
�
dt+ �U

(t)dW (t); U(0) = u > 0 ;(3.9)

where W is standard Brownian motion. The parameter space is given by � > 0,  � 1=2,

�;  � 0, max(�;  ) > 0, and

� 2 R if �;  > 0 ;

� � min(0; 2(1� )) if � = 0;  > 0 ;

� � min(0; 2(1� )) if � > 0;  = 0 :

(3.10)

The GIG model is a formal extension of the Black-Scholes model, which corresponds to

the choice of parameters  =  = 0, � = 1; � = �2. It also contains the (generalized)

Cox-Ingersoll-Ross model as a special case. The advantage of our construction lies in the

structural resemblance of the resulting price process to the geometric Brownian motion

model: we can decompose the stock price into a drift term multiplied by a local martingale,

P (t) = p exp

�
bt +

1

4
�
2

Z
t

0

U
2�2(s)

�
 + 2(2 + �� 1)U(s)� �U

2(s)
�
ds

�
� exp

�
�

Z
t

0

U
(s)dW (s)�

1

2
�
2

Z
t

0

U
2(s)ds

�
; t � 0 :

The following lemma shows another useful property of the de�nition of the process U ,

when describing the wealth process.
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Lemma 3.3 Let U be the GIG di�usion given by (3.9) and � > 0. Then the processeU = �U is again a GIG di�usion with eU(0) = �U(0) and parameters

e� = ��
1�

; e =  � ; e� = �=� : (3.11)

The parameters  and � remain the same.

Proof Notice �rst that all parameters of eU satisfy the necessary non-negativity assump-

tions and (3.9). The assertion now follows by calculating deU(t) = d(�U(t)) = �dU(t),

t � 0. 2

Remark 3.4 As a consequence of Lemma 3.3 the wealth process X� has a very nice

explicit form, indeed it is of a similar form as the stock price process P ,

X
�(t) = x exp

�
(1� �)rt+ebt+ eY (t)� ; t � 0 ; (3.12)

where

eb = �b and eY (t) = eU(t)� 1

2
e�2

Z
t

0

eU2(s)ds� �u ; t � 0 ;

for any positive portfolio �. 2

with eY (t) = ��W (t)� �
2
�
2
t=2, t � 0.

According to De�nition 3.1 for the CaR(x; �; T ) we have to determine the �-quantile ofeY (T ). Here we see one of the big advantages of the CaR as a risk measure: it does not

depend on the existence of moments. Even for in�nite mean it is well-de�ned.

However, if we want to solve the mean-CaR problem, we have to ensure that X�(T )

has a �nite mean. In general, it is not possible to decide if this is the case. A natural

assumption is to assume U(T ) or eU(T ) to have the stationary distribution of the process

U or eU respectively. This is certainly justi�ed if the time horizon T is chosen suÆciently

large.

Proposition 3.5 Assume that U(T ) and eU(T ) are GIG random variables with parame-

ters  , �, �,  and e , e�, �,  respectively. Assume that � is a positive portfolio. Then

X
�(T ) has a �nite mean if e� = �=� > 2.

Proof As eU is always positive, we estimate

X
�(T ) � x exp

�
(1� �)rT +ebT + eU(T )� �u

�
:
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If E exp(eU(T )) <1, then EX�(T ) <1. By J�rgensen (1982) we know the explicit form

of the moment generating function of the GIG random variable eU(T ) giving
E

�
exp(eU(T ))� = K�

�p
� (1� 2=e�)�

K�

�p
� 
�
(1� 2=e�)�=2 ; (3.13)

where K�(�) denotes the generalized Bessel function of the third kind. The rhs of equation

(3.13) is only �nite for e� > 2. 2

Thus, if the original parameter satisfy � > 2 and � 2 [0; 1], then also e� > 2 and in this

case X�(T ) has a �nite mean. In this case the mean-CaR problem is well-de�ned and can

be solved, however, one cannot hope for an analytic solution. In the following example we

show how the mean-CaR problem can be solved using analytic properties of the process

as far as possible, and then present a simple simulation procedure to solve the problem

numerically.

Example 3.6 (Generalized Cox-Ingersoll-Ross model (GCIR))

As an example we consider the generalized Cox-Ingersoll-Ross model, i.e. the GIG market

model with parameters  = 1, � = 0. This results in the following explicit form for U :

U(t) = exp

�
1

2
�
2
�t+ �W (t)

� �
u+

1

4
�
2
 

Z
t

0

exp

�
�
1

2
�
2
�s� �W (s)

�
ds

�
; t � 0 ;

which has mean

EU(t) =

8<: exp

�
(�+ 1)

�
2

2
t

��
u+

 

2(�+ 1)

�
1� exp

�
�(� + 1)

�
2

2
t

���
if � 6= �1 ;

u+ 1
2
�
2
 t if � = �1 :

Further, by Itô's formula we have

Y (t) = U(t)�
1

2
�
2

Z
t

0

U
2(s)ds� u =

1

4
�
2
 t+

1

2
��

2

Z
t

0

U
2(s)ds+ �

Z
t

0

U(s)dW (s)(3.14)

and we obtain the same representations for eU(t) and eY (t) if we substitute  by e = � .

An explicit solution of the mean-CaR problem does not seem to be possible. What

remains are Monte-Carlo simulations and numerical approximations.

Before we present such an algorithmwe like to indicate some properties of the optimization

problem. Indeed, the following crude estimate may serve as initial value for the iteration

procedure described below. It may also serve as a very crude approximation of the optimal

solution. By Jensen's inequality, (3.12) and relation (3.14) (for eU(t)) we obtain
E(X�(T )) � x exp

�
((1� �)r +eb)T + E(eY (T ))�

= x exp

�
((b� r)� + r)T + �

1

4
�
2
 T +

1

2
�
2
��

2

Z
T

0

E(U2(s))ds

�
=: x exp(rT ) exp(��+ �

2
��): (3.15)
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Figure 9: Ten sample paths of (eY (t))0�t�20 for � = 1(left) and ten sample paths of eY �(20)

for � 2 (0; 1) (right) for parameter values x = 1000; r = 0:05; b = 0:10;  = 4; � = 0; � =

0:05 and u = 5.

For b > r the constants �; � are both positive, whether the right-hand side of (3.15)

increases depends on �. Now if the right-hand side of (3.15) increases in � and is big, so

is the left-hand side. In particular, for a non-negative � the right-hand side can be made

arbitrarily large by increasing �. Therefore, a �rst step in solving the mean-CaR problem

approximately consists in replacing the expected terminal wealth by the right-hand side

of (3.15). The consequence of this is that we only have to �nd the largest portfolio � such

that the CaR-constraint is still satis�ed. Now, if we use again the inequality

eU(t)� 1

2
�
2

Z
t

0

eU2(s)ds � eU(t) (3.16)

and consider the stationary distribution for eU(T ) as a reasonable approximation for its

actual distribution then we can solve the CaR-constraint (with the left-hand side of (3.16)

substituted by the right-hand side) to obtain the largest portfolio such that the constraint

is still satis�ed. Note that in this case the stationary distribution of eU(T ) is an inverse

gamma distribution.

A simple algorithm to solve the mean-CaR problem would be the following:

For large N and i = 1; : : : ; N .

� Simulate sample paths (Wi(t))t2[0;T ] of the Brownian motion (W (t))t2[0;T ]:

� Compute realisations Ui(T ) and
R
T

0
U

2
i
(t)dt of U(T ) and

R
T

0
U

2(t)dt, respectively,

from the simulated sample paths of (Wi(t))t2[0;T ].

� For \all" � 2 R compute

eY �

i
(T ) = �Ui(T )�

1

2
�
2
�
2

Z
T

0

U
2
i
(t)dt� �u:
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Figure 10: Left: Estimated mean wealth EX�(T ) for � = 1; 0 < T � 20, based onN = 100

simulations. Right: Corresponding CaR. We used the same parameters as in Figure 9.

� Get estimators b�(�) for E(X�(T )) and b�(x; �; T ) for CaR(x; �; T ) :
b�(�) :=

x

N

NX
i=1

exp
�
(r + (b� r)�)T + eY �

i
(T )
�

b�(x; �; T ) := x exp(rT ) (1� exp (�(b� r)T + bz�(�))) ;
where bz�(�) is the �-quantile of the empirical distribution of the eY �

i
(T ).

� Choose the portfolio � with the largest value of b�(�) such that b�(x; �; T ) is below
the upper bound C for the CaR.

Of course, it is not possible to compute the quantities b�(�) and bz�(�) for all � 2 R explic-

itly. A practical method consists in choosing K = 100 values of � in a bounded interval

of interest and derive functions �(�); z�(�) via interpolation. One then chooses that value

of � that solves the mean-CaR problem corresponding to these functions.

4 Conclusion

We have investigated some simple portfolio problems containing an upper bound on the

CaR as an additional constraint. As long as we were able to calculate expectations and

quantiles of the stock prices in explicit form we could also solve the problems explicitly.

This can be done within a Gaussian world, but very little beyond. The Black-Scholes

model with jumps is just feasible and easily understood. As soon as one moves away

from such simple models the solution of the mean-CaR problems becomes quite messy
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Figure 11: Estimated expected terminal wealth (left) and the corresponding CaR (right)

as functions of the portfolio � for the GCIR model for T=20 and the same parameters as

in Figure 9 (based on N=100 simulations). The expected terminal wealth and the CaR

for the GCIR model increase for all � 2 (0; 1).

and Monte Carlo simulation and numerical solutions are called for. As an example we

treated the generalized Cox-Ingersoll-Ross model, which gave us a �rst impression of the

complexity of the problem.

In this sense the paper should be understood as the starting point of a larger research

project. We indicate some of the problems we want to deal with in future work:

{ A deeper analysis should investigate the inuence of the parameters of the generalized

inverse Gaussian; also other models should be investigated as for instance hyperbolic and

normal inverse Gaussian models (see Eberlein, Keller and Prause (1998) and Barndor�-

Nielsen (1998)).

{ Investigate the optimization problem for other downside risk measures; replace for

instance the quantile in De�nition 2.1 by the expected shortfall. Comparisons of results

for the CaR with respect to the quantile and the shortfall can be found in Emmer,

Kl�uppelberg and Korn (2000).

{ Replace the constant portfolio by a general portfolio process. Then we have to bring

in much more sophisticated techniques to deal with the quantiles of the wealth process,

and our method of solving the optimization problem explicitly will no longer work.
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based on N = 100 simulations. Right: The same estimate as on the left-hand side, now

as function of the time horizon T , 0 < T � 20, for � = 1, based on N = 100 simulations.

The parameters are the same as in Figure 9.
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