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Abstract

Facility Location Problems are concerned with the optimal location of one or

several new facilities, with respect to a set of existing ones. The objectives involve

the distance between new and existing facilities, usually a weighted sum or weighted

maximum. Since the various stakeholders (decision makers) will have di�erent opin-

ions of the importance of the existing facilities, a multicriteria problem with several

sets of weights, and thus several objectives, arises. In our approach, we assume the

decision makers to make only fuzzy comparisons of the di�erent existing facilities.

A geometric mean method is used to obtain the fuzzy weights for each facility and

each decision maker. The resulting multicriteria facility location problem is solved

using fuzzy techniques again. We prove that the �nal compromise solution is weakly

Pareto optimal and Pareto optimal, if it is unique, or under certain assumptions on

the estimates of the Nadir point. A numerical example is considered to illustrate the

methodology.

Keywords: Location theory, Multicriteria optimization, Fuzzy Programming, Triangular

fuzzy number, Linear membership function.
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1 Introduction

The development of location theory has started with the optimal location of a single facility

in the plane <2, with respect to a set of existing facilities. This problem was �rst described

in the 17th century by Fermat. In facility location literature, the two most important

classes of problems that arise are the weighted sum and the weighted maximum of distances

(minisum or median and minimax or center objective function). In realistic situations it

is often not possible to consider only one criterion of the median (or Weber) or center (or

Weber-Rawls) type.

Since the di�erent decision makers involved in a locational decision will have di�erent

opinions of the importance of the existing facilities, a multicriteria problem with several

sets of weights, and thus several objectives, arises. In such a multicriteria location problem

a compromise location has to be found: For a multicriteria optimization problem, usually

there are no \optimal" solutions as in the case of single criteria problems, but only preferred

or compromise solutions are available. The preferred solution must be Pareto optimal (also

called an eÆcient or a non-dominated solution).

Multicriteria facility location problems have received increasing attention in recent years,

contributing to and applying theoretical results of multicriteria mathematical program-

ming. Planar location problems with multiple objectives have been considered, among

others, in [31], [8], [13], [22], [24], [15], [17], [18], [25],[19]. For an overview see also [11].

Parametric location problems which are closely related to multiple objective locations

problems are discussed in [6].

Multiple criteria location problems with fuzzy approaches have been discussed by some

researchers. Bhattacharya et al. have presented a fuzzy goal programming model for

locating a single new facility under three criteria and locating multiple new facilities under

two objectives in a plane bounded by a convex polygon in [2] and [3]. In [4] multiple facility

minisum location problems under area restrictions were considered. Here the authors

assume that the cost per unit distance is not known exactly, and is variable, unreliable and

imprecise. They have considered 
at fuzzy numbers to represent the cost per unit distance.

In [5] they have also presented an interactive fuzzy goal programming model for locating

multiple facility on a plane bounded by a convex polygon under multiple criteria. In [26]

the authors examined a multiple criteria network location problem and used the fuzzy

set theoretic approach to obtain a preferred solution among the nondominated solutions.

However, incorrect mathematical formulations and inconsistencies in [26] were pointed out

in [9]. In none of these papers the case where the decision makers have di�erent opinions

of importance (or relative strength) of the set of existing locations has been considered.
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In this paper we consider multicriteria single facility location problems, where decision

makers, i.e. all persons involved in the locational decision may have di�erent opinions of

importance of the set of existing locations Ex = fEx1; : : : ; ExMg in the plane. These

opinions represent their view of the relative strength of the new location at that point.

These relative strengths are linguistic (e.g. \approximately", \slightly less", \at most as

important") or fuzzy in nature rather than crisp values. This situation arises when decision

makers are asked to give his or her personal view to locate a single new facility in the plane.

In this situation decision makers compare one existing location to another keeping some

criteria in his or her mind to locate the single new facility.

The main aim of this paper is twofold. Firstly we present a method to estimate the fuzzy

weights of the set of existing locations for each decision maker. The importance (or relative

strength) of the existing locations are given by the decision makers (various stakeholders)

and are assumed to be fuzzy (triangular fuzzy numbers, see [20]). Secondly we present

a method to �nd an \optimal compromise" solution of the fuzzy multicriteria location

problem. Arising from determination of the fuzzy weights. To obtain the best compromise

solution among the (weakly) Pareto optimal solutions, we use the concept and technique

of fuzzy set theory (see [32] or [33]).

In our approach, we �rst formulate a fuzzy pairwise comparison matrix by comparing the

existing locations with one another. To represent the importance (or relative strength) of

the existing locations, we use Saaty's ratio scale 1 to 9 (see [27, 28]) in a fuzzy environment.

In order to extract the fuzzy weights from the this pairwise comparison matrix we use the

geometric mean technique (see [7]). The resulting weights are again fuzzy. Then we utilize

the index of optimism � 2 [0; 1] to convert these fuzzy weights to crisp numbers. Finally

we compute normalized weights which are crisp again. Assigning these normalized weights

to the existing locations, we use a fuzzy technique with a linear membership function to

solve the multicriteria single facility location problem.

The rest of the paper is organized as follows. In Section 2 a mathematical model of the

problem is presented. Determination of fuzzy weights is explained in Section 3. In Section

4, a fuzzy programming technique is proposed to solve the problem. Pareto optimality of

the compromise solution obtained by the method of Section 4 is discussed in Section 5. A

numerical example with rectilinear (l1) and Euclidean (l2) distance and two objectives is

given in Section 6 to illustrate the proposed methodology. Finally, some conclusions and

an outlook to further research are given in Section 7.
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2 Fuzzy Multiobjective Location Problems

Let Ex = fEx1; : : : ; ExMg be a set of existing locations in the plane, where Exm =

(am1; am2) for all m 2 M := f1; : : : ;Mg. Furthermore let X = (x1; x2) be the single new

facility to be located. Let S � IR2 be the set of all feasible solutions, i.e. all possible

locations for the new facility.

By ~wq
m we denote the fuzzy weight of the existing facility Exm assigned by decision maker

q. If dm(Exm; X) is a convex distance between the existing location Exm and the new

facility X we consider Q objective functions fq, where each fq is either

fq(X) :=
MX
m=1

~wq
mdm(Exm; X) (1)

or

fq(X) := max
m2M

~wq
mdm(Exm; X): (2)

In (1) and (2) dm(Exm; X) means the distance between the points Exm and X, where we

allow di�erent kinds of distances for di�erent existing facilities (to account e.g. for di�erent

accesibility of existing facilities). We only require that dm satis�es the axioms of a metric

for all m.

For each q 2 Q; minx2S fq(X) is either a single objective planar median or center location

problem with fuzzy weights.

3 Determination of Fuzzy Weights

In this section, we present a method to obtain the fuzzy weights ~wq
m in (1) and (2) using

Saaty's 9 point ratio scale in a fuzzy context. In order to do so, we have to introduce some

basics of fuzzy theory.

A triangular fuzzy number ~N can be de�ned as a triplet (l; m; n). Here l and n stand for

the lower and upper value of ~N , and m denotes the modal value. The membership function

of the fuzzy number ~N is de�ned as � ~N(x):

� ~N(x) =

8>>>>><
>>>>>:

0 if x � l
x�l

m�l
if l < x � m

n�x

n�m
if m < x < n

0 if x � n

: (3)

Algebraic operations on triangular fuzzy number are de�ned now. Consider two triangular

fuzzy numbers ~N1 = (l1; m1; n1) and ~N2 = (l2; m2; n2). Then addition, multiplication and

inverse can be de�ned as follows.
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1. Addition

~N1 � ~N2 = (l1; m1; n1)� (l2; m2; n2) = (l1 + l2; m1 +m2; n1 + n2)

2. Multiplication

~N1 � ~N2 = (l1; m1; n1)� (l2; m2; n2) = (l1l2; m1m2; n1n2)

3. Inverse

~N�1
1 = (l1; m1; n1)

�1 = (
1

n1
;
1

m1

;
1

l1
)

Each decision maker is asked to perform a pairwise comparison of the M existing facili-

ties. We use a nine-point ratio scale for this purpose (see [28],[27]). Decision makers are

asked to compare existing facilities pairwise, answering questions \How much more impor-

tant is facility j as compared to facility i?". Ratios are expressed as numbers between 1

and 9, where 1 means equally important and 9 means absolutely more important, with

intermediate grades weakly (3), strongly (5), and very strongly (7) more important.

However, we expect these judgements to be fuzzy in nature, i.e. instead of the crisp

numbers f1; : : : ; 9g we rather use fuzzy ratios f~1; : : : ; ~9g. Therefore a judgement matrix

~A, the entries of which are triangular fuzzy numbers ~aij = (�ij; �ij; 
ij), is obtained. So

the decision makers are asked to provide the modal value as an estimate of the ratio of

importance, but also a left and right spread as bounds. Note that the entries on the

diagonal of the matrix must be crisp and equal to one. These fuzzy numbers indicate the

relative strength of the M existing facilities. Therefore

~Aq =

2
6666666664

1 ~a12 ~a13 : : : ~a1(M�1) ~a1M
1
~a21

1 ~a23 : : : ~a2(M�1) ~a2M

: : : : : : : : : : : : : : : : : :
1

~a(M�1)1

1
~a(M�1)2

1
~a(M�1)3

: : : 1 ~a(M�1)2

1
~aM1

1
~aM2

1
~aM3

: : : 1
~aM(M�1)

1

3
7777777775

; (4)

where

~aij

8>><
>>:

2 f~1; : : : ; ~9g if i < j

1 if i = j

2 f~1�1; : : : ; ~9�1g if i > j

is a fuzzy pairwise comparison matrix for the qth decision maker.

From the fuzzy judgement matrix ~Aq the fuzzy weight ~w
q
i = ("

q
i ; �

q
i ; �

q
i ) for facility i ac-

cording to the judgement of decision maker q can be computed using a geometric mean
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technique. Usually an eigenvector is chosen to de�ne the weights of the di�erent facilities.

In the fuzzy context, instead of computing a fuzzy eigenvector, [7] proposed a geometric

mean technique. This method is easier to apply and can be well justi�ed. For details we

refer to [7].

De�ne �i = [
Qm
j=1 �ij]

1
m and � =

Pm
i=1 �i. Similarly, let �i = [

Qm
j=1 �ij]

1
m and � =

Pm
i=1 �i

and also 
i = [
Qm
j=1 
ij]

1
m and 
 =

Pm
i=1 
i. The fuzzy weights ~w

q
i = ("

q
i ; �

q
i ; �

q
i ) are de-

termined by (�i

�1; �i�

�1; 
i�
�1). Note that the fuzzy weights ~w

q
i are correct triangular

fuzzy numbers again, in the sense that the lower value "
q
i is less than the modal value �

q
i ,

which is less than the upper value �
q
i .

At this stage a fuzzy multiobjective location problem

min
X2S

fq(X); (5)

with objectives of median type (1) and/or of center type (2) is obtained.

We will now use the index of optimism � 2 [0; 1] introduced in [10] to convert the fuzzy

weights into crisp weights. A larger index indicates a higher degree of optimism and will

imply that the crisp weight w
q
i related to ~w

q
i is closer to the upper value �

q
i . The fuzzy

weights with index of optimism are de�ned as

w
q
i = ��

q
i + (1� �)"

q
i ; � 2 [0; 1]:

The crisp values w
q
i can now easily be normalized, such that

PM
i=1w

q
i = 1 for all q =

1; : : : ; Q: Then a multiobjective location problem

min
X2S

(f1(X); : : : ; fQ(X)) (6)

is obtained.

4 A Fuzzy Technique to Solve Multicriteria Single Fa-

cility Location Problems

For this approach, we need estimates of the lowest and highest value each of the objectives

can attain for Pareto optimal solutions of (6). This can be done by solving Q single

objective single facility location problems

min
X2S

fq(X) (7)

for each q 2 f1; : : : ; Qg; taking one criterion at a time. Here the estimated crisp weights

w
q
i appear as weights in fq.
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Now, if X(q) is an optimal solution of the q-th single objective problem (7), X(q) can be

evaluated for all objectives. According to each solution and value for every objective, a

pay-o� matrix with entries fpq = fq(X
(p)); q; p = 1; : : : ; Q can be formulated as follows.

f1(X) f2(X) : : : fQ(X)

X(1) f11 f12 : : : f1Q

X(2) f21 f22 : : : f2Q
... : : : : : : : : : : : :

X(Q) fQ1 fQ2 : : : fQQ

(8)

The fuzzy technique to solve the multicriteria location problem uses the results from the

payo� table to de�ne a linear membership function for each of the criteria. With these

membership functions and a max-min operation, the problem is converted to a single

objective optimization problem.

From the pay-o� table, we �nd estimates of the upper (Uq) and lower (Lq) values for each

criterion corresponding to the set of Pareto solutions of (6), Uq = max(f1q; f2q; : : : ; fQq)

and Lq = fqq, q = 1; 2; : : : ; Q: Now we can use well known techniques of fuzzy programming

to formulate the problem as a maximum achievment problem.

Using Uq and Lq, a linear membership function �Lfq (see [33]) for each of the Q criteria is

obtained, by

�Lfq(x) =

8>>><
>>>:

1 if fq � Lq

Uq�fq

Uq�Lq
if Lq < fq < Uq

0 if fq � Uq

: (9)

Using the max-min operator (see [1]) the above problem can be converted to a single

criterion problem, (10) - (13), namely

maxR; (10)

subject to the constraints

fq(X) +R(Uq � Lq) � Uq; q = 1; : : : ; Q (11)

R 2 [0; 1] (12)

X 2 S: (13)
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The �nal problem obtained is a convex programming problem (provided that S is convex)

in variables X and R, which can readily be solved using existing algorithms and software.

We note that solving the problem with di�erent values of the index of optimism �, several

sets of weights can be obtained. Therefore several possible compromise solutions will be

available.

In the next section we will discuss Pareto otpimality of the �nal compromise solution

obtained from solving (10) - (13) for the multiobjective problem (6).

5 Pareto Optimality of the Final Compromise Solu-

tion

Let us assume that S is a closed and bounded subset of IR2. This is not a very strong

assumption. Usually the set of Pareto optimal solutions of a location problem can be shown

to be restricted to such a set, which can be computed from the coordinates of the existing

facilities. For details see the references mentioned in the introduction.

Let SPar denote the set of Pareto optimal solutions of the multicriteria location problem

minX2S(f1(X); : : : ; fQ(X)),

SPar := fX 2 S :6 9X 0 2 S s.t. fq(X
0) � fq(X) q = 1; : : : ; Q and f(X 0) 6= f(X)g:

Furthermore we will use the set of weakly Pareto optimal solutions. A point X 2 S is

weakly Pareto optimal, if there is no X 0 2 S such that fq(X
0) < fq(X) for all q = 1; : : : ; Q:

We denote the set of weakly Pareto optimal solutions of (6) by Sw�Par. The compactness

assumption and the continuity of the objectives fq guarantee that SPar and Sw�Par are

nonempty, see e.g. [29]. We obtain the following result.

Theorem 1 1. An optimal solution X� of (10) - (13) is weakly Pareto optimal for the

multicriteria location problem (6).

2. The problem (10) - (13) has at least one optimal solution, which is Pareto optimal

for (6).

Proof:

1. Assume the contrary. Then there is an X 2 S such that fq(X) < fq(X
�) 8q =

1; : : : ; Q. Let R� be the optimal solution value of problem (10) - (13). Then

fq(X) +R�(Uq � Lq) < fq(X
�) +R�(Uq � Lq) � Uq; 8q = 1; : : : ; Q:
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Therefore there exists an R > R� and an i 2 f1; : : : ; Qg such that

fi(X) +R(Ui � Li) = Ui;

fq(X) +R(Uq � Lq) � Uq; q 6= i:

This contradicts the fact that X� is an optimal solution of (10) { (13).

2. Suppose X� is not a Pareto optimal solution. Then there exists an X 2 SPar such

that fq(X) � fq(X
�) 8q = 1; : : : ; Q and fi(X) < fi(X

�), for some i. Therefore

fq(X) +R�(Uq � Lq) � Uq 8q = 1; : : : ; Q:

Because X� is an optimal solution of (10) - (13), so is X. Thus the claim is proved.

2

Note that Theorem 1 implies that whenever the solution of Problem (10) - (13) is unique,

then it is also Pareto optimal.

For problems with only two objectives, we can strengthen the result of Theorem 1. To do

so we have to introduce some further notation. Since all objectives are continuous they

attain their minima on S and we can de�ne y0q := minX2S fq(X). Then y0 := (y01; : : : ; y
0
Q)

is called the ideal point of the multicriteria optimization problem (6). The ideal point is

a lower bound on all objective values. An upper bound on the objective values for the

Pareto set is given by the Nadir point yN ; where

yNq := max
X2SPar

fq(X):

We assume that y0q < yNq for all q, because otherwise the qth objective is irrelevant for

the optimization. Concerning the pay-o� matrix mentioned in Section 4 we observe that

Lq = y0q . However, Uq = yNq is not necessarily true, because, Uq may over- or underestimate

yNq , see e.g. [21] for an example.

Under the general asumption that jSParj � 2 (otherwise yN = y0 and the objectives are

not con
icting) and that S is convex, we obtain Theorem 2.

Theorem 2 Assume that S is convex, and that Uq � yNq for q = 1; 2. Furthermore assume

that U is a feasible estimate of yN , i.e. there is at least one X 2 S such that fq(X) < Uq

for q = 1; : : : ; 2. Then an optimal solution X� of (10) - (13) is Pareto optimal for (6).
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Proof:

Let X� be an optimal solution of (10) - (13), i.e. X� solves

max
X2S

min
q=1;:::;Q

Uq � fq(X)

Uq � Lq

;

or, if we use the constants �q := (Uq � Lq)
�1 > 0,

max
X2S

min
q=1;:::;Q

�q(Uq � fq(X)):

From Theorem 1 we know that X� is weakly Pareto optimal. Therefore we will look at

Sw�Par in more detail. We use a result from [23], which states that

Sw�Par = Opt(f1) [Opt(f2) [ SPar; (14)

where Opt(fq) denotes the set of optimal solutions of

min
X2S

fq(X):

From (14) we have a partition of SPar as follows:

Sw�Par = (Opt(f1) [ Opt(f2)) [ (SPar n (Opt(f1) [ Opt(f2)))

=: S1 [ S2

Note that S1 and S2 are disjoint and that due to the general asumption that no ideal

solutions X satisfying f(X) = y0 exist, jSParj � 2, and due to the connectedness of SPar

(see [30]), we know that S2 6= ;.

Now we show that for all X1 2 S1 fq(X
1) � yNq for q = 1 or q = 2 and that for all X2 2 S2

fq(X
2) < yNq for q = 1 and q = 2. Then

min
q=1;2

f�q(Uq � fq(X
1))g � min

q=1;2
f�q(y

N
q � fq(X

1))g � 0

< min
q=1;2

f�q(y
N
q � fq(X

2))g
(15)

for all X1 2 S1 and all X2 2 S2.

1. LetX1 2 S1. By de�nition either f1(X
1) = minX2S f1(X) or f2(X

1) = minX2S f2(X):

Without loss of generality we only consider the �rst case and show that f1(X
1) =

minX2S f1(X) implies f2(X
1) � yN2 : Suppose that this would not be true and let X1

be such that f2(X
1) < yN2 . Now take any X 2 SPar; X =2 Opt(f1): By the choice of

X1 we have f1(X) � f1(X
1) and therefore f2(X) < f2(X

1) < yN2 : This would imply

maxX2SPar f2(X) � f2(X
1) < yN2 , which contradicts the de�nition of yN .

10



2. Next let X2 2 S2. Thus X2 2 SPar and fq(X
2) � yNq by de�nition. Note that

fq(X
2) = yNq would imply X2 2 S1: Indeed, if e.g. f1(X

2) = yN1 this yields f1(X) �

f1(X
2) for all X 2 SPar, therefore f2(X) � f2(X

1) for all X 2 SPar. Thus we would

imply f2(X
1) = minX2S f2(X): So fq(X

2) < yNq as claimed.

We have now proved the theorem for U = yN . In the general case Uq � yNq we can use

the fact that U is a feasible estimate for yN . Therefore there exists X 2 S such that

fq(X) < Uq � yNq ; q = 1; 2. Therefore there exists X 0 2 SPar with fq(X
0) < yNq , and

analogous to 2. above, all such X 0 are in S2. The fact that minq=1;2f�q(Uq � fq(X
0)g > 0

together with the �rst and second inequality in (15) completes the proof. 2

Remark 1 The proof of Theorem 2 actually shows that a solution of (10) - (13) is properly

Pareto optimal (see [14]). This is due to the fact that SPar is the closure of the set of

properly Pareto optimal solutions (see e.g. [29]), and in de�ning S2 we just omitted the

two boundary points of SPar, cf. Figure 1.

1 2 3 4 5 6

1

2

3

4

5

6
S1

S1

S2

yN

U

Objective values of Pareto
optimal compromise solution

Figure 1: Illustration of Theorem 2

Theorem 2 indicates, that it is desirable to have estimates of the upper bounds of objectives

that are less or equal than the Nadir values. The condition Uq � yNq of Theorem 2 can
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be satis�ed for Q = 2 if the pay-o� table is replaced by the solution of lexicographic

optimization problems

lexminX2S(f1(X); f2(X))

and

lexminX2S(f2(X); f1(X)):

With Opt(fq) := fX� 2 S : fq(X
�) = minX2S fq(X)g we de�ne Lq = minX2S fq(X) and

Uq := minX2Optjfj(X); q 6= j; q = 1; 2. Then y0 = (L1; L2) and yN = (U1; U2).

For the general case of Q � 3 criteria unfortunately no procedure is known to determine

yN (see [21]). In this case, we can get lower estimates �Uq � yNq of the Nadir values from

payo� table obtained from the solution of problems

min
X2S

fq(X) +
X
i6=q

�ifi(X) (16)

for each q, where �i > 0 are small, e.g. �i =
1
Q2 . This is due to the fact that an optimal

solution of (16) is Pareto optimal for the multiobjective location problem.

6 Numerical Example

In this example we consider two criteria one of which is a median objective and one of

which is a center objective.

Let Ex1 = (1; 1), Ex2 = (2; 3), Ex3 = (4; 2) be the coordinates of the three existing

locations in the plane. The relative strength of the existing locations is presented as a

comparison matrix, where the elements of the matrix are triangular fuzzy number with left

and right spread. In this example we consider ~2 = (1; 2; 4) and ~4 = (2; 4; 6).

The comparison matrix for the existing locations is as follows:

~A1 = ~A2 =

2
664

1 (1; 2; 4) (2; 4; 6)

(1
4
; 1
2
; 1) 1 (1; 2; 4)

(1
6
; 1
4
; 1
2
) (1

4
; 1
2
; 1) 1

3
775 (17)

For convenience, we used the same comparison matrix (17) to obtain the weights for both

objectives, one of which is a center and one of which is a median objective. Using the

geometric mean technique discussed in Section 3, we got the following fuzzy weights for

the three locations:

( ~w1; ~w2; ~w3) =

0
BB@

(0:24; 0:57; 1:29)

(0:12; 0:29; 0:71)

(0:07; 0:14; 0:35)

1
CCA :
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Using an index of optimism � = 0:5 we get the normalized crisp weights

(w1; w2; w3) � (0:55; 0:30; 0:15):

Using the fuzzy programming technique of Section 4 the optimal compromise location of the

above fuzzy multicriteria facility location problem with rectilinear distance dm(Exm; X) =

l1(Exm; X) and Euclidean distance dm(Exm; X) = l2(Exm; X) is shown in Table 1. We

have used AMPL (A Modelling Language for Mathematical Programming, see [12]) and

LOLA (Library of Location Algorithms, see [16]), to solve the single objective location

problems. AMPL has been used to model and solve the single objective problem (10) -

(13).

Distance Location X� Objectives R

l1 (1:2647; 1:2647) (1:5529; 0:7412) R = 0:49

l2 (1:2817; 1:3714) (1:2103; 0:5342) R = 0:55

Table 1: Optimal Solutions of the Numerical Example

Both solutions are indeed Pareto optimal. The Example is shown in Figure 2.

7 Conclusions

In this paper we have considered multicriteria facility location problems, where the decision

makers have di�erent opinions of the importance of the set of existing facilities. Decision

makers' opinions are collected in fuzzy comparison matrices, from which fuzzy weights are

obtained by a geormetric mean method. Using an index of optimism the weights of the

existing locations are extracted. We proved that the �nal compromise solution is weakly

Pareto optimal and Pareto optimal, if it is unique or the decision space is convex and

overestimation of Nadir values is avoided. Our method takes into account the diÆculties of

people to express clear and crisp judgements, thus making more realistic models of location

problems available. The proposed solution technique guarntees that a best compromise

solution is found. Further extensions of our concepts to multifacility problems and problems

on networks are under research.
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