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Abstract

The balance space approach (introduced by Galperin in 1990) provides a new view on

multicriteria optimization. Looking at deviations from global optimality of the di�erent

objectives, balance points and balance numbers are de�ned when either di�erent or equal

deviations for each objective are allowed. Apportioned balance numbers allow the speci�-

cation of proportions among the deviations. Through this concept the decision maker can

be involved in the decision process. In this paper we prove that the apportioned balance

number can be formulated by a min-max operator. Furthermore we prove some relations

between apportioned balance numbers and the balance set, and see the representation of

balance numbers in the balance set. The main results are necessary and suÆcient condi-

tions for the balance set to be exhaustive, which means that by multiplying a vector of

weights (proportions of deviation) with its corresponding apportioned balance number a

balance point is attained. The results are used to formulate an interactive procedure for

multicriteria optimization. All results are illustrated by examples.



1 Introduction

In [4] Galperin introduced a new approach to multiple criteria optimization problems: the

balance space. With the balance space approach multiobjective optimization problems with

con
icting objectives can be solved by global optimization methods, see [4] and [5]. The

balance space approach is based on minimal deviations from optimality of the individual

objectives. Considering either equal or di�erent deviations for each objective function, the

concept of the balance number, respectively the balance point are derived. In this paper

we focus on a variant that allows an active role of the decision maker, as he can specify

proportions among the deviations from optimality according to his purposes. This concept

is called apportioned balance number.

In this introductory section we brie
y discuss the approach, present the essential de�ni-

tions, and review existing results. In Section 2 we present a min-max formulation for the

computation of the apportioned balance number. In Section 3 we prove some relations

between apportioned balance numbers and balance points. These show that the former

are always represented in the balance set. Main results are contained in Section 4. Here

we prove suÆcient (and in the bicriteria case necessary conditions) for the balance set to

be exhaustive. This means that an apportioned balance number multiplied with its weight

vector is a balance point. Finally, based on the results of our research, the outline of an

interactive algorithm for multicriteria optimization is given in Section 5. The paper is

concluded by some comments on topics for future research (Section 6).

Consider a compact set X � IRn and the multiobjective optimization problem

min
x2X

f(x) = (fi(x); : : : ; fm(x)); (1)

where we assume all components fi of f to be continuous. For each i the corresponding

single objective subproblem of (1) has a global optimal solution over the compact set X

represented by the partial global minimum value

c0
i
:= min

x2X
fi(x) (2)

and the corresponding set of all global minimizers

X0
i
:=

n
x 2 X : fi(x) = c0

i

o
: (3)

If there is a nonempty intersection

X0 :=
m\
i=1

X0
i
6= ;; (4)

then the multiobjective optimization problem (1) is called balanced, otherwise unbalanced

[4, Chapter 8]. However, the presence of con
icting objectives means that the problem is

unbalanced in general. Throughout the paper we will only consider unbalanced problems.
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Then we can relax the minimization requirements and look for the uniform �-suboptimal

solutions

X0
i
(�) :=

n
x 2 X : fi(x)� c0

i
� �; � > 0

o
: (5)

With increasing �, the intersection ofX0
i
(�) eventually becomes nonempty, and the minimal

value of � for which it is nonempty is called the balance number �0 [4, page 139]. Thus by

de�nition ,

�0 = min

(
� : X0(�) =

m\
i=1

X0
i
(�) 6= ;

)
: (6)

The number �0 de�nes the minimal equal deviation from (global) optimality for all objective

functions.

Generalizing (5), we can allow a di�erent bound �i for deviation from optimality in each

objective function fi. Then (5) becomes

X0
i
(�i) :=

n
x 2 X : fi(x)� c0

i
� �i; �i > 0

o
: (7)

Again, we are interested in nonempty intersections of sets X0
i
(�i). Galperin gave the

following de�nition [5].

De�nition 1 The point � 2 IRm is a balance point if

X0
�
:=

m\
i=1

X0
i
(�i) 6= ;

and for every �0 2 IRm such that 0 � �0
i
� �i; i = 1; : : : ; m and �0 6= � the set X0

�0 = ;: The
set of all balance points is called the balance set, denoted by �.

Several papers have been published on the topic of balance points. In [4] the cubic algorithm

has been used to compute the balance number �0 and the set of �0-suboptimal solutions of

the multiobjective problem (1). Galperin has given some procedures to �nd balance points

in [5]. A relation between the balance space and Pareto optimality has been established

in [3]: It has been shown that the balance set is translationally equivalent to the set of

eÆcient solutions of a multicriteria problem. In [6] Pareto analysis and the balance space

approach have been compared. The retrieval and use of the balance set has been discussed

in [7].

In this paper we will investigate the so called apportioned balance numbers [5]. We replace

�i in (7) by ��i, where all �i; i = 1; : : : ; m are nonnegative numbers. Let � = (�1; : : : ; �m)

be �xed. Then we de�ne, similarly to (6) and De�nition 1:

De�nition 2 The apportioned balance number �0(�) is the smallest number � 2 IR such

that

X0
��

:=
m\
i=1

X0
i
(��i) =

m\
i=1

n
x : fi(x)� c0

i
� �i��

o
6= ;:

2



The concept of apportioned balance numbers can be very useful in real world applications

of multiobjective optimization. Consider a decision maker facing con
icting objectives.

He might well have some ideas about how much a solution should deviate from global

optimality for each of his criteria. Thus specifying �i = 0 no deviation at all would be

allowed for objective fi, whereas bigger values of �j would indicate that fj is less important

and a bigger deviation is acceptable. An interactive method could then be used to �nd an

initial solution with equal deviation (i.e. the balance number), then allowing the decision

maker to specify some weights �i to modify the allowable deviation. Continuing this process

will �nally provide a solution acceptable for the decision maker. Therefore it is essential to

understand apportioned balance numbers, their relations to balance numbers and balance

points, and to have methods that allow their fast computation.

In this paper we will contribute to that. We will provide a min-max formulation, thus

opening a way to compute �0(�). The representation of �o(�) in the balance set � is dis-

cussed, which allows a more eÆcient way of �nding �0(�) for problems where the equation

of the balance set is known. The main results of the paper are necessary and suÆcient

conditions for the property that all balance points can be represented as �o(�)�, where

�0(�) is an apportioned balance number.

2 A Min-Max Formulation of the Apportioned Bal-

ance Number

In [2], a min-max formulation of the balance number was derived:

Theorem 1 The balance number �0 for the multiobjective optimization problem (1) is

determined by the following min-max problem

�0 = min
x2X

max
1�i�m

h
fi(x)� c0

i

i
: (8)

In this section we generalize the min-max formulation of the balance number, Theorem 1,

to apportioned balance numbers.

Theorem 2 Let �i > 0 for all i = 1; : : : ; m. Then the apportioned balance number �0(�)

for the multiobjective optimization problem (1) is determined by the following min-max

problem

�0(�) = min
x2X

max
1�i�m

"
fi(x)� c0

i

�i

#
: (9)

Proof:

Note that, due to (2), for x 2 X all fi(x) � c0
i
; i = 1; : : : ; m: By De�nition 2, we have

�0(�) = min
n
� : X0

��
6= ;

o

3



= min
n
� : 9 x 2 X such that fi(x)� c0

i
� �i�; i = 1; : : : ; m

o

= min

(
� : 9 x 2 X such that

fi(x)� c0
i

�i
� �; i = 1; : : : ; m

)

= min

(
� : 9 x 2 X such that max

1�i�m

fi(x)� c0
i

�i
� �

)
: (10)

Equation (10) represents the following nonlinear optimization problem

min �

subject to max
1�i�m

"
fi(x)� c0

i

�i

#
� �; x 2 X:

(11)

which, since fi(x) � c0
i
and �i > 0 in (11), has a solution �0(�) � 0. Thus, minimization

with respect to � is implied by minimization with respect to x in (11), yielding

�0(�) = min
x2X

max
1�i�m

"
fi(x)� c0

i

�i

#
: (12)

2

The condition that �i > 0 is needed in Theorem 2, not only to avoid division by zero, but

also because when some �i = 0, then possibly �0(�) need not exist, as we shall see in the

next section (cf. Remark 1 and Example 1).

From Theorem 2 we have the possibility to compute apportioned balance numbers as

solutions of (nonlinear) min-max problems. For these global optimization problems one

can in general apply e.g. the cubic algorithm of Galperin [4]. For special problems speci�c

algorithms are available, e.g. when all fi are linear and X is a polyhedron then (11) can

again be written as a linear programming problem.

3 Balance Numbers and Balance Points { Some Re-

lations

In this section we give some relations between (apportioned) balance numbers and balance

points. The results show that they are, in a certain sense, represented in the balance set.

Proposition 1 If �i > 0 for all i = 1; : : : ; Q then the apportioned balance number �0(�)

with respect to � is

�0(�) = min
�2�

max
1�i�m

�
1

�i
�i

�
:
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Proof:

Let �̂ := min�2� max
i=1;:::;m

f 1
�i
�ig: In our proof we �rst show that

X0
�̂�

=
m\
i=1

X0
i
(�̂�i) 6= ;;

which implies that �0(�) � �̂, due to De�nition 2. Second, we show that �0(�) � �̂ by

contradiction.

1. To show that \m
i=1fx 2 X : fi(x) � c0

i
� �̂�ig 6= ; let � 2 � be such that �̂ =

maxi=1;:::;mf 1
�i
�ig = 1

�j
�j: It follows that

�j = �j�̂ (13)

�i � �i�̂ i = 1; : : : ; m i 6= j: (14)

Because � is a balance point, i.e.

m\
i=1

X0
i
(�i) 6= ;;

and by (13) and (14) there exists at least one x 2 X such that fi(x) � c0
i
� �i �

�i�̂ i = 1; : : : ; m: Therefore

m\
i=1

n
x : fi(x)� c0

i
� �i�̂

o
6= ;

and consequently �0(�) � �̂:

2. To show that also �0(�) � �̂ assume to the contrary that �0(�) < �̂. Then by

De�nition 2 there exists at least one x 2 X such that fi(x) � c0
i
� �i�0(�) i =

1; : : : ; m: Now consider the vector

f(x)� c0 :=
�
f1(x)� c01; : : : ; fm(x)� c0

m

�

for such an x. Obviously this implies the existence of a balance point � with the

property that
m\
i=1

n
x 2 X : fi(x)� c0

i
� �i

o
6= ;

and additionally

�i � �i�0(�) < �i�̂

for all i = 1; : : : ; m and thus

max
i=1;:::;m

�i

�i
< �̂:

This contradicts the choice of �̂:
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2

Recall that, if we choose �i = 1; i = 1; : : : ; m then the de�nition of apportioned balance

number becomes the de�nition of the balance number (6), and from Proposition 1, we

immediately obtain the following result.

Proposition 2 The balance number �0 is the smallest maximal component of all balance

points:

�0 = min
�2�

max
i=1;:::;m

f�ig:

As in Theorem 2 the condition that �i > 0 in Proposition 1 is necessary, as can be seen in

Remark 1 and Example 1, which con�rms Remark 1.

Remark 1

(i) If Q � 2 and �l = �k = 0; l 6= k then �0(�) need not exist.

(ii) If Q � 2 and �j = 0 and �i > 0 for all i 6= j then even if �0(�) exists �0(�) =

min�2�maxi=1;:::;m
n

1
�i
�i : �i > 0

o
does not necessarily hold.

Example 1 We illustrate Remark 1 using an example from [6]. The multiobjective op-

timization problem (1) is given by X = [1; 2] � IR and f : IR ! IR3 de�ned by f(x) =

(x; 2x;�x):
According to [6] the balance set has the following representation:

� = f� 2 IR3 : �1 2 [0; 1]; �2 = 2�1; �3 = 1� �1g: (15)

We select several values for �.

1. � = (0:25; 0:25; 0:5)

Then a direct calculation as in [6] shows that �0(�) = 1:6: To check Proposition 1 we

let �1 = 0:2: Then � = (0:2; 0:4; 0:8) 2 � and ( 1
�i
�i) = (0:8; 1:6; 1:6): We also see that

�1 < 0:2 ) �2 < 0:4; �3 > 0:8

�1 > 0:2 ) �2 > 0:4; �3 < 0:8

In both cases max
i

1
�i
�i > 1:6; i.e. Proposition 1 is con�rmed in that case.

2. � = (0; 1; 0)

Let us compute the sets X0
i
(��i): Since �1 = �2 = 0, for i = 1 and i = 3 we need to

compute X0
i
(0) = fx 2 X : fi(x)� c0

i
� 0g which equals fx : fi(x) � c0

i
= 0g by the

de�nition (2) of c0
i
. But
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X0
1 (0) = fx 2 X : f1(x)� c01 = 0g = fx 2 [1; 2] : x� 1 = 0g = f1g

X0
2 (0) = fx 2 X : f3(x)� c03 = 0g = fx 2 [1; 2] : �x + 2 = 0g = f2g (16)

holds independent of the choice of �. Thus \m
i=1X

0
i
(��i) = ; for all � > 0 and �0(�)

does not exist.

3. � = (0:5; 0; 0:5)

We have to �nd the minimal � such that

fx 2 [1; 2] : x�1 � 0:5�g\fx 2 [1; 2] : 2x�2 = 0g\fx 2 [1; 2] : �x+2 � 0:5�g 6= ;:
(17)

From (16) the second set is f1g. It is easy to see that for � = 2 the intersection (17)

contains only x = 1. For � < 2 the third set implies that x > 1, which makes the

intersection in (17) empty. As a result we have �0(�) = 2: However, � = (0:5; 1; 0:5)

is a balance point due to (15) with the property

max
i=1;2;3

�
1

�i
�i : �i 6= 0

�
= max

�
0:5

0:5
;
0:5

0:5

�
= 1 < 2:

We conclude this section by showing a way to compute the apportioned balance number

for given � for problems where the equation of the balance set is known. Hence, using

that equation a solution satisfying the decision maker's apportioned deviations from global

optimality can easily be computed, in case that all �i > 0: Note that in case (i) of Remark

1, we would require that two of the objectives attain their global minimal values c0
i
at the

same time, which is unlikely to be possible in the case of con
icting objectives.

Remark 2 The apportioned balance number can be found by solving the following problem

on the balance set.

min z

subject to z � 1

�i
�i; i = 1; : : : ; m (18)

� 2 �

The result is an immediate consequence of Proposition 1.

Example 2 We illustrate the method on the problem of Example 1 and choose again � =

(0:25; 0:25; 0:5). In this case, using the balance set equation (15) problem (18) becomes

min z

subject to z � 4�1

z � 4�2
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z � 2�3

�1 � 0

�1 � 1

�2 = 2�1

�3 = 1� �1

This problem is a simple linear programming problem and can easily be solved. The optimal

solution is z0 = �0(�) = 1:6:

4 The Exhaustive Balance Set

In this section we show that every balance point is equal to an apportioned balance num-

ber times the corresponding vector � of weights for the individual deviations from global

optimality. Therefore by considering all � 2 IRm with �i � 0; i = 1; : : : ; m; � 6= 0 and

the associated apportioned balance number �0(�) we get a bigger subset �A of the balance

space than the balance set. The main results of this section investigate conditions for these

two subsets � and �A to be equal.

Before we proceed with this analysis, we formally de�ne the set �A. For convenience we will

from now on assume that � 2 IRm is such that �i � 0; i = 1; : : : ; m and that
P

m

i=1 �i = 1.

The latter assumption can be made without loss of generality, since the normalization of

� does not change the relative weights of deviations for the objectives. Let us denote the

set of all possible � vectors (the m� 1 dimensional simplex) by

� =

(
� 2 IRm : �i � 0; i = 1; : : : ; m;

mX
i=1

�i = 1

)
:

Then we can make the following de�nition.

De�nition 3 The set of apportioned balance vectors is

�A := f(�0(�)�1; : : : ; �0(�)�m) : � 2 �g ;

where �0(�) is the apportioned balance number for �, if it exists.

As mentioned above, our �rst result (Proposition 3) will make use of De�nition 3 to show

that the balance set is always a subset of �A; yielding another relation between the balance

set � apportioned balance numbers, di�erent from the one of Proposition 1.

Proposition 3 For each � 2 � there exists a � 2 � such that

� = (�0(�)�1; : : : ; �0(�)�m): (19)

In other words: � � �A:
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Proof:

Let � be a balance number. We have to �nd an appropriate � 2 � such that (19) is

satis�ed. De�ne � = (�1; : : : ; �m) by its components

�i :=
�iP
i2Q �i

and let �̂ =
P

i=1;:::;m �i: Therefore we have
P

i=1;:::;m �i = 1, �i � 0; i = 1; : : : ; m: Thus

� 2 �: Furthermore �i = �i�̂: It remains to be shown that �0(�) = �̂:

First note that the sets X0
i
(�̂�i) = fx 2 X : fi(x) � c0

i
� �i�̂g are all nonempty, i =

1; : : : ; m; because �i�̂ = �i and � is a balance point. Therefore �0(�) � �̂:

Now suppose it were true that �0(�) < �̂. Then by De�nition 2 we know that

m\
i=1

fx 2 X : fi(x)� c0
i
� �i�0(�)g 6= ;:

But �0(�) < �̂ also implies that �i�0(�) � �i�0 = �i holds for all i = 1; : : : ; m; with strict

inequality for at least one index (because at least one �i > 0). These two facts contradict

� being a balance point. 2

It is now a natural question to ask if equality of � and �A can be shown. The question

is certainly of theoretical interest. But the answer is also relevant for practical reasons.

Balance points represent the \best" achievable deviations from optimality in the presence

of con
icting objectives. On the other hand apportioned balance numbers �0(�) and the re-

lated vectors of deviation (�0(�)�1; : : : ; �0(�)�m) are very useful in practice. Thus, knowing

that � = �A would imply that by determining the apportioned balance number a \best"

possible vector of deviations from individual global minima was achieved. Unfortunately,

this equality is not true in general, not even for linear problems, as Example 3 shows.

Example 3 We continue with the problem of Examples 1and 2. If we choose the weights

� = (0:25; 0:25; 0:5) again, we know that �0(�) = 1:6 (see either Example 2 or [6]). There-

fore

�0(�)� = 1:6(0:25; 0:25; 0:5) = (0:4; 0:4; 0:8):

But for �1 = 0:4 we use the equation of the balance set (15) to calculate the corresponding

balance point � = (0:4; 0:8; 0:6). Therefore �0(�)� is no balance point.

Proposition 3 and Example 3 justify the following de�nition.

De�nition 4 The balance set � is called exhaustive if �A = �:

Let us now come to the main results of this paper. For the bicriteria case we give a

necessary and suÆcient condition for the balance set to be exhaustive. For the general

case m � 3 a suÆcient condition is given. The main ideas behind these results can be

explained by an example.
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Example 4 Consider the following problem:

min
x2[0;1]

(f1(x) = 1� x; f2(x) =
p
x + 1):

Some easy computations show that the balance set � is given by the expression

� = f(�1; �2) : �2 =
q
2� �1 � 1; 0 � �1 � 1g:

The balance set is exhaustive here, see Figure 1. Observe that the system of equations

��1 = �1

��2 = �2 =
q
2� �1 � 1

has a unique solution � = �0(�) for each choice of � 2 �. Note also, that � is not convex

here, because f2(x) is a concave function.

0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1

y1

Figure 1: Nonconvex Exhaustive Balance Set

To check, if �0(�)� 2 � it is necessary to �nd the smallest positive number � such that

�� 2 �, or to confrim that no such � exists. Therefore we consider the ray R� := fr� : r 2
IR; r � 0g and investigate R� \ �. Note that this intersection is either empty or contains

exactly one point. Otherwise there would be r1; r2 2 IR such that (wlog) r1 < r2 and

r1� 2 �, r2� 2 �. However, because � 2 � this implies that r1�i � r2�i; i = 1; : : : ; m

and r1� 6= r2�, which due to the de�nition of balance points (De�nition 1) in turn implies

that r2� 62 �:

Now assume that R� \ � 6= ;: That the intersection then de�nes the apportioned balance

number �0(�) is shown in Lemma 1.
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Lemma 1 Let � 2 � and assume that R� \ � 6= ;: Then �0(�) is the unique positive

number r such that r� 2 R� \ �:

Proof:

As argued above, there is exactly one r > 0 such that r� 2 R� \ �: First we note that,

since r� 2 �, i.e. r� = � for some � 2 �, we know that

m\
i=1

n
x : fi(x)� c0

i
� r�i

o
6= ;:

Therefore, if �0(�) 6= r by De�nition 2 it must be that �0(�) < r. Then we would have

that
m\
i=1

n
x : fi(x)� c0

i
� �0(�)�i

o
6= ;

with �0(�)�i � r�i; i = 1; : : : ; m and �0(�)� 6= r�; contradicting the fact that r� = � 2 �:

2

The ray R� is a half-line emanating from the origin, and in Figure 1 we can see that it

always intersects �, whatever the choice of � 2 �: The reason for that seems to be that � is

connected. That this is indeed true will be shown in Theorem 3. In looking for conditions

for � to be exhaustive, we �rst restrict ourselves to the bicriteria case.

We will use the following observation, that immediately follows from De�nition 1. Let

�1; �2 2 �: Then

�11 < �21 ) �12 > �22: (20)

We proceed to show that the balance set always intersects the coordinate axes in the

balance space IR2
+:

Lemma 2 Suppose m = 2 and consider the unbalanced multiobjective problem

min
x2X

(f1(x); f2(x));

where X � IRn is compact and fi :! IR are continuous. Then there exist �1 = (�11; �
1
2) 2 �

and �2 = (�21; �
2
2) 2 � such that �11 = 0 and �22 = 0.

Proof:

We prove the existence of �1 only, the result for �2 is analogous. According to (3) choose

x� 2 X0
1 , i.e. f1(x

�) = c01, and in case that X0
1 is not a singleton such that

f2(x
�) = minff2(x) : x 2 X0

1g:
(Note that due to compactness of X and continuity of f1, X

0
1 is compact, too.) Now de�ne

�1 := (f1(x
�)� c01; f2(x

�)� c02) = (0; f2(x
�)� c02):

By the choice of x�; x� 2 X0
1 (�

1
1) \ X0

2 (�
1
2); and also there can be no � 2 IR2

+ such that

�1
i
� �2

i
; i = 1; 2 and � 6= �1 with X0

1 (�1) \X0
2 (�2) 6= ;: Thus �1 2 �: 2

In particular, Lemma 2 implies that � is bounded. We can now prove the main result for

exhaustive balance set in bicriteria problems.
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Theorem 3 Given a bicriteria optimization problem (1) where X is compact and f :

IRn ! IR2 is continuous. Then the balance set � is exhaustive if and only if � is connected.

Proof:

In case that the problem (1) is balanced, we have � = f0g and �0(�) = 0 for all � 2 � and

the result is trivial.

Let us assume that (1) is unbalanced and thus that � 6= ;. We �rst note, that due to

Lemma 2 for � = (1; 0) or � = (0; 1) the intersection R� \ � is never empty. Therefore

Lemma 1 implies that �0(�)� 2 � for these �, independent of the connectedness assump-

tion. And these intersection points are always on the boundary of �. We will therefore

assume that �1 > 0 and �2 > 0 from now on.

1. Assume that � is exhaustive, i.e. by De�nition 4, for each � 2 � we have �0(�)� 2 �:

This implies that for each � 2 �; R� \ � 6= ;:
Suppose � is not connected. Then there exist nonempty sets A1; A2 � IR2 such that

A1 [ A2 = �; clA1 \ A2 = ;; and A1 \ clA2 = ;.
Then d := inffjja1 � a2jj : a1 2 clA1; a

2 2 clA2g � 0: Since � is bounded, both

A1 and A2 are bounded as well and therefore clA1 and clA2 are compact. Then

let a1 2 clA1 and a2 2 clA2 be such that d = jja1 � a2jj and suppose wlog that

a11 � a21; a
1
2 � a22: Let conv(a

1; a2) be the line segment de�ned by a1; a2 and choose

y = (y1; y2) 2 int conv(a1; a2); or y = a1 = a2 in case that conv(a1; a2) = fa1g =

fa2g: De�ne �1 := y1

y1+y2
and �2 :=

y2

y1+y2
:

We show that for this � 2 �; R� \ � = ;; contradicting our assumption. Assume

the contrary. Then either R� \� � A1 or R� \� � A2: Observe that, by de�nition,

y 2 R�: But the choice of y in particular implies that y =2 �.

Furthermore, for all � 2 � with �1 < y1 we have �2 > y2 and for all � 2 � with

�1 > y1 we have �2 < y2, due to the de�nition of a balance number (see (20). For

� 2 � to be on the ray R� it must hold that r� = � for some r > 0. Therefore

r�i = �i

r
yi

y1 + y2
= �i

r =
�i

yi
(y1 + y2):

However, the above observation implies that in both cases r > y1+y2 and r < y1+y2
at the same time. An obvious contradiction.

2. We show that if � is not exhaustive, then it is not connected.

If � is not exhaustive then there is some � 2 � such that �0(�)� 62 �. Therefore,

by Lemma 1, R� \ � = ;: Because �i > 0; i = 1; 2 we can describe the ray � as the

half-line

R� =

(
(y1; y2) : y2 =

�2

�1
y1; y1 � 0

)
:

12



Now let A1 :=
n
(�1; �2) 2 � : �2 >

�2

�1

o
and A2 :=

n
(�1; �2) 2 �) : �2 <

�2

�1

o
. Due to

Lemma 2 both A1 and A2 are nonempty, because �1 2 A1 and �2 2 A2. As there is

no � 2 Upsilon such that �2 =
�2

�1
�1 it follows that � = A1 [ A2, but clA1 \ A2 = ;

and A1 \ clA2 = ;; i.e. � is not connected.

2

SuÆcient conditions for connectedness can be deduced from conditions for connectedness of

the eÆcient set (or adjoint Pareto set) of multicriteria optimization problem (1) exploiting

the fact that � = Yeff � c0, proved in [3]. Such conditions were investigated by [9], [11],

[8], [1], or [10]. Basically, all these conditions assume convexity or quasi-convexity of the

objective functions.

However, these conditions are not necessary, as can be seen from Example 4. We give a

more general necessary and suÆcient condition motivated by an observation of Galperin,

that � is in general a lower dimensional surface in the balance space (see [6, page534]).

In the bicriteria case, where we assume problem (1) to be unbalanced, � must therefore

be a one dimensional surface in IR2
+ and can be represented as the graph of a real valued

function g.

De�ne the function g : IR! IR as follows:

g(r1) =

(
r2 if 9r2 2 IR : (r1; r2) 2 �

1 otherwise.
(21)

By this de�nition, � is the part of the graph of g which is not in�nite. Due to observation

(20), on the �rst projection of � P1(�) = f�1 : (�1; �2) 2 �g g will be strictly monotone

decreasing. We can now relate connectedness of � with continuity of g.

Theorem 4 The balance set � is connected if and only if g is continuous on the interval

[0; �21]; where �
2 = (�21; 0) is as in Lemma 2.

Proof:Let �1 and �2 be the balance points of Lemma 2.

1. The interval [0; �21] is obviously connected. If g is continuous on this interval, there is

no r1 2 [0; �21] such that g(r1) =1 (since g(�21) = 0 and g(0) = �12 <1). Therefore

the graph of g is connected, i.e. � is connected.

2. Suppose that g is not continuous. Two situations may occur

� There exists an r1 2 [0; �21] such that g(r1) <1 and

a := lim
r!r1;r>r1

g(r) < lim
r!r1;r<r1

g(r) =: b:

Let r2 2 (a; b) and de�ne A1 := f� 2 � : �1 � r1g and A2 := f� 2 � : �1 � r1g:
Then � = A1 [ A2. Furthermore, (20) implies that if �1 < r1 for some � 2 �

then �2 � b, and if �1 > r1 then �2 � a: This, and the fact that a < b imply

that both clA1 \ A2 = ; and A1 \ clA2 = ;; i.e. � is not connected.
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� There exists r1 2 [0; �21] such that g(r1) =1. Then there is no � 2 � such that

�1 = r1: Then we can de�ne A1 := f� 2 � : �1 < r1g and A2 := f� 2 � : �1 >

r1g: It is obvious that A1 [ A2 = �, that clA1 \ A2 = A1 \ A2 = ; and thus �

is not connected.

2

However, in the general case of more than two criteria the connectedness assumption is

not enough, even imposing convexity in addition does not guarantee exhaustiveness of �:

Example 5 We consider the convex multicriteria problem with the following convex fea-

sible set and convex objectives.

X = [0; 1]� [0; 1]

f1(x) = 1� x1

f2(x) = x1 + x2

f3(x) = (x1 � 0:5)2 + (x2 � 0:5)2

For � = (0:25; 0:25; 0:5) the apportioned balance number �o(�) is the smallest number �

such that

1� x1 � 0:25�

x1 + x2 � 0:25�

(x1 � 0:5)2 + (x2 � 0:5)2 � 0:5�

These inequalities are satis�ed for � = 2 with x1 = 0:5; x2 = 0. For � < 2 they imply

1 � x1 < 0:5 and x1 + x2 < 0:5, which is impossible for 0 � x1; x2 � 1. Therefore

�0(�) = 2: Note also that c0
i
= 0; i = 1; 2; 3 and that for x = (x1; x2) = (0:5; 0) the objective

function values are (0:5; 0:5; 0:25). Thus �0(�)� is not a balance point.

In Figure 2 the problem is shown, with f3 expressed in terms of f1 and f2.
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Figure 2: Convex Nonexhaustive Balance Set

If we make stronger assumptions on the problem, we can prove a suÆcient condition for �

to be exhaustive.

We de�ne the following: Let

ĉi := max
�2�

�i; i = 1; : : : ; m:

Theorem 5 Consider a multicriteria optimization problem. Assume that

1. �+ IRm

+ := f� + d : � 2 �; d 2 IRm

+g is convex,

2. � is closed,

3. �ci := (0; : : : ; 0; ĉi; 0; : : : ; 0) 2 � for all i = 1; : : : ; m:

Then � is exhaustive.

Proof:

�+ IRm

+ is convex and closed and vectors �ci are contained in � for i = 1; : : : ; m. Therefore

the convex hull C of the points �ci must, by convexity, be contained in � + IRm

+ :

Let �c :=
P

m

i=1 �c
i. We note that (�c� IRm

+ ) \ (� + IRm

+ ) is bounded and closed and therefore

compact.

Now let � 2 � and look at the ray R� again. We have to show that R� \ � 6= ; for all

� 2 �: Lemma 1 shows that R� \� = f�0(�)�g:
First of all it is evident that R� \ C 6= ;. Therefore let r0 be such that

r0� 2 C \R� � (�c� IRm

+ ) \ (� + IRm

+ ):
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Because the latter set is compact the function d(r) = jjr�jj attains its minimum d(r�) over

this set and furthermore, since d(r) is the distance from the origin to this set along R�,

r�� lies on the boundary of � + IRm

+ . It is also clear from convexity that r� � r0.

It remains to be shown that r�� 2 �. Assume the contrary. Because � is closed there

must exist some � > 0 such that (r��+ �B) \ � = ;, where B = fy 2 IRm : jjyjj < 1g: By
the de�nition of � + IRm

+ we can then choose � suÆciently small such that

(r��+ �B) \ (� + IRm

+ ) = ;:

This result contradicts the fact that the point r�� belongs to the boundary of the (closed)

set (� + IRm

+ ): 2

Figure 3 provides an illustration of Theorem 5 for the case of Q = 2 objective functions.

(1; 0)

(0; 1)

�c1

�c2

�

C

�c

�0(�)�

b
alan
ce
set

R �

Figure 3: Illustration of the Proof of Theorem 5

We note that the conditions in Theorem 5 ensure that � intersects all coordinate axes in

the balance space IRm

+ and, in this sense, � + IR
Q

+ \�lls the positive orthant IR
Q

+". Let

us look at the problem of Example 1 again. Here the �rst and second assumptions are

satis�ed because of linearity. However, as can be seen from equation (15), the balance set

is a line connecting the points (0; 0; 1) and (1; 2; 0) in IR3
+. That � is not exhaustive has

been shown in Example 3. The same analysis applies to Example 5: assumptions one and

two are satis�ed and still � is not exhaustive.

If we relax convexity, it may happen that the balance set is \bent inward" between some

of the points �ci and therefore the ray R� can pass between � and one of the hyperplanes

on the boundary of IRm

+ for appropriately chosen �. Closedness is a technical assumption.

Actually, closedness of � and the convexity assumption imply that � is connected (see the
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references in the discussion after Theorem 3). Thus these together are stronger than the

condition of Theorem 3.

Consequently, the third condition plays an essential role for the result to be valid. The

third condition implies that, also for � with �i = 1 for some i, R� and � intersect, namely

in �ci, which is certainly a very strong requirement. However, Example 5 shows that without

it, the result is no longer true. Note also that in the bicriteria case the condition is always

satis�ed, as shown by Lemma 2.

In the cases where we relax condition one or three, there may exist an apportioned balance

number which does not correspond to a balance point. This happens especially if one of

the objectives is redundant, as in Example 2 one of the functions f1(x) = x and f2(x) = 2x.

Note that the �rst assumption of Theorem 5 is satis�ed if X is a convex set and if all

objectives fi are convex. The �rst and second are e.g. satis�ed for linear multiple criteria

problems if X = fx 2 IRn : Ax � b; x � 0g is bounded and if f(x) = Cx is linear.

This discussion indicates that it may be possible to relax the convexity assumption and

obtain stronger results also when m > 2. This is a topic of future research. For condition

three to hold, easily veri�able conditions are unknown as yet, and important results for

the application of apportioned balance numbers can be obtained in the future.

5 Outline of an Interactive Procedure

As indicated before, the apportioned balance numbers can be used to derive an interactive

procedure for the solution of multicriteria problems (1). The procedure comprises two

stages. First, some fundamental analysis about the problem at hand is carried out. The

individual minima c0
i
according to (2) are computed. In case the problem is balanced the

decision maker can choose a balanced solution x0 2 X0, see (4), and the process terminates.

Otherwise, using the information form an �0-balanced solution, �0 > 0 and the minima c0
i
,

the decision maker is asked to specify proportions of deviations he prefers. Using the min-

max formulation (9), global optimization methods, such as e.g. Galperin's cubic algorithm

[4], can be applied to compute the corresponding apportioned balance number and a new

solution x 2 X0
��
. This process is continued until the decision maker is satis�ed with

the current solution. In this process the results obtained in the previous section can be

applied to facilitate the optimization steps (e.g. by using Remark 2), or to obtain further

information (e.g. if �0(�)� is a balance point, using the Theorems of Section 4).
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Algorithm 5.1 Interactive Apportioned Balance Number Procedure

Input: Feasible set X and objective functions f of a multicriteria optimization problem (1)

Output: An apportioned balance number �0(�) and a satisfying solution x

Step 1: Compute the balance number �0
Find x 2 X0

If �0 = 0 output x and STOP

Step 2: Present the decision maker with x; �0; c
0; f(x)� c0

If the decision maker accepts x output x and STOP

else ask the decision maker for weights �i � 0; i = 1; : : : ; m

Step 3: Compute �0(�) and x 2 X0
��

Goto Step 2

We illustrate the method using the problem of Example 5.

Example 6 As mentioned in Example 5, the individual minima are c0
i
= 0; i = 1; 2; 3:

� Step 1: The balance point is determined by the smallest number � such that a solution

of the system

1� x1 � �

x1 + x2 � �

(x1 � 0:5)2 + (x2 � 0:5)2 � �

exists. It is easily seen that �0 = 0:5, with x1 = 0:5; x2 = 0 and X0(�0) = f(0:5; 0)g:
Thus the problem is unbalanced and we continue with Step 2.

� Step 2: The decision maker gets the information that x = (0:5; 0) 2 X0(�0), �0 = 0:5,

c0 = (0; 0; 0); f(x) � c0 = (0:5; 0:5; 0:25): Because he is interested in attaining very

good values for f2, whereas bigger deviations for f1 and f3 are acceptable, he speci�es

�1 = 0:5; �2 = 0; �3 = 0:5:

� Step 3: To compute �0(�) we �nd the smallest number � such that the following

system has a solution:

1� x1 � 0:5�

x1 + x2 � 0

(x1 � 0:5)2 + (x2 � 0:5)2 � 0:5�

The result is �0(�) = 2 and X0(�0(�)) = f(0; 0)g:
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� Step 2: With x = (0; 0), �0(�) = 2; f(x) = f(x) � c0 = (1; 0; 0) the decision maker

feels that the deviation in f1 is too big now, and modi�es his weights to accept some

deviation in f2. Thus � = (0:5; 0:1; 0:4).

� Step 3: Because the system

1� x1 � 0:5�

x1 + x2 � 0:1�

(x1 � 0:5)2 + (x2 � 0:5)2 � 0:4�

has no solution for � < 5=3 we see that �0(�) = 5=3, and X0(�0(�)) = f1=6; 0)g:

� Step 2: The decision maker accepts the solution x = (1=6; 0) with �0(�) = 5=6 with

f(x) = (5=6; 1=6; 13=36):

Observe that in Example 6 �0(�)� = (5=6; 1=6; 2=3), which is not a balance point as it is

di�erent from f(x) � c0. This example shows, that by looking at deviations from global

optimality, the decision maker may well be satis�ed with a vector of deviations, which does

not represent a balance point. However, the �nal solution chosen in the example yields a

balance point f(x)� c0 2 �:

6 Conclusions

In this paper we have developed some results for the balance space approach to multicriteria

optimization. Our focus was on the apportioned balance numbers, which are important for

interactive procedures in the balance space context. We derived a min max formulation,

which enables us to compute the apportioned balance number by solving an optimization

problem. The main results show that under connectedness conditions the balance set is

exhaustive for bicriteria problems. In the general case we could prove a suÆcient condition.

The potential of the concept of apportioned balance numbers in interactive methods has

been demonstrated in Section 5. The area o�ers several possibilities for future research.

Possible improvements of the results in Section 4 have already benn discussed. But also

numerical experiments with an implementation of the interactive algorithm in comparison

with older established methods are interesting.
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