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Abstract

In this paper we investigate the problem of �nding the Nadir point for multicriteria opti-

mization problems (MOP). The Nadir point is characterized by the componentwise maxi-

mal values of eÆcient points for (MOP). It can be easily computed in the bicriteria case.

However, in general this problem is very diÆcult. We review some existing methods and

heuristics and propose some new ones. We propose a general method to compute Nadir

values for the case of three objectives, based on theoretical results valid for any number of

criteria. We also investigate the use of the Nadir point for compromise programming, when

the goal is to be as far away as possible from the worst outcomes. We prove some results

about (weak) Pareto optimality of the resulting solutions. The results are illustrated by

examples.



1 Introduction

In this paper we consider optimization problems with multiple criteria, i.e.

min
�
f 1(x); : : : ; fQ(x)

�
subject to x 2 X :

(MOP )

We investigate the determination of the ideal and anti-ideal, or Nadir point for (MOP ).

These points are characterized by the minimal (respectively maximal) objective values

attained for Pareto optimal solutions of (MOP ).

De�nition 1 A feasible solution x� of (MOP ) is called Pareto optimal if there does not
exist another feasible solution x which is at least as good as x� with respect to all criteria

and strictly better for at least one objective i.e. if

6 9 x 2 X s.t. f q(x) � f q(x�) 8 q = 1; : : : ; Q and f(x) 6= f(x�):

We write f(x) < f(y) if f q(x) � f q(y) 8 q = 1; : : : ; Q and f(x) 6= f(y). Let XPar be
the set of all Pareto optimal solutions. If x� is Pareto optimal, f(x�) is called eÆcient or
nondominated. The set of eÆcient points is denoted by Yeff := f(XPar):

De�nition 2 A feasible solution x� of (MOP ) is called weakly Pareto optimal if there
does not exist another feasible solution x which is strictly better with respect to all criteria

i.e. if

6 9 x 2 X s.t. f q(x) < f q(x�) 8 q = 1; : : : ; Q:

We write f(x) << f(y) if f q(x) < f q(y); 8 q = 1; : : : ; Q.

Using De�nition 1, we can formally de�ne the Nadir and ideal point.

De�nition 3 Assume that at least one Pareto optimal solution exists, i.e. XPar 6= ;. Then
the Nadir point yN 2 R

Q is characterized by the componentwise supremum of all eÆcient

points:

yNq := sup
x2XPar

f q(x) q = 1; : : : ; Q:

The ideal point is de�ned to be the vector of the componentwise in�ma of all eÆcient

solutions:

yIq := inf
x2XPar

f q(x) q = 1; : : : ; Q:

Throughout the paper we will assume that the eÆcient set Yeff is externally stable in the

sense of [23, p. 60], i.e. each noneÆcient point y 2 f(X) is dominated by an eÆcient

point y = f(x), where x 2 XPar: In particular, the following investigations we assume

that XPar is a compact set such that the supremum and the in�mum will be attained. We

refer to [23] for results about existence, stability and other properties of the Pareto set

and the eÆcient set. We also assume that the ideal point is not itself an eÆcient point.

This would imply that the objectives are not conicting, and induce a trivial case from
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the multicriteria perspective. From our assumption the Nadir point and ideal point can be

computed as

yNq = max
x2XPar

f q(x) q = 1; : : : ; Q

yIq = min
x2XPar

f q(x) q = 1; : : : ; Q:

The Nadir and ideal point provide important information about a multicriteria optimiza-

tion problem (MOP ). For a decision maker facing a multicriteria problem, they show

the possible range of the objective values of all his criteria over the Pareto set: They are

exact upper respectively lower bounds for the set of eÆcient points. But also in terms of

methodology and solution algorithms knowing yN and yI is useful, as we shall explain now.

First note that determination of the ideal point for any number of criteria involves only

the solution of Q single objective problems

min f q(x)

subject to x 2 X :
(Pq)

over the whole feasible set X . The following well known result implies that solving (Pq)

yields yIq .

Lemma 1 At least one optimal solution of problem (Pq) is Pareto optimal.

Ideal points yI and utopian points yU de�ned by yUi := yIi � �; � > 0 are an essential

component of compromise programming, see [29]. The idea is to �nd a feasible solution of

(MOP ) which is as close as possible to the ideal (or utopian) point.

min
x2X

jjf(x)� y0jj; (1)

where y0 2 fyI; yUg and jj � jj is a norm on R
Q . Whether an optimal solution of (1) is a

Pareto optimal solution depends on properties of the norm.

De�nition 4 i) A norm k � k : RQ ! R+ is called monotone, if for a; b 2 R
Q jaij �

jbij; i = 1; : : : ; Q then kak � kbk holds, and jaij < jbij 8 i = 1; : : : ; Q then kak < kbk

holds.

ii) k�k is called strictly monotone, if jaij � jbij; i = 1; : : : ; Q and 9 k s.t. jakj 6= jbkj

then kak < kbk holds.

We obtain the following results:

Theorem 1 Let x̂ be an optimal solution of (1). Then the following hold:

i) If k �k is monotone then x̂ is weakly Pareto optimal. If x̂ is a unique optimal solution
of (1) then x̂ 2 XPar.

ii) If k � k is strictly monotone then x̂ is Pareto optimal.
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Proof:

i) Suppose x̂ solves (1) and x̂ is not weakly Pareto optimal. Then there is an x 2 X

such that

f i(x) < f i(x̂); i = 1; : : : ; Q

) 0 � f i(x)� y0i < f i(x̂)� y0i ; i = 1; : : : ; Q

) kf(x)� y0k < kf(x̂)� y0k;

contradicting optimality of x̂.

Now suppose x̂ is a unique optimal solution, but x̂ =2 XPar. Then there is an x 2 X

s.t. f i(x) � f i(x̂); i = 1; : : : ; Q and there is some k s.t. fk(x) < fk(x̂). Therefore

0 � f i(x)�y0i � f i(x̂)�y0i with strict inequality once. Thus kf(x)�y
0k � kf(x̂)�y0k

and from optimality of x̂ we obtain that equality holds, contradicting the uniqueness

of x̂.

ii) Suppose x̂ solves (1) and x̂ =2 XPar. Then

9 x 2 X f i(x) � f i(x̂); i = 1; : : : ; Q

9 k s.t. fk(x) < fk(x̂)

=) 0 � f i(x)� y0i � f i(x̂)� yi; i = 1; : : : ; Q

0 � fk(x)� y0k < fk(x̂)� y0k

=) kf(x)� y0k < kf(x̂)� y0k:

2

Examples for strictly monotone norms are lp norms

jjyjjp =

 
QX
i=1

jyij
p

! 1

p

for 1 � p <1. The Chebychev norm is monotone, but not strictly monotone. Nevertheless

compromise programming problems (1) are often formulated using a (weighted) Chebychev

norm:

min
x2X

max
i=1;:::;Q

wijf
i(x)� yIi j; (2)

where wi > 0; i = 1; : : : ; Q.

From Theorem 1 it follows that an optimal solution of (2) is weakly Pareto optimal and

Pareto optimal if it is unique. It is easily seen that (2) has at least one optimal solution

which is Pareto optimal, under our assumptions.

In addition to the general result above, we obtain a stronger characterization of (weakly)

Pareto optimal solutions from (2), if y0 = yU is chosen.

Theorem 2 A feasible point x̂ 2 X is weakly Pareto optimal if and only if there exist
wi > 0; i = 1; : : : ; Q such that x̂ is an optimal solution of (2).
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Proof:

SuÆciency of the condition follows from i) in Theorem 1. For necessity consider wi =

1=(f i(x̂)� yUi ) > 0; i = 1; : : : ; Q:

Suppose x̂ is not optimal for (2) with these weights. Then there is an x 2 X such that

max
i

wi(f
i(x)� yUi ) < max

i

1

f i(x̂)� yUi
(f i(x̂)� yUi ) = 1

) f i(x)� yUi < f i(x̂)� yUi ; i = 1; : : : ; Q

) f i(x) < f i(x̂); i = 1; : : : ; Q;

contradicting the fact that x̂ is weakly Pareto optimal. 2

For a more detailed analysis of compromise programming we refer e.g. to [29, 23].

Besides the use of ideal and utopian points in compromise programming, important infor-

mation is carried by yI and yN . In algorithms to �nd the Pareto set of an (MOP ), or an

approximation thereof, the search area in the objective space is restricted to a rectangular

parallelepiped. This property is strongly exploited in one well known approach for the

bicriteria (Q = 2) case, which we will explain in more detail in section 2.3.

Knowledge of yN is also often assumed in interactive methods such as STEM [1].

2 Determining Nadir Values

In Lemma 1 we have seen that for computing yI solving Q single objectives is enough.

Finding the Nadir point, however, is much harder. We will discuss several existing exact

as well as heuristic methods in this section. To illustrate these methods we will use the

following example:

Example 1 Consider the spanning tree problem with three objectives on the graph of Figure

1:

�

�

�

�

� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �

� � � � � � �

� � � � � � �

Figure 1: Graph G = (V;E) with edge weights wij 2 Z
3

One can easily check that there are 8 Pareto optimal spanning trees. Their objective func-
tion vectors are

Yeff =

8<
:
0
@ 11

3

6

1
A ;

0
@ 5

6

6

1
A ;

0
@ 7

7

2

1
A ;

0
@ 7

3

7

1
A ;

0
@ 4

7

7

1
A ;

0
@ 8

5

4

1
A ;

0
@ 6

8

3

1
A ;

0
@ 6

5

5

1
A
9=
; :
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Hence the Nadir point is yN = (11; 8; 7).

2.1 Optimization over the Pareto Set

One could think of determining the components yNq of the Nadir point in a similar way to

the computation of the components yIq of the ideal point:

yNq = max
x2XPar

f q(x) = max
y2Yeff

yq: (3)

Unfortunately it is not possible to replace XPar by X in the maximization, as this would

possibly lead to an overestimation of of yNq .

Lemma 2 For all q = 1; : : : ; Q :

max
x2X

f q(x) � yNq :

Example 2 Denoting the estimate of Lemma 2 by ~ymax, i.e. ~ymax
q = maxx2X f

q(x); we

check Example 1 and get ~ymax = (11; 9; 8)T .

Problem (3) is a problem of optimization over the Pareto set. As to the knowledge of

the authors there are only a few papers published concerning this kind of problems, see

[3, 4, 8, 2, 5, 10]. They are all restricted to the linear case, i.e. the optimization of a linear

function over the Pareto optimal set of an (MOP ). Let XPar be the Pareto optimal set of

the (MOP ). Then the methods proposed in these articles solve the problem

min dx

subject to x 2 XPar

If we assume that the objective functions of (MOP ) are linear, f q(x) = cqx, then it is

immediately clear how to apply these methods of the articles to our problem:

For all q = 1; : : : ; Q solve the problem

max cqx

subject to x 2 XPar:

This kind of problems is hard to solve since the eÆcient set of a multicriteria optimization

problem is in general nonconvex, even if the (MOP ) itself is linear. Hence in all of the

papers mentioned above there are rather complex algorithms (or even just ideas of how to

construct such algorithms) and most of them make use of global optimization techniques.

Work related to this is done by a couple of authors, see e.g. [9, 25, 18] or [19], where the

goal is to maximize not only linear but more general functions over the eÆcient set which

does not lead to simpler algorithms.
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2.2 Multiple Objective Linear Programming

A special case in multicriteria programming is the situation, where all objective functions

and all constraints are linear, i.e.

max c1x

max c2x
...

max cQx

s.t. x 2 S = fx 2 R
n : Ax � b; x � 0g

For this case Isermann and Steuer [20] proposed three deterministic approaches to compute

yN , where the �rst two are more or less theoretical investigations: The �rst approach

consists of determining all eÆcient solutions and then using (3). The second idea is to

solve a large primal-dual feasible program and the diÆculty is on one hand the size of

this program (roughly twice as many rows an twice as many columns as the original one)

and on the other hand a set of highly nonlinear constraints. As a third approach the

authors present a simplex-based procedure using the fact that the eÆcient extreme points

are connected by eÆcient edges. Although better than the �rst and second approach this

third idea is also not especially economical.

2.3 Lexicographic Optimization

A second special case in multicriteria programming is the situation, where only two ob-

jectives are to be considered. In this case the determination of the Nadir point is much

easier. In order to explain it, we have to introduce lexicographic optimality.

De�nition 5 Let y and z 2 R
Q be two vectors. Then y <lex z if there is a q 2 f1; : : : ; Q�

1g such that yk = zk 8k = 1; : : : ; q and yq+1 < zq+1 or y1 < z1. If y <lex z or y = z then
this will be denoted by y �lex z.

Let � be a permutation of f1; : : : ; Qg. A feasible solution x� of (MOP ) is called lexico-

graphically optimal with respect to � if f�(x
�) �lex f�(x) for all feasible x 2 X , where

f�(x) = (f�(1)(x); : : : f�(Q)(x)):

Finally, x� is a global lexicographically optimal solution if there exists a permutation � of
f1; : : : ; Qg such that x� is lexicographically optimal with respect to �. The set of all such

solutions is denoted by Xlex:

A basic result is the following, see e.g. [11].

Lemma 3 Let x� be a global lexicographically optimal solution of (MOP ). Then x� 2

XPar:

In the bicriteria case, global lexicographically optimal solutions are all we need to determine

yI and yN .
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Lemma 4 Consider an (MOP ) with Q = 2 criteria and let x1;2 and x2;1 be two lexi-

cographically optimal solutions with respect to permutations �1 = (1; 2) and �2 = (2; 1),

respectively. Then

1. yI = (f 1(x1;2); f 2(x2;1)):

2. yN = (f 1(x2;1); f 2(x1;2)):

Proof:

From Lemma 3 we know that x1;2 and x2;1 are Pareto optimal. Hence

yNi = max
x2XPar

f i(x) � f i(x1;2)

yNi = max
x2XPar

f i(x) � f i(x2;1)

yIi = min
x2XPar

f i(x) � f i(x1;2)

yIi = min
x2XPar

f i(x) � f i(x2;1)

Assume now there is some x� 2 XPar for which there holds f 1(x�) = yN1 > f 1(x2;1). Since

x� 2 XPar; f
2(x�) � f 2(x2;1): On the other hand x2;1 2 Xlex implies f 2(x�) = f 2(x2;1):

Hence x� is dominated by x2;1. The rest is analogous. 2

Now the image of each Pareto optimal solution of (MOP ) is contained in the rectangle

de�ned by the four vectors f(x1;2); f(x2;1); yN ; and yI. Starting from one of the two lex-

icographically optimal solutions one can now proceed to explore the eÆcient set. To do

so, the �-constraint method [6] can be used in general. Other possibilities are paramet-

ric programming methods for linear problems [24], or ranking methods for combinatorial

problems [7].

We also note that the determination of x1;2 (or x2;1) basically involves solving two single

objective problems: First minimize f 1 over X , and second, minimize f 2 over X under the

additional constraint, that the optimal value of f 1 computed before is retained. If (MOP )

is linear, these are two LP's. In combinatorial optimization the same algorithms that solve

single objective problems can often be easily adapted to solve lexicographic problems, too.

Given that the single objective problem is solvable in polynomial time, the same is then

true for computation of Xlex. Thus considerable gain over solving restricted problems,

which are often NP-hard [16] is achieved. Recall that combinatorial (MOP ) are usually

NP-hard even in the bicriteria case [13].

Now we look at a generalization of Lemma 4. Can we determine Nadir objective values,

using global lexicographic optimality? Then we could compute the Nadir point from ~ylex

de�ned as follows:

~ylexq := max
x2Xlex

f q(x):

The answer is no, as can be seen from the example:

Example 3 We continue the Example 1: The image of all global lexicographically optimal

spanning trees is

f(Xlex) =

8<
:
0
@ 11

3

6

1
A ;

0
@ 7

7

2

1
A ;

0
@ 7

3

7

1
A ;

0
@ 4

7

7

1
A
9=
; :
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Hence the vector of all maximal entries found using these solutions only is ~ylex = (11; 7; 7),

and ~ylex2 < yN2 .

However, Lemma 3 implies that using lexicographic optimization we can never overestimate

Nadir values.

Lemma 5 For all q = 1; : : : ; Q :

max
x2Xlex

f q(x) � yNq :

Furthermore, global lexicographically optimal solutions determine the ideal point:

Lemma 6 The ideal point yI is given as follows:

yIq = min
x2Xlex

f q(x):

To complete this subsection, we address the question of computing Xlex. It is interesting

to note that { even though an exponential number of permutations has to be considered

{ Xlex can often be computed eÆciently. This is true for problems with a �nite set of

alternatives, such as in multiattribute decision making, see [12], or when the set of Pareto

optimal solutions can be restricted to a �nite set of candidates, e.g. in network location

problems, see [17].

2.4 Pay-O� Tables and Other Heuristics

Due to the diÆculty of computing yN , some authors propose heuristics to compute the

Nadir point. The most popular are dealing with the so-called pay-o� table, e.g. [22] and

references therein. We will present this approach, which provides the decision maker only

with estimates (see e.g. [28]), briey here.

The tables are computed by solving a single criterion optimization problem (Pq) for each

objective to �nd the minimal value. The optimal solutions xq are then evaluated for all

criteria and the pay-o� table is a matrix given by P = (pqi) := (f i(xq)). The Nadir value

is estimated by

~yPTi := max
q=1;:::;Q

pqi = maxff i(xq) : q = 1; : : : ; Qg:

Note that the entries on the diagonal of P determine yI:

Example 4 In Example 1 the pay-o� table looks like:

f 1(xq) f 2(xq) f 3(xq)

x1 2 argminff 1(x) : x 2 Xg 4 7 7

x2 2 argminff 2(x) : x 2 Xg 11 3 6

7 3 7

x3 2 argminff 2(x) : x 2 Xg 7 7 2

Hence the Nadir point yN = (11; 8; 6) would be estimated by ~yPT = (11; 7; 7) or by ~yPT =

(7; 7; 7) (depending on the solution x2 chosen in the minimization of f 2), underestimating
the exact values. Using payo�-tables an overestimation is also possible, see e.g. [21].
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Lemma 7 If the solution of (Pq) is unique for all q = 1; : : : ; Q then ~yPT from the payo�-

table will never overestimate the Nadir point yN .

Proof:

If the solution of (Pq) is unique for all q = 1; : : : ; Q then these solutions xq are never just

weakly Pareto optimal. Hence all xq are global lexicographically optimal solutions, thus

Pareto optimal. Using yNq = maxx2XPar
f q(x) the assertion follows. 2

Note that this pay-o� table approach is kind of comparable to the global lexicographic

optimization approach. The main di�erence is that by determining the pay-o� table we

are not sure to �nd all global lexicographically optimal solutions.

Instead of solving problem (Pq) one could think of solving

min f q(x) +

QX
i6=q

�if
i(x)

subject to x 2 X

(Pq(�))

for each q, where �i � 0; i 6= q are small numbers, e.g. �i = 1=Q2: Note that for �i = 0; i 6= q

we again get the ordinary payo�-table. Solving these kind of problems for �i > 0 we are

sure to obtain a Pareto optimal solution, hence never an overestimation of yN .

Eskandari et. al. [15] suggested to solve a second single criterion optimization problem for

each objective as a maximization problem, as in Lemma 2. As pointed out in Example 2,

in our Example 1 this would yield the vector ~ymax = (11; 9; 8), which now overestimates

the correct value.

Yet another approach one could expect to work is to determine the Nadir point in all

(Q� 1)-criteria subproblems (MOP (i)) (see De�nition 6 below). Then letting Y N be the

set of all Nadir points of these subproblems, choose

~yQ�1q := maxfyNq : yN 2 Y N
g:

Example 5 In Example 1 again, ~yQ�1 does not give the correct result.

Nadir point for

objective (f 1; f 2) (f 1; f 3) (f 2; f 3) max

f 1

f 2

f 3

0
@ 7

7

1
A

0
@ 7

7

1
A

0
@ 7

6

1
A

0
@ 7

7

7

1
A

Again there is a big di�erence between yN = (11; 8; 7) and ~yQ�1 = (7; 7; 7).

Concluding this short presentation of simple heuristics we can ascertain that none of them

produced the right result, some of them overestimating, some of them underestimating the

Nadir point.

With these kinds of heuristics the over- or underestimation of the Nadir point can be even

arbitrarily large, see [21] for an example. In the latter article another heuristic is given

based on the use of reference directions.
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3 A New Algorithm for the Three Objectives Case

In the last section we have seen that for bicriteria optimization problems the determination

of the Nadir point is easy using lexicographic optimization. For Q strictly greater than 2

we will encounter big diÆculties since the knowledge of one objective function value does

not give us the possibility of controlling the others. Hence the lexicographic approach is

no longer useful. In this paper we present an algorithm for Q = 3 which yields on one

hand the exact values for the Nadir point and on the other hand is easy to implement, just

using algorithms for determining the Pareto optimal solutions of a bicriteria optimization

problem. Before we pass over to the algorithm (Section 3.2) we will present some theory

which gives the background and the motivation for our method (see Section 3.1) and is

valid for any number of criteria Q. In Section 4 we will present some results concerning

the use of the Nadir point in compromise programming. We will end our investigations

with some concluding remarks in Section 5.

3.1 Theoretical Results

In this section we give some theoretical results which hold not only for three criteria but also

for the general case of an (MOP ) with Q criteria. For the rest of the paper subproblems

of (MOP ) with Q� 1 criteria will be essential. We de�ne them as follows:

De�nition 6 Given a Q-criteria (MOP ), we consider Q related (MOP ) with Q� 1 ob-

jectives

min
�
f 1(x); : : : ; f i�1(x); f i+1(x); : : : fQ(x)

�
subject to x 2 X :

(MOP (i))

Beside Pareto optimal solutions for the Q-criteria (MOP ) we are dealing with Pareto

optimal solutions for the (Q� 1)-criteria problems (MOP (i)).

De�nition 7 Let x� 2 R
n , let f : Rn ! R

Q . x� is called Q-Pareto, if x� is Pareto optimal
for (MOP ). x� is called (Q � 1)-Pareto, if there exists an index i 2 f1; : : : ; Qg such that

x� is Pareto optimal for (MOP (i)):

These (Q� 1)-Pareto solutions are also very interesting for the original problem:

Proposition 1 Given an (MOP ) with Q criteria. Then there holds: If x is (Q�1)-Pareto,

then

� either x is Q-Pareto

� or f(x) is dominated by f(y), where y is Q-Pareto such that 9 a unique index j with

f j(y) < f j(x) and f i(x) = f i(y) 8i 6= j.
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Proof:

If x is (Q� 1)-Pareto then either x is Q-Pareto or x is not Q-Pareto. If x is not Q-Pareto

then there exists a Q-Pareto solution y such that f i(y) � f i(x) for all i = 1; : : : ; Q and

f j(y) < f j(x) for at least one index j 2 f1; : : : ; Qg.

Assume kfk : fk(y) < fk(x)gk � 2. Then for each subset of f1; : : : ; Qg with Q � 1

elements there exists at least one index l such that f l(y) < f l(x), while for all other indices

f i(y) � f i(x) holds. Hence there does not exists an index q such that x is Pareto optimal

for (MOP (q)) and x cannot be (Q� 1)-Pareto which contradicts our assumption.

2

Before we state the result which is fundamental for our algorithm, we introduce a notation.

Notation 1 We denote the set of all (Q� 1)-Pareto solutions, where the dominated solu-

tions are removed, by OptQ�1, hence:

OptQ�1 = fx : x is (Q� 1)-Pareto and 6 9 �x 2 OptQ�1 with f(�x) < f(x)g

Theorem 3 Assume a multicriteria optimization problem as given in (MOP ). Then the
set OptQ�1 of all (Q� 1)-Pareto solutions (except dominated solutions) contains

1. a set of solutions such that in every component the maximal entry of any Q-Pareto
solution is found, i.e. the Nadir point is

yNq = maxff q(x) : x 2 OptQ�1g;

2. the set Xlex of all global lexicographically optimal solutions of (MOP ), i.e. the ideal

point is
yIq = minff q(x) : x 2 OptQ�1g:

Proof:

1. Assume there exists a Q-Pareto solution �x which is not (Q� 1)-Pareto but for which

exists an indexm 2 f1; : : : ; Qg such that fm(�x) > fm(x) for all x 2 OptQ�1. Consider

now the problem MOP (m):

� �x is not Pareto optimal for (MOP (m)). Therefore there exists x� 2 OptQ�1

such that f i(x�) � f i(�x) for all i 2 f1; : : : ; Qg n fmg and f j(x�) < f j(�x) for

some j 2 f1; : : : ; Qg n fmg:

� fm(�x) > fm(x�): Thus f 1(x�) � f 1(�x); : : : ; fm(x�) < fm(�x); : : : ; fQ(x�) �

fQ(�x) and �x is not Q-Pareto, a contradiction.

Thus yNq � maxff q(x) : x 2 OptQ�1g, but from Proposition 1 we know that

OptQ�1 � OptQ hence yNq � maxff q(x) : x 2 OptQ�1g and the �rst part of the

Theorem is proven.

2. From Lemma 3 we know that for (MOP ) Xlex � XPar. Hence if we �nd all (Q� 1)-

Pareto solutions x then all global lexicographically optimal solutions for all Q � 1-

criteria problems (MOP (i)); i = 1; : : : ; Q are found.
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We will show that if x� 2 Xlex is a global lexicographically optimal solution of (MOP )

then there exists a subproblem (MOP (i)) such that x� is a global lexicographically

optimal solution of (MOP (i)):

Since x� is global lexicographically optimal for (MOP ) there exists a permutation

� of f1; : : : ; Qg such that f�(x
�) �lex f�(x) for all x 2 X : For all x for which

f�(x
�) = f�(x) there holds also f�(q)(x

�) = f�(q)(x) q 2 f1; : : : ; Qg n fig for all

(Q� 1)-criteria problems (MOP (i))

Thus we can restrict our attention to those x feasible for which f�(x
�) <lex f�(x).

We de�ne

K := max
x2X

fk : f�(q)(x
�) = f�(q)(x) 8 q = 1; : : : ; k ^ f�(k+1)(x

�) < f�(k+1)(x)g

Then K is the largest index for which a feasible x exists such that f�(x
�) and f�(x)

are identical in the �rst K positions.

If K = Q�1 (there is at least one x for which the �rst di�erence between f�(x
�) and

f�(x) occurs in the Qth component) then consider the problem (MOP (Q)). Either

f�(Q)(x
�) = f�(Q)(x) or f�(Q)(x

�) <lex f�(Q)(x):

If K < Q� 1 then consider MOP (K + 2): For this problem it must hold that

f�(K+1)(x
�) <lex f�(K+1)(x)

for all x under consideration.

Hence in either case we found a problem (MOP (i)) for which x� is lexicographically

optimal with respect to the permutation � restricted to f1; : : : ; Qg n ��1(i): This

implies that Xlex � OptQ�1:

2

Note that in the bicriteria case Q = 2, Theorem 3 yields Lemma 4 as a special case. Hence,

it is a proper generalization of that well known result.

3.2 The Algorithm for the Three Objective Case

We now present a procedure based on the �rst statement 1 of Theorem 3 to �nd the Nadir

point of an (MOP ) with three objective functions. In this procedure we assume that an

algorithm to compute the Pareto optimal solutions for a bicriteria optimization problem is

given. We call this algorithm PARETO2. Then we can state the algorithm for computing

the Nadir point. The algorithm also provides us with the Ideal point without further

e�orts:

Nadir and Ideal Point in Three Dimensions

Input: Instance P of a multicriteria optimization problem (MOP ) with 3 criteria

Output: The corresponding Nadir point yN

The corresponding ideal point yI

12



Step 1: for i = 1; : : : ; 3 do

Apply PARETO2 to compute the 2-Pareto-solutions of (MOP (i))

Complete the solutions by their adequate ith component

Step 2: Remove all dominated solutions

and let Opt2 be de�ned as in Theorem 3

Step 3: for i = 1; : : : ; 3 do

yNi = maxff i(x) : x 2 Opt2g

yIi = minff i(x) : x 2 Opt2g

We also remark, that the algorithm can in principle be used for (MOP ) with any number

of criteria. However, an algorithm to solve the resulting Q�1 objective problems is needed,

and only few algorithms are known for computing XPar for Q > 2. A recursive procedure

to achieve this goal is currently under investigation.

Let us discuss the algorithm PARETO2 here. Solving bicriteria problems is usually much

easier than solving general multicriteria problems. For linear problems for example, it is

known that the set of Pareto optimal solutions is equal to the set of optimal solution of a

parametric LP with parameter � 2 (0; 1):

min
x2X

�c1x+ (1� �)c2x:

This kind of problem can easily be solved by parametric linear programming, and no

speci�c multicriteria methodology is needed, see e.g. [24].

The di�erence between two and three objectives is even wider in combinatorial optimiza-

tion. With the exception of only a few problems such as shortest path, the existing al-

gorithms can only �nd all Pareto optimal solutions when two criteria are involved. This

is in particular true for a very successful approach called the two phases method (see e.g.

[26, 27]), which has no known generalization to three objectives. For more details we refer

to a recent survey on the subject, see [14].

We illustrate our algorithm with two examples, one combinatorial and one linear problem.

3.3 Examples

Example 6 We will again consider a spanning tree problem with three objectives. The

edge weights corresponding to objectives one are the same as in Example 1, objectives two
and three change as depicted in Figure 2.
There are 9 Pareto optimal solutions and the eÆcient set is

Yeff =

8<
:

0
@

5

10

5

1
A ;

0
@

7

10

2

1
A ;

0
@

5

6

8

1
A ;

0
@

4

9

6

1
A ;

0
@

5

8

6

1
A ;

0
@

6

7

7

1
A ;

0
@

7

8

4

1
A ;

0
@

6

11

2

1
A ;

0
@

6

9

5

1
A
9=
; :

Hence the Nadir point is yN = (7; 11; 8) and the ideal point is yI = (4; 6; 2):

In this example the algorithm behaves as follows:

Step 1: i = 1: Searching the 2-Pareto optimal solutions for (MOP (1)) yields the eÆcient vectors
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Figure 2: Graph G = (V;E) with edge weights wij 2 Z
3

�
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2

�
;

�
6

8

�
;

�
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4

�
;

�
6

8

�
;

�
7

7

�
;

�
8

4

�
Adequate completion:0
@ 7

10

2

1
A ;

0
@ 5

6

8

1
A ;

0
@ 10

8

4

1
A ;

0
@ 8

6

8

1
A ;

0
@ 6

7

7

1
A ;

0
@ 7

8

4

1
A

i = 2: Searching the 2-Pareto optimal solutions for (MOP (2)) yields the eÆcient vectors�
5

5

�
;

�
4

6

�
;

�
6

2

�
Adequate completion:0
@ 5

10

5

1
A ;

0
@ 4

9

6

1
A ;

0
@ 6

11

2

1
A

i = 3: Searching the 2-Pareto optimal solutions for (MOP (3)) yields the eÆcient vectors�
5

6

�
;

�
4

9

�
Adequate completion:0
@ 5

6

8

1
A ;

0
@ 4

9

6

1
A

Step 2: After removing all dominated solutions we get the following set of 2-eÆcient solutions:

f(Opt2) =

8<
:
0
@ 5

10

5

1
A ;

0
@ 7

10

2

1
A ;

0
@ 5

6

8

1
A ;

0
@ 4

9

6

1
A ;

0
@ 6

7

7

1
A ;

0
@ 7

8

4

1
A ;

0
@ 6

11

2

1
A
9=
;

Step 3: Calculating the maximum respectively minimum of the set ff q(x) : x 2 Opt2g yields

yN =

0
@ 7

11

8

1
A ; yI =

0
@ 4

6

2

1
A

Example 7 In this example we consider a linear programming problem with three criteria
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and three constraints.

min �x1 �2x2
min �x1 +2x3
min x1 �x3
s.t. x1 +x2 � 1

x2 � 2

x1 �x2 +x3 � 4

xi � 0; i = 1; 2; 3

The feasible set X of this problem (with the Pareto set indicated by bold lines) is shown in
Figure 3.

1 2 3 4
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XPar

x
0 = (0; 0; 0)

x
1 = (0; 1; 0)

x
2 = (1; 0; 0)

x
3 = (0; 1; 5)

x
4 = (1; 0; 3)

x
5 = (0; 0; 4)

Figure 3: Feasible Set X and Pareto Set XPar for Example 7

It turns out that

XPar = conv((0; 1; 0); (1; 0; 0))[ conv((0; 1; 0); (0; 1; 5))

and

Yeff = conv((�2; 0; 0); (�1;�1; 1)) [ conv((�2; 0; 0); (�2; 10;�5)):

Thus the Nadir point is yN = (�1; 10; 1):

Solving the three possible subproblems MOP (i) we get the following results.

MOP (1) : XPar = conv((0; 0; 0); (0; 1; 0))[ conv((0; 1; 0)(0; 1; 5))

Yeff = conv((0; 0); (10;�5))
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MOP (2) : XPar = (0; 1; 5)

Yeff = (�2;�5)

MOP (3) : XPar = conv((1; 0; 0); (0; 1; 0))

Yeff = conv((�1;�1)(�2; 0))

After removing all dominated solutions the eÆcient set of the original (MOP ) coincides

with the image of Opt2, thus the Nadir point is found. We also note that computing

Xlex would have been suÆcient here. Xlex = f(0; 1; 0); (0; 1; 5); (1; 0; 0)g contains all points

needed to compute yN . However, as we have seen in the previous example, this is not true

in general.

The advantage of our method here, is that we just have to solve three parametric LP's (with
one parameter in the objective function) corresponding to the three MOP (i) problems. To

compute XPar for the original LP, one would has to apply a multicriteria simplex algorithm
(see e.g. [24]), which is computationally much more expensive, especially when X has many
extreme points and facets.

4 Using the Nadir Point as Reference Point in Com-

promise Programming

Similarly to using the ideal/utopian point in compromise programming one could think

of �nding a solution as far as possible from the Nadir point. This is more a conservative

point of view, as one tries to avoid the worst instead of striving to achieve the best. This

idea yields the problem

max
x2X

jjf(x)� yN jj

subject to f i(x) � yNi i = 1; : : :Q

(4)

The additional constraints are needed in order to guarantee to consider only solution which

yield objective values below the Nadir value.

Proposition 2 An optimal solution of (4) is weakly Pareto optimal if the norm jj � jj is

monotone, and Pareto optimal, if the norm is strictly monotone.

Proof:

Suppose x� solves (4) and is not weakly Pareto optimal. Then there is some x 2 X such

that f i(x) < f i(x�) � yNi for all i = 1; : : : ; Q. Therefore 0 < yNi �f i(x) < yNi �f i(x�); i =

1; : : : ; Q and jjf(x)� yN jj < jjf(x�)� yN jj; due to monotonicity of jj � jj:

Now suppose jj � jj is strictly monotone and x� is an optimal solution of (4). If x� is

not Pareto optimal there is some x 2 X such that f i(x) � f i(x�); i = 1; : : : ; Q with

strict inequality for at least one i 2 f1; : : : ; Qg: As above, strict monotonicity now implies

jjf(x)� yN jj < jjf(x�)� yN jj; contradicting the choice of x�:

2
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Despite this result, the fact that yIi � f i(x) � yNi ; the optimal solution of (4) will likely

be such that f i(x�) = yIi for some i, i.e. on the extremity of the eÆcient set.

Example 8 Consider Q = 2 and the Chebychev norm. Then choosing x1;2 and x2;1 from

Lemma 4 (the lexicographically optimal solutions), we have that x1;2 or x2;1 solves (4).
We know that x1;2 and x2;1 are Pareto optimal and yI = (f 1(x1;2); f 2(x2;1)) and yN =

(f 2(x1;2); f 1(x2;1)): Therefore if jyI1 � yN1 j � jyI2 � yN2 j we have

jf 1(x)� yN1 j � jyI1 � yN1 j � jyI2 � yN2 j = jf 2(x2)� yN2 j:

Since also jf 2(x)� yN2 j � jyI2 � yN2 j for all x feasible for (4), x2;1 solves the problem. The

case for x1;2 is analogous.

Therefore, to avoid these extreme cases, which are not likely candidates for a compromise

among the conicting objectives, an alternative option for (4) with the Chebychev norm is

max
x2X

min
i=1;:::;Q

wijf
i(x)� yNi j

subject to f i(x) � yNi i = 1; : : :Q;

(5)

where wi > 0; i = 1; : : : ; Q. Note that this is not a special case of (4) with the Chebychev

norm, but note also the analogy to (2). For (5) we have the following result.

Proposition 3 An optimal solution of (5) is weakly Pareto optimal.

Proof:

Let x� be an optimal solution of (5). Suppose x� is not weakly Pareto optimal. Then there

is some x 2 X such that f i(x) < f i(x�) � yNi ; i = 1; : : : ; Q. Therefore x is feasible for (5)

and

wi(y
N
i � f i(x�)) < wi(y

N
i � f i(x)); i = 1; : : : ; Q

) min
i=1;:::;Q

wi(y
N
i � f i(x�)) < min

i=1;:::;Q
wi(y

N
i � f i(x));

contradicting the choice of x�.

2

However, an optimal solution of (5) is not necessarily Pareto optimal.

Example 9 Consider a bicriteria problem where Y = f(X ) is as shown in Figure 4. The

eÆcient set consists of two curve segments. For all eÆcient points left of �y the minimal
distance to yN is vertical and less than 1. For all eÆcient points below y� the minimal

distance is horizontal and less than or equal to 2. Thus y�, for which yN1 �y
�

1 = yN2 �y
�

2 = 2

is optimal.

Of course, the reason for the behaviour shown in the example is the nonconvexity of the

eÆcient set. And indeed, for Q = 2 objectives and under convexity assumptions we can

prove the stronger Theorem 4.
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Figure 4: Bicriteria Problem

Theorem 4 Consider the bicriteria (MOP ) and assume that the objective functions f 1

and f 2 of (MOP ) are convex and the image of X under (f 1; f 2) is a convex set. Then any
optimal solution of

max
x2X

min
q=1;2

fwqjf
q(x)� yNq j; f

q(x) � yNq ; q = 1; 2g (6)

for w1; w2 > 0 is a Pareto optimal solution of (MOP ).

Proof:

The proof is based on the fact that the optimal solution values of

max �

subject to
�
f 1(x); f 2(x)

�T
� yN � �w (7)

x 2 X

� � 0;

where w = (1=w1; 1=w2) > 0 is the vector of the inverse of the weights, and of (6) are the

same. Let (��; x�) be an optimal solution of (7). Hence we have to show that x� is a Pareto

solution of (MOP ).

Assume now the opposite, i.e. assume that x� is dominated. We have to investigate two

cases: either x� is weakly Pareto optimal or x� is not even weakly Pareto optimal.

Case 1: x� is not weakly Pareto optimal. Then there exists a Pareto solution x̂ such that

f q(x̂) < f q(x�); q = 1; 2. But this contradicts the fact that �� is maximal.
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Case 2: x� is weakly Pareto optimal. Then there exists a Pareto optimal solution x̂

dominating x� such that the solution vectors of x� and x̂ coincide in at least one

component. Wlog assume

f 1(x̂) = f 1(x�) � yN1 (8)

f 2(x̂) < f 2(x�) � yN2 (9)

If f 2(x�) = yN2 then maxxminq jf
q(x)�yNq j = minq jf

q(x�)�yNq j = �� = 0. Due to the

convexity of X this implies jXParj = 1 and fyNg = XPar = fx̂g, thus f 2(x̂) = f 2(x�)

which is a contradiction to (9).

Hence let f 2(x�) < yN2 . Due to Lemmas 3 and 4 there is a Pareto optimal solution �x

such that

f 2(�x) = yN2 > f 2(x�) > f 2(x̂) (10)

We need to �nd a point ~x such that f q(~x) < f q(x�) 8 q = 1; 2, but inequalities (10)

imply

f 1(�x) < f 1(x̂) = f 1(x�)

Consider now the line between f(�x) and f(x̂); l := fy 2 R
2 : y = (1 � �)f(�x) +

�f(x̂); � 2 (0; 1)g. Then l � X (again due to convexity) and f 1(z) < f 1(x�)8 z 2 l.

Because of (9) there exists ~x 2 l : f 2(~x) < f 2(x�), hence �� is not maximal.

2

The natural question is now: Is it possible to generalize Theorem 4 to three and more

criteria or is the restriction to the bicriteria necessary?

We will give an example that shows that in fact the generalization is wrong. The only

conclusion we can draw for more than two criteria is that any solution of (6) is weakly

Pareto (Proposition 3).

Example 10 Let

P1 = (0; 0; 0)

P2 = (1;�1; 1)

P3 = (0; 2;�1)

C = conv(P1; P2; P3)

and assume that X := C [ fx 2 R
3 : x is dominated by y; y 2 Cg. Furtheron let the

objective functions be de�ned as f 1(x) := x1; f
2(x) := x2 and f 3(x) := x3. Then the

Nadir point is given by yN = (1; 2; 1). We will show that an optimal solution of (6) is

x� = (0; 1; 0), a weakly Pareto solution dominated by P1. First we will give the dominated
region in terms of halfspaces. Consider �rst Figure 5. In this �gure the region dominated

by the points on the line between P1 and P2 is indicated. Including the line it is fully
described by

x1 � 0 (11)

x2 � �1 (12)

x3 � 0 (13)

x1 + x2 � 0 (14)

x2 + x3 � 0 : (15)
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Figure 5: Region dominated by points on the line between P1 and P2

The region dominated by points on the line between P1 and P3 (as depicted in Figure 6)
can be described by the inequalities

x1 � 0 (16)

x2 � 0 (17)

x3 � �1 (18)

x2 + 2x3 � 0 (19)

(again including the line itself). Note that the points on these two lines are the only eÆcient
points. All other points in the convex hull of P1; P2; P3 are dominated. We will now show

that the complete feasible set (both in decision and objective space) is characterized by

x1 � 0 (20)

x2 � �1 (21)

x3 � �1 (22)

x1 + x2 � 0 (23)

x2 + x3 � 0 (24)

x2 + 2x3 � 0 (25)

Therefore let

S1 := fx 2 R
n : (11)��(15) holdg (26)

S2 := fx 2 R
n : (16)��(19) holdg (27)

S3 := fx 2 R
n : (20)��(25) holdg (28)

We have to show that S1

S
S2 = S3.
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Figure 6: Region dominated by points on the line between P1 and P3

Let x 2 S1

S
S2. Then x 2 S1 or x 2 S2. Assume �rst x 2 S1, hence (20), (21), (22), (23),

(24) are already ful�lled. But x2 + 2x3 = x2 + x3| {z }
�0 (15)

+ x3|{z}
�0 (13)

� 0 hence x 2 S3. Assume now

x 2 S2, hence (20), (21), (22) and (25) hold. Because of (16) and (17) the inequality (23)
also holds. The proof for (24) is done by case di�erentiation. In the �rst case x3 2 [�1; 0).

Then x2+x3 = x2 + 2x3| {z }
�0 (19)

�x3|{z}
�0

� 0. In the second case x3 � 0. Then due to (17) x2+x3 � 0

hence (24).
Up to now we have shown S1

S
S2 � S3. To show the other inclusion let x 2 S3. Assume

�rst x 62 S1. We have to show that (17) holds. The only possibility for x 2 S3 and x 62 S1

is x3 2 [�1; 0). But due to (25) x2 � �2x3| {z }
2(0;2]

� 0. If we assume x 2 S3; x 62 S2 we have to

show (13). As before we can conclude x2 2 [�1; 0) and due to (24) x3 � �x2|{z}
2(0;1]

� 0 holds.

Thus S3 � S1

S
S2 and hence S3 = S1

S
S2.

We will now show that in fact S3 is a complete description of the feasible set which is
de�ned as the union of the convex hull of P1; P2 and P3 and the points dominated by this

convex hull, i.e.

D :=

8<
:x 2 R

n : x � �1

0
@ 0

0

0

1
A + �2

0
@ 1

�1

1

1
A + �3

0
@ 0

2

�1

1
A

for some �i 2 [0; 1];�1 + �2 + �3 = 1g
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Assume that x 2 D. Hence 9�1; �2; �3:

�1; �2; �3 2 [0; 1] (29)

�1 + �2 + �3 = 1 (30)

x1 � �2 (31)

x2 � ��2 + 2�3 (32)

x3 � �2 � �3 (33)

Then there holds:

(31)) x1 � �2|{z}
�0 (29)

� 0 ) (20)

(32)) x2 � ��2|{z}
��1 (29)

+2 �3|{z}
�0 (29)

� �1 ) (21)

(33)) x3 � �2|{z}
�0 (29)

��3|{z}
��1 (29)

� �1 ) (22)

(31); (32)) x1 + x2 � 2 �3|{z}
�0 (29)

� 0 ) (23)

(32); (33)) x2 + x3 � �3|{z}
�0 (29)

� 0 ) (24)

(32); (33)) x2 + 2x3 � �2|{z}
�0 (29)

� 0 ) (25)

Hence D � S3.
Now assume that x 2 S3 = S1

S
S2. It will be shown that there exist �1; �2; �3 2 [0; 1] :

�1 + �2 + �3 = 1 and x ful�lls (31), (32), (33). If x 2 S1 then de�ne �3 := 0. For those x

for which x2 2 [�1; 0] de�ne �2 := �x2 and �1 := 1� �2, hence (29) and (30) hold. Since
x1 � max(0;�x2) = �x2 = �2 (31) also holds and analogously (33) can be shown. (32) is

obviously true. If x2 > 0 then let �2 := �3 = 0; �1 := 1 and (29) - (33) follow immediately,
hence S1 � D.
If x 2 S2 then de�ne �2 := 0. If x3 2 [�1; 0] de�ne �3 := �x3 and �1 := 1� �3, if x3 > 0

de�ne �3 := �2 = 0; �1 := 1. Using the same arguments as for x 2 S1 we can conclude
S2 � D and hence S3 = S1

S
S2 = D.

Of course S3 is a convex set. If we now solve (6), i.e. maxf� : yN � (�; �; �)T 2 S3g

especially (20) has to be met, hence 1 � � � 0 or � � 1. It is easy to show that all

other inequalities yield the same or weaker restrictions on � hence x� = (0; 1; 0)T , which is

dominated by P1.

5 Conclusions

In this paper we discussed the computation of Nadir and ideal objective values in multicrite-

ria optimization problems. We �rst reviewed some literature concerning the determination

of Nadir points by exact and heuristic methods. We illustrated that the heuristics either

over- or underestimated correct Nadir values. We then gave some theoretical background
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to justify our approach, before we presented our algorithm to solve the problem of �nding

the Nadir point in the three criteria case. In contrast to most of the algorithms given so

far this new one also works for general continuous as well as combinatorial multicriteria

problems and not just in the linear case. After illustrating the algorithm by two examples

we pointed out how the Nadir point can be used in compromise programming to achieve

acceptable solutions. We proved some results on (weak) Pareto optimality of the resulting

solutions. A topic of future research is to extend the ideas presented here in order to

develop recursive algorithms to solve multicriteria problems. These could then alo be used

to compute Nadir values in the general case of Q criteria.
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