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1 Introduction

In multiple criteria optimization, optimal decisions have to be found in the presence of

several con
icting criteria. A decision is only considered optimal if an improvement of

one criterion implies a deterioration of at least one other criterion. The corresponding

outcomes are called eÆcient points, the solutions Pareto optimal solutions.

One topic in the investigation of multiple criteria optimization problems is the determina-

tion of those objectives that determine the set of Pareto optimal solutions. Several authors

have worked in that �eld: Gal and Leberling in [1],[2] and [3] introduced the notion of

nonessential objectives and presented methods for their determination in the case of linear

multicriteria problems. Nonessential objectives can be dropped without changing the set of

Pareto optimal solutions. Gal and Hanne in [4] investigated the consequences of dropping

nonessential objectives in the search for a �nal compromise solution by MCDM methods.

A more general concept of interdependent criteria has been discussed by Carlsson and

Fuller in [5], see also [6].

Apart from research about nonessential or interdependent objectives, some authors were

interested in the structure of the set of weakly Pareto optimal points. The results obtained

by Ward in [7] and by Malivert and Boissard in [8] show that in problems with n variables

considering subproblems with at most n + 1 criteria is suÆcient to determine the whole

set of weakly Pareto optimal points of a multicriteria optimization problem with convex

criteria. This theory is more general than interdependent objectives because the results

also hold in the absence of nonessential criteria, as will be demonstrated by an example

presented in this paper.

We continue this research in the sense that we determine the number of objectives which are

necessary to prove Pareto (not only weak Pareto) optimality for a given point. The result

that for problems with 2 variables in fact only (at most) 3 criteria have to be considered

simultaneously leads to considerable advances for multiple criteria problems where the
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number of objectives Q is much larger than the dimension of the decision space (2). This

situation arises in location theory, see [9], [10], and [7]. Usually not one single person

decides about the location of a new facility but a group of Q decision makers. Each of the

Q decision makers gives his personal view of the location problem by means of a speci�c

objective function. Typical objective functions in location theory are the weighted sum or

the weighted maximum of the distances of existing facilities to the new one. Each decision

maker may choose his individual set of weights as well as the type of the objective function.

Therefore, in location theory we deal with a set of convex objective functions on the plane.

The paper is organized as follows. In Section 2 the multiple criteria optimization problem

(MOP) is introduced. We present the de�nitions of (strict, weak) Pareto optimality and

give a geometric characterization of all three optimality concepts based on level sets and

level curves. In Section 3 we show, by means of an example, that results obtained in [7] and

[8] for convex and strictly quasi-convex functions cannot be generalized to quasi-convex

functions. We prove a weaker result in this case. The main part is Section 4, where we

consider the strictly quasi-convex case. The main theorem (Theorem 4.3) extends a result

of [8] for Pareto optimal solutions. The proof of this main result provides a prototype

polynomial time algorithm to check Pareto optimality for strictly quasi-convex (MOP),

which has the same complexity as the determination of the weakly Pareto optimal set in

[8]. Finally, an illustrative example is given in Section 5 and conclusions are stated in

Section 6.

2 Pareto Optimality

In this section we consider the general multiple criteria optimization problem

min
x2X

f(x) (MOP)
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where X � IRn is the feasible set and f = (f 1; : : : ; fQ) : IRn ! IRQ is the criterion

mapping. The component functions f 1; : : : ; fQ are the criteria or objective functions. To

avoid technicalities we assume throughout that all functions are de�ned on the whole space

IRn. The index set of criteria will be denoted by Q := f1; : : : ; Qg:

Optimizing the Q objective functions means minimization in IRQ. Therefore, instead of

the canonical order in IR, we consider three types of partial orders in IRQ. Accordingly, we

have three di�erent types of optimality.

A point x 2 X is called

� strict Pareto solution (of (MOP)) or strictly Pareto optimal if there is no �x 2 X nfxg
satisfying

f(�x) � f(x); i.e. f i(�x) � f
i(x) 8i = 1; : : : ; Q

� Pareto solution (of (MOP)) or Pareto optimal if there is no �x 2 X dominating x, i.e.

satisfying

f(�x) � f(x); and f(�x) 6= f(x)

� weak Pareto solution (of (MOP)) or weakly Pareto optimal if there is no �x 2 X
satisfying

f(�x) < f(x); i.e. f i(�x) < f
i(x) 8i = 1; : : : ; Q:

The sets of all strict Pareto, Pareto and weak Pareto solutions are denoted by Xs�Par,

XPar, and Xw�Par, respectively. For fq1; : : : ; qPg � f1; : : : ; Qg and P � Q, we will also use

the notations Xs�Par (f
q1; : : : ; f

qP ) ;Xw�Par (f
q1; : : : ; f

qP ) and XPar (f
q1; : : : ; f

qP ) if (strict,

weak) Pareto solutions for the criterion mapping (f q1; : : : ; f qP ) with range space in IRP are

considered.

Since in this paper we are interested in structural results about the set of (strict, weka)

Pareto solutions, we will assume throughout, that XPar is nonempty. Several conditions

which guarantee XPar 6= ; can e.g. be found in [11].
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The general understanding is, that there is no ideal solution, i.e. there is no x 2 X such

that

f
q(x) = inf

x2X
f
q(x) 8q = 1; : : : ; Q:

As a consequence of these two basic assumptions, XPar contains at least two points.

Geometrically, the optimality de�nitions presented above can be characterized using level

curves

L
q

=(z) := fx 2 X : f q(x) = zg ;

level sets

L
q

�(z) := fx 2 X : f q(x) � zg ;

and strict level sets

L
q

<
(z) := fx 2 X : f q(x) < zg :

A proof of the following Theorem can be found in [12].

Theorem 2.1 Let x 2 X and zq := f
q(x) for q 2 Q. Then the following hold:

1. x is a strict Pareto solution if and only if

\

q2Q

L
q

�(zq) = fxg:

2. x is a Pareto solution if and only if

\

q2Q

L
q

�(zq) =
\

q2Q

L
q

=(zq):

3. x is a weak Pareto solution if and only if

\

q2Q

(Lq

<
(zq)) = ;:

An immediate consequence of Theorem 2.1 is the following result, which states that if a

point x is a weak or a strict Pareto solution with respect to a subset of the objectives it is

so with respect to all Q criteria.
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Corollary 2.1 Let x 2 X and fq1; : : : ; qPg � Q. Then the following hold:

1. x 2 Xw�Par (f
q1; : : : ; f

qP )) x 2 Xw�Par

�
f
1
; : : : ; f

Q

�
.

2. x 2 Xs�Par (f
q1; : : : ; f

qP )) x 2 Xs�Par

�
f
1
; : : : ; f

Q

�
.

Stronger results have been obtained by researchers, who have investigated the structure of

Xw�Par. Let us assume from now on that X is a convex set and that f q; q = 1; : : : ; Q are

convex or strictly quasi-convex functions. A function f q is strictly quasi-convex, if for each

x and y 2 IRn

f(�x+ (1� �)y) � maxff(x); f(y)g

for all � 2 (0; 1) and strict inequality holds whenever f(x) 6= f(y):

The representation

Xw�Par =
[

fq1;:::;qP g�Q:P�n+1

XPar (f
q1; : : : ; f

qP ) (1)

of Xw�Par in terms of Pareto solutions of subproblems of (MOP) has been proven in [7]

for convex objectives. Later the same result has been obtained for upper semi-continuous

strictly quasi-convex objectives in [8].

We will now proceed to show that equation (1) cannot be generalized to (even continuous)

quasi-convex criteria, and present a weaker result, which is still true.

3 Quasi-Convex Objectives

A function f is quasi-convex if for each x and y 2 IRn

f (�x+ (1� �)y) � maxff(x); f(y)g
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for all � 2 (0; 1): An appealing feature of quasi-convex functions is that they can be

characterized in terms of level sets. The following Lemma is well known, see e.g. [13].

Lemma 3.1 f : IRn ! IR is quasi-convex if and only if L�(z) is convex for all z 2 IR.

We show that (1) is not true for quasi-convex functions.

Example 3.1 Let X = IR and consider the three piecewise linear quasi-convex criteria

shown in Figure 1.
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Figure 1: Three quasi-convex criteria

We observe the following:

XPar

�
f
1
�

= [4:5;1)

XPar

�
f
2
�

= (�1; 1]

XPar

�
f
3
�

= ;
XPar

�
f
1
; f

2
�

= [1; 3:5) [ [4:5;1)

XPar

�
f
1
; f

3
�

= (0; 0:5) [ f4:5g

XPar

�
f
2
; f

3
�

= ;
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Therefore we have

[

q2Q

XPar (f
q) [

[

fq1;q2g�Q

XPar (f
q1; f

q2) = IR n [3:5; 4:5) 6= Xw�Par = IR:

The Pareto set is XPar = (0; 0:5) [ [1; 3:5) [ f4:5g. Therefore not even the inclusion

Xw�Par �
[

fq1;:::;qP g�Q

XPar (f
q1; : : : ; f

qP ) (2)

is satis�ed, without limitation of the number of objectives of subproblems. Note that due to

Corollary 2.1 the reverse inclusion of (2) always holds. Thus, a representation of Xw�Par

in terms of Pareto solutions of subproblems is impossible.

However, we can obtain a representation similar to (1), if we replace XPar on the right hand

side by Xw�Par. This result makes use of Helly's theorem on the intersection of convex sets

stated below (see [14] and [15] for proofs).

Theorem 3.1 (Helly's Theorem) Let C1; : : : ; CQ, Q � n + 1 be convex sets in IRn.

Then
Q\

q=1

Cq 6= ; , 8q1; : : : ; qn+1 2 Q : Cq1
\ : : : \ Cqn+1

6= ;;

or equivalently

Q\
q=1

Cq = ; , 9q1; : : : ; qn+1 2 Q : Cq1
\ : : : \ Cqn+1

= ;:

We obtain the structure result for Xw�Par in the quasi-convex case if we combine the results

of Section 2 and Helly's Theorem. An immediate consequence of Theorem 2.1, Corollary

2.1, Lemma 3.1, and Theorem 3.1 is the following result.

Corollary 3.1 Suppose that f 1; : : : ; fQ are quasi-convex. Then a point x 2 X is weakly

Pareto optimal if and only if there exists a subset ff q1; : : : ; f qP g of objective functions,

P � n + 1; such that x 2 Xw�Par (f
q1; : : : ; f

qP ) :
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In other words

Xw�Par =
[

fq1;:::;qP g�Q:P<n+1

Xw�Par (f
q1; : : : ; f

qP ) :

Corollary 3.1 implies that, in order to obtain the weakly Pareto optimal points, it is

suÆcient to solve all subproblems with no more than n + 1 criteria. When n = 2 this

means that in the worst case O(Q3) problems with up to three criteria have to be solved.

The practical relevance for (MOP) with Q � 2, as is the case in location theory, is

immediate.

4 Strictly Quasi-Convex Objectives

In the main part of the paper we consider strictly quasi-convex (MOP), i.e. f q : IRn ! IR

are strictly quasi-convex functions for all q 2 Q and X is a convex subset of IRn
: Since

strictly quasi-convex functions are quasi-convex, all level sets will be convex.

We have already mentioned the structure result for (upper semi-continuous) strictly quasi-

convex functions from [8].

Lemma 4.1 Assume that f 1; : : : ; fQ are upper semi-continuous and strictly quasi-convex.

Then

Xw�Par =
[

fq1;:::;qP g:P�n+1

XPar (f
q1; : : : ; f

qP ) :

The question is, whether a similar result can be proved for XPar. I.e. is it possible to

distinguish weakly Pareto optimal points from Pareto optimal points using at most n + 1

of the criteria? We cannot answer this question in general, but we have an aÆrmative

result for the case of problems in two variables.

We will show that, for any point x 2 X it is possible to decide if it is Pareto optimal or

not using at most 3 of the criteria at a time, i.e. by solving at most O(Q3) subproblems,
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which is the same as for determination of Xw�Par.

Before we can prove the main result of the paper (Theorem 4.3) in several steps, we have

to introduce some notation and prove some preliminary results. We will use the notion of

the dimension of a convex set X which is de�ned as the dimension of the aÆne subspace

spanned by X , i.e.

dim(X ) := dim (span(X )):

Furthermore we will refer to the interior, relative interior and relative boundary of X as

intX ; riX ; and rbdX ; respectively.

First a suÆcient condition for Pareto optimality of a feasible point x is given. Note that

Lemma 4.2 does not rely on any convexity assumption.

Lemma 4.2 Let x 2 X and suppose that there are J1; : : : ;Jk � Q; jJij < Q such that

[k

i=1Ji = Q and that x 2 XPar (f
q : q 2 Ji) for all i = 1; : : : ; k. Then x 2 XPar:

Proof.

Since x 2 XPar (f
q : q 2 Ji) for all i, we have

\

q2Ji

L�(f
q(x)) =

\

q2Ji

L=(f
q(x)) i = 1; : : : ; k

)
k\

i=1

\

q2Ji

L�(f
q(x)) =

k\

i=1

\

q2Ji

L=(f
q(x)):

and from the assumption on the Ji:

Q\
q=1

L�(f
q(x)) =

Q\
q=1

L=(f
q(x)):

2

Observe that the claim of Lemma 4.2 holds trivially as a necessary and suÆcient condition,

if we choose J = Q:, but note that the condition is not necessary in general otherwise:
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The point x = 2:5 2 XPar in Example 3.1 is Pareto optimal for the subproblem with f
1

and f
2, but no other subset.

To prove that the condition is necessary for strictly quasi-convex objectives (at least when

X � IR2), we proceed with some technical Lemmas.

Lemma 4.3 Let f be a strictly quasi-convex function. Then for all z > infx2X f(x) it

holds that L=(z) � rbdL�(z):

Proof.

We show that L=(z) \ riL�(z) 6= ; implies z = infx2X f(x).

Assume that x 2 L=(z) \ riL�(z) 6= ; and choose x1 2 L�(z); x
1 6= x. Then there exist

x
2 2 L�(z) and 0 < � < 1 such that x = �x

1 + (1 � �)x2. Suppose that f(x1) 6= f(x2).

Then by strict quasi-convexity and because x1; x2 2 L�(z)

z = f(x) < maxff(x1); f(x2)g � z;

a contradiction. Therefore f(x1) = f(x2). Since x1 2 L�(z) n fxg was arbitrary, we get

z = f(x) � maxff(x1); f(x2)g = f(x1) = z

and f(x1) = f(x) for all x1 2 L�(z). Therefore L�(z) = L=(z) which implies z =

minx2X f(x) 2

From now on we restrict ourselves to the case that X � IR2.

Lemma 4.4 Let X � IR2 such that dimX = 2 and let f be a strictly quasi-convex upper

semi-continuous function. Then dimL�(f(x
�)) � 1 implies that f(x�) = infx2X f(x).

Proof.
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The case of dimL�(f(x
�)) = 0 is trivial. So assume that dimL�(f(x

�)) = 1 and suppose

there is an x 2 X such that f(x) < f(x�). Then let U := U�(x) \ X . By the assumptions,

U n L�(f(x�)) is two-dimensional. Therefore we have f(x0) > f(x�) for all x0 in that set.

If we choose x� := �x
0 + (1� �)x we have

f(x�) > f(x�) 8� 2 (0; 1]:

However, if we let � take arbitrarily small positive values, the upper semi-continuity implies

f(x) � f(x�), contradicting our assumption. 2

The next Theorem provides the converse of Lemma 4.2 for Pareto optimal points, which

are not strictly Pareto optimal.

Theorem 4.1 Suppose that x� 2 XPar. Then either x� is strictly Pareto optimal or there

exist subsets J1; : : : ;Jk � Q; jJij � 3 such that [k

i=1Ji = Q and that x 2 XPar (f
q : q 2 Ji)

for all i = 1; : : : ; k.

Proof.

Suppose x� is not strictly Pareto optimal. Then there is no q 2 Q such that x� is a unique

minimizer of f q over X. We de�ne

S :=
Q\
q=1

L�(f
q(x�)):

First we show that dimS = 1.

1. Since x� =2 Xs�Par we know that jSj � 2. Because S is convex this implies dimS � 1.

2. Assume that dimS = 2. Then intS 6= ;. Hence we can choose x̂ 2 intS. From

Theorem 2.1 we know that S :=
TQ

q=1 L=(f
q(x�)) and therefore S � L=(f

q(x�)) for

all q = 1; : : : ; Q: Thus, x̂ 2 intL=(f
q(x�)). From the proof of Lemma 4.3 we conclude

that f q(x�) = infx2X f
q(x) for all q = 1; : : : ; Q, which implies that x� is an ideal

solution. This contradiction implies dimS � 1.
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Next we show that, without loss of generality, we can assume that for all q there is a line

separating S and L�(f
q(x�)), i.e. we show

intL�(f
q(x�)) \ riS = ;:

Suppose, to the contrary, that intL�(f
q(x�)) \ ri(S) 6= ;. Note that this is only possible

if dimL�(f
q(x�)) = 2. So let x̂ 2 intL�(f

q(x�)) \ riS: From x̂ 2 S we have (as above)

x̂ 2 L=(f
q(x�)) and from x̂ 2 intL�(f

q(x�)) by Lemma 4.3 we get f q(x̂) = infx2X f
q(x):

Therefore x̂ (and x
�) are minimizers of f q. Therefore x� is Pareto optimal for f q. If we

prove that x� is also Pareto optimal for the remaining objectives, we can choose J1 = fqg
and restrict ourselves to Q n fqg.

To do so, consider S 0 :=
T
i2Qnfqg L�(f

i(x�)): We have that S � S
0 and that dimS

0 = 1

(from convexity). We will show that S 0 :=
T
i2Qnfqg L=(f

i(x�)): If S = S
0 there is nothing

to prove, so assume there is an x 2 S
0 n S. Suppose that there is an x

0 2 S
0 and a q

0

s.t. f q
0

(x0) < f
q
0

(x); i.e. x0 2 L<(f
q
0

(x�)): Obviously, x0 2 S
0 n S. Now take x̂ 2 riS and

consider x� := �x
0 + (1� �)x̂: We obtain

f
q
0

(x�) � maxff q0(x0); f q0(x̂)g < f
q
0

(x̂)

(because f q
0

(x0) < f
q
0

(x) � f
q
0

(x�) = f
q
0

(x̂)), which is true for all � 2 (0; 1]. But there

must exist some �� < 1 such that x�� 2 rbdS, which implies the existence of an x 2 S

with f
q
0

(x) < f
q
0

(x�), an impossibility. By the contradiction we know that x� is Pareto

optimal for the remaining objectives.

Now, we can assume w.l.o.g that intL�(f
q(x�))\ riS = ;: Therefore, for each q there exists

a line

hq := fx 2 IR2 :< aq; x > �bq = 0g

such that

< aq; x >�< aq; y > 8y 2 S 8x 2 L�(f
q(x�)):
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But since S � L�(f
q(x�)) we know that S � hq for each q. Because dimS = 1 we see that

all these lines are one and the same, i.e. hq = h 8q = 1; : : : ; Q. Denote by h
+ and h

� the

open positive and negative half-plane w.r.t. h.

We show that not all sets L�(f
q(x�)) can have nonempty intersection with the same open

halfspace (let's say h
+). This can only be true if all L�(f

q(x�)) have dimension two.

Suppose this is the case. All these sets have the one-dimensional set S; which is contained

in their boundary, in common. Then convexity and the fact that they are all on one side

of h (and S) implies that their interiors have nonempty intersection. But due to Lemma

4.3 intL�(f
q(x�)) � L<(f

q(x�)), and such points contradict Pareto optimality of x�.

Now we can choose subsets jJij of at most three level curves L�(f
q(x�)) such that their

intersection is contained in h. With similar arguments used to prove the w.l.o.g. part

above it follows that
\

q2Ji

L�(f
q(x�)) =

\

q2Ji

L=(f
q(x�))

and x
� 2 XPar (f

q : q 2 Ji) : 2

Note that in general the sets Ji are not disjoint. To conclude our results, we still have to

show that we can also determine Pareto optimality of the strictly Pareto optimal solutions

by looking at at most 3 objectives at a time.

Theorem 4.2 Let x� be a strictly Pareto optimal solution. Then either x� is strictly Pareto

optimal for a subset of at most 3 objectives, or there exist subsets J1; : : : ;Jk � Q; jJij � 3

such that [k

i=1Ji = Q and that x 2 XPar (f
q : q 2 Ji) for all i = 1; : : : ; k.

Proof.

Suppose that there is no subset J � Q; jJ j � 3 such that x� 2 Xs�Par (f
q : q 2 J ).

Since x� is strictly Pareto optimal, it is also weakly Pareto optimal. From Lemma 4.1 we
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know that there is a set J of at most three objectives, such that x� 2 XPar (f
q : q 2 J ).

According to our assumption, x� is not strictly Pareto optimal for these objectives.

Considering the objectives f q; q 2 Q n J we can distinguish the following cases.

1. x� is strictly Pareto optimal for the remaining objectives. Then we can just consider

Q n J instead of J .

2. x� is weakly Pareto optimal for the remaining objectives. Then we can apply Lemma

4.1 again, to get another subset of criteria and consider the remaining ones.

3. x� is Pareto optimal, but not strictly Pareto optimal for the remaining objectives.

Then we can apply Theorem 4.1 to the problem with objectives f q; q 2 Q n J and

are done.

4. x� is not even weakly Pareto optimal. Considerations as in the proof of Theorem 4.1

show that this can only happen if

S :=
\

q2QnJ

L�(f
q(x�))

has dimension two. But XPar (f
q : q 2 J ) de�nes a line (recall that x� is not strictly

Pareto optimal for objectives in J ). Analogous to the proof of Theorem 4.1 we

can show that S lies in exactly one of the (closed) halfspaces de�ned by this line

(or, eventually, the normal of that line). Then we can again choose the appropriate

subsets as described in the proof of Theorem 4.1. 2

Summarizing the previous results (Lemma 4.2, Theorems 4.1 and 4.2), we can state the

main result of this paper.

Theorem 4.3 In a multicriteria optimization problem with upper semi-continuous strictly

quasi-convex objectives and convex feasible set X � IR2, a feasible point x� is Pareto optimal
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if and only if there is a subset J � Q, jJ j � 3 such that

x
� 2 Xs�Par (f

q : q 2 J )

or there exist subsets J1; : : : ;Jk � Q; jJij � 3 such that [k

i=1Ji = Q and that x 2
XPar (f

q : q 2 Ji) for all i = 1; : : : ; k.

We remark that the proofs of Theorems 4.1 and 4.2 use the fact that X � IR2, when we

show that the same hyperplane separates all L�(f
q(x�)) from S. This cannot be generalized

to higher dimensions. Therefore the question, if Theorem 4.3 is still valid for higher

dimensional X is still open. We also note that Example 3.1 presented in Section 3 shows

that we cannot generalize the result to quasi-convex objectives, not even if X � IR, and

the objectives are continuous.

Theorem 4.3 yields a prototype algorithm to solve a strictly quasi-convex (MOP) with two

variables. We denote the set of all subsets of Q with no more than 3 elements by Q(3);

Q(3) := fJ � Q : jJ j � 3g:

For q 2 J we use the following abbreviations:

L
q

� := L
q

� (f
q(x))

L� :=
\

q2J

L
q

�:

Note that by the de�nition of level sets x 2 L� and therefore L� 6= ;:

Algorithm for strictly quasi-convex (MOP) with 2 variables

1. Let k := 0, choose J 2 Q(3).

2. Let Q(3) := Q(3) n J .

3. If dimL� = 0 STOP, x� is strictly Pareto optimal for (MOP).
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4. If x� is Pareto optimal for ff q : q 2 J g let k := k + 1;Jk := J

� If
S
k

i=1 Jk = Q STOP, x� is Pareto optimal for (MOP).

5. If Q(3) is not empty

� If jJ j < 3 choose q 2 Q n J , let J = J [ fqg and go to 2.

� Otherwise choose a new J from Q(3) and go to 2.

6. STOP, x� is not Pareto optimal for (MOP).

The algorithm will terminate after checking x
� for Pareto optimality for at most all of

the O(Q3) subproblems with no more than three objective functions. Assuming that

checking intersections of two or three convex sets can be done eÆciently, we have an

eÆcient algorithm for checking Pareto optimality. It is important to note that, for special

types of objective functions the above result indeed leads to eÆcient algorithms for solving

(i.e. determining all Pareto solutions of) multicriteria optimization problems. This is the

case in location theory, where we refer to [16], [10], and [17] for details.

Lemma 4.1 and Theorem 4.3 show how to decide (weak) Pareto optimality of a point

x
� by considering subproblems with at most 3 objective functions (essentially, checking

intersections of 3 convex level sets). To conclude this section we brie
y address the case of

strict Pareto optimality. Note that the criterion in Theorem 4.2 does not necessarily imply

that we can decide strict Pareto optimality of x�, only its Pareto optimality is shown.

However, the geometrical characterization of strict Pareto optimality provided by Theorem

2.1 seems to be easier than that of Pareto optimality. But the following example shows

that a lower bound on the number of criteria needed to decide strict Pareto optimality is

2n.

In Figure 2, x belongs to both XPar (f
1
; f

3) and XPar (f
2
; f

4) as well as Xs�Par (f
1
; : : : ; f

4)

but is not Pareto optimal for any set of one or three objectives. The Figure also illustrates
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Figure 2: Intersection of 4 level sets

the third case in the proof of Theorem 4.2.

5 An Illustrative Example

We consider an Example with four objectives and X = [�5; 5]� [�5; 5] � IR2
: The objec-

tives are

f
1(x; y) = (x� 2:5)2 + (y � 0:5)2 � 6:5

f
2(x; y) = 2x2 +

1

2
(y � 3)2 � 4:5

f
3(x; y) = y � 5

f
4(x; y) = 2x+ 3

First of all we show that none of the objectives is nonessential. In the following table we

list the 4 objectives f i in the �rst column. The second and third columns show four points

x
i which are Pareto solutions for the (MOP)

min
x2X

(f 1; f 2; f 3; f 4)
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and their respective objective values. The fourth and �fth column show points xi
d
which

dominate xi in the (MOP)

min
x2X

f̂i;

where f̂i denotes the criterion mapping f with f
i dropped.

f
i

x
i

f(xi) x
i

d
f̂i(x

i

d
)

f
1 (2.5, 0.5) (-6.5, 11.25, -4.5, 8) (0, 0) (� 0, -5, 3)

f
2 (0, 3) (6, -4.5, -2, 3) (0, 1) (0, � -4, 3)

f
3 (1, -5) (26, 29.5, -10, 5) (0, -2) (6, 8, �, 3)

f
4 (-5, 1) (50, 47.5, -4, -7) (-4, 0) (36, 32, -5, �)

Note that x1 and x
2 are Pareto optimal because they are the (unique) minimizers of f 1

and f
2, respectively. Points x3 and x

4 are minimizers of f 3 and f
4 over X , respectively.

Furthermore they are Pareto optimal for

minff̂3(x; y) : (x; y) 2 X ; y = �5g;

the Pareto set of which is [�5; 2:5]� f�5g and for

minff̂4(x; y) : (x; y) 2 X ; x = �5g

with the Pareto set f�5g�[�5; 3]; respectively. Both facts imply that x3 and x4 are Pareto

optimal for the original (MOP).

Now we apply the prototype procedure described after Theorem 4.3 for two feasible points.

First, we consider x = (0; 0). The corresponding level curves are shown in Figure 3. From
4T

q=1

L
q

�(x) = fxg with Theorem 2.1 we see that x is a strict Pareto solution.

We choose J = f1; 4g: As
dim

\

q2J

L
q

� = 2
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Figure 3: Level sets for x = (0; 0)

(the three points (0; 0); (0; 1) and (2:5�p6:5; 0:5) belong to both level sets) x is not Pareto
optimal for the objectives in J . We choose in addition q = 2. Now dim(L� \L2

�) = 2 and

x is not Pareto optimal for (f 1; f 2; f 4) and we select a new J .

We choose J = f1; 3g and again

dim
\

q2J

L
q

� = 2:

Now we choose q = 2 to be added to J . Then dim(L�\L2
�) = 0 implying that x is strictly

Pareto optimal.

Also note that if J = f2; 3g is chosen initially, strict Pareto optimality is immediate, i.e.

our results do not provide any information on which objectives really determine Pareto

optimality of x.
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For a second point, let us try x = (5; 5). The corresponding level sets are depicted in

Figure 4. Note that L3
� = L

4
� = X in this case.
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L
1
�

L
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�

Figure 4: Level sets for x = (5; 5)

Evidently, whatever the choice of J ; T
q2J

L
q

� will have dimension two, and the procedure

will (correctly) stop with the conclusion that x is not Pareto optimal. The geometric

characterization of Theorem 2.1 is not satis�ed for x, con�rming this conclusion.

6 Conclusions and Future Research

In this paper we have discussed methods to decide Pareto optimality for a point in the

decision space of (MOP) using only subsets of the set of criteria. This result extends

previous work of [7] and [8] that characterizes weak Pareto solutions in terms of Pareto

solutions of subproblems with at most n+ 1 criteria.
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First we have shown that this result cannot be generalized for quasi-convex objectives and

we have given a weaker result in this case. For the case of strictly quasi-convex objectives

we have extended the result of [8] to Pareto optimality, at least for problems with two

variables, which are of fundamental importance in location theory. Our results yield a

prototype algorithm for such problems. The question whether these results are true in

higher dimensional problems remains open for now. We remark that a counterexample

would be an (MOP) with at least three variables and at least �ve objectives.

We have also shown that similar results for strict Pareto optimality cannot be obtained.

Let us also mention that in the case n = 1 Theorem 4.3 is still true of course, but not

helpful. It is well known that XPar and Xw�Par are connected, see [18]. Then these sets are

intervals and their determination is equivalent to the solution of Q single criterion convex

minimization problems in IR.

As points for future research, let us mention that besides applications of the results pre-

sented here, which have already already been started in location theory (see [16], [10], and

[17]), we will will be concerned with more general settings.

We also note that some question related to the topic of this paper are still open. For

example it is not known if

XPar �
[

J�Q:jJ j�n+1

XPar (f
q : q 2 J )

holds for quasi-convex objectives.
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