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Abstract

This paper provides an annotated bibliography of multiple objective combina-

torial optimization, MOCO. We present a general formulation of MOCO problems,

describe the main characteristics of MOCO problems, and review the main properties

and theoretical results for these problems. One section is devoted to a brief descrip-

tion of the available solution methodology, both exact and heuristic. The main part

of the paper is devoted to an annotation of the existing literature in the �eld orga-

nized problem by problem. We conclude the paper by stating open questions and

areas of future research. The list of references comprises more than 350 entries.
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1 Introduction

Combinatorial Optimization is a �eld extensively studied by many researchers. Due to its

potential for application in real world problems it has prospered over the last few decades.

A good survey of the state of the art is provided by [61]. But as far as real world decision

making is concerned, it is also well known, that decision makers have to deal with several

{ usually con
icting { objectives. The growth in the interest of theory and methodology of

multicriteria decision making (MCDM) over the last thirty years is witness of this fact, see

[300] for a survey of the activities in the �eld, and [349] for a list of MCDM applications.

Thus it is somewhat surprising that a combination of both, i.e. multicriteria or multiob-

jective combinatorial optimization (MOCO) has not been studied widely. A few papers

in the area have been published in the seventies, then the classical problems have been

investigated in the eighties. Only in recent years { approximately since 1990 { a profound

interest in the topic is evident. Since then several PhD theses have been written, speci�c

methodologies have been developed, and the number of research papers in the �eld has

grown considerably.

In this paper we intend to give an overview over the literature in the �eld of multiobjective

combinatorial optimization. In the following sections, we �rst present a brief introduction

to the �eld, including a general problem formulation, description of several types of MOCO

problems, and the most important theoretical properties of these problems (Sections 2 and

3). In Section 4 we explain the classi�cation of literature that we used. This consists �rst

of a classi�cation of the problem treated and secondly of the methodology applied to solve

it. Then we review existing methods to solve MOCO problems in Section 5. The main

part of the paper is devoted to the annotation of the literature (Section 6). The paper is

concluded by a brief discussion of open questions and areas of future research (Section 7).

Let us now describe the focus of this paper. We compiled the literature on multiobjec-

tive combinatorial optimization accessible to us. We mainly consider papers that deal

speci�cally with MOCO problems, thus our bibliography is certainly not complete on 0-1

programming with multiple objectives, and exclude most of the literature on general multi-

objective integer programming. A similar statement can be made with respect to schedul-

ing. Scheduling problems are speci�c problems with their own theory and methodology,

which we will not describe in detail. However, we include the literature in our references.

We should also mention, that there exist earlier survey papers related to MOCO, one gen-

eral [329], and two speci�cally devoted to multiobjective network design, [43, 44]. Our

bibliography contains all the relevant literature listed there. However, it is more complete,

e.g. we could include the new direction of using metaheuristics for MOCO problems. How-

ever, we are aware of the fact, that despite our best e�orts the list will not be complete,

so we apologize for any omissions.

The aim of the bibliography is twofold. First we want to provide a starting point for

researchers and students interested in the �eld, giving a brief introduction and commenting

on, thus guiding through, existing literature. For the experienced researcher the list is

intended as structured overview of the �eld.
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2 Multiple Objective Combinatorial

Optimization Problems

The feasible set of a (multiobjective) combinatorial problem is de�ned as a subset X � 2A

of the power set of a �nite set A = fa1; : : : ; ang: For example, consider the minimum

spanning tree problem. G = (V;A) is a graph with node set V and the edge set A, the

feasible set is the set of spanning trees of G and X = fS � A : S is a spanning tree of Gg:

Typically, in combinatorial optimization two types of objective functions are considered,

namely the sum and the bottleneck objective:

z(S) =
X
a2S

w(a); or

z(S) = max
a2S

w(a);

where S 2 X and w : A! ZZ is some weight function.

A combinatorial problem can also be formulated in terms of binary variables. For this

purpose we introduce a variable xi for each element ai 2 A: Then, a feasible solution

S 2 X can be represented by a binary vector x 2 f0; 1gn if we de�ne

xi =

(
1 ei 2 S

0 else.

With this de�nition S = fai : xi = 1g. It is therefore equivalent to speak about feasible

solutions as subsets of A or about their representations by binary vectors. Accordingly X

will be represented by a subset of f0; 1gn:

In terms of the feasible set, this de�nition comprises (multiobjective versions of) the short-

est path, minimum spanning tree, assignment, knapsack, travelling salesperson, or set

covering problems, to mention only a few.

In a multicriteria combinatorial problem several weight functions wj : A ! ZZ are given,

yielding several objective functions zj; j = 1; : : : ; Q (usually of the sum or bottleneck

type). The problem is then to solve

\min
S2X

"(z1(S); : : : ; zQ(S)) (MOCO)

where the meaning of \min" has still to be de�ned.

Most often the minimization in (MOCO) is understood in the sense of eÆciency (or Pareto

optimality). A subset S 2 X is called eÆcient if there does not exist another feasible

solution S 0 2 X such that zj(S 0) � zj(S) for all j = 1; : : : ; Q with strict inequality for at

least one of the objectives. The corresponding vector z(S) = (z1(S); : : : ; zQ(S)) is called

nondominated. The set of Pareto optimal (eÆcient) solutions of (MOCO) will be denoted

by E, the set of nondominated vectors by ND throughout the paper. Sometimes we shall

use the the term nondominated frontier for the set of all nondominated vectors.
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However, besides eÆciency, there are other de�nitions of the \min" term in the formulation

of (MOCO). For example, one could consider lexicographic minimization, when objective

vectors are compared lexicographically: z(S1) <lex z(S2) if z
j(S1) < zj(S2), where j is the

smallest index such that zj(S1) 6= zj(S2). This could be done with respect to one, or all

permutations of the objective functions zj.

Another possibility is to minimize the worst objective function, i.e.

min
S2X

max
j=1;:::;Q

zj(S):

We call this the max-ordering problem (following [79]) in order to distinguish it from the

single objective bottleneck problem (note that both are often called min-max problems,

which may create confusion).

A combination of the latter two is the lexicographic max-ordering problem, where the

vector of objective values z(S) is �rst resorted in a nonincreasing order of its components,

and the resulting vectors are compared lexicographically, see [69, 71] for details.

In a real world decision context, �nally a compromise has to be made among the many

eÆcient solutions that (MOCO) may have. This is the reason why often the existence

of a utility function is implicitly or explicitly assumed. A utility function assigns each

criterion vector z(S) a scalar overall utility. Then methods are developed to �nd a solution

of maximum utility. This is a typical approach in interactive methods described later.

Closely related to combinatorial problems are multiobjective integer programming prob-

lems. These can be formulated as follows.

\min " Cx

subject to Ax = b

xi � 0 i = 1; : : : ; n

xi integer i = 1; : : : ; n

(MOIP)

Here C is a Q�n objective matrix, A is an m�n constraint matrix, and x 2 IRn: There is

a considerable amount of literature on these problems. We refer to some surveys that exist

but will not consider the literature in detail. In this respect, [357, 310, 33] provide surveys

of techniques to �nd eÆcient solutions for (MOIP), [309] gives an overview of interactive

methods for (MOIP), and [256] surveys (MOIP) with binary variables.

In general, combinatorial optimization problems can be considered as special cases of inte-

ger (in particular binary) programming. A MOCO problem is distinguished by a speci�c

set of constraints, that provides a structure to the problem. We focussed on such prob-

lems and do not intend to review literature on general multiobjective binary or integer

programming.

To conclude this section, let us mention one particular case, namely, when the set of feasible

solutions is an explicitly given �nite set, e.g. X = A. In this case, all problems discussed

above are eÆciently solvable. Algorithms can be found in [72, 73] and [177]. For this
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reason, these problems are mathematically not particularly interesting and we omit them

from further discussion.

To summarize, (MOCO) is a discrete optimization problem, with n variables xi, i =

1; : : : ; n, Q objectives zj, j = 1; : : : ; n and a speci�c constraint structure de�ning the

feasible set X.

3 Properties of Multiobjective Combinatorial

Optimization Problems

In this section we discuss some of the properties of MOCO problems. It is in order to

mention here that there is a considerable number of erroneous statements, even in papers

published in international standard refereed journals. We will point out the most important

of these throughout the paper, in the appropriate places.

By its nature, multiobjective combinatorial optimization deals with discrete, non contin-

uous problems, although the objectives are usually linear functions. An essential conse-

quence of this fact when trying to determine the set of all eÆcient solutions (or nondom-

inated vectors in objective space) is, that it is not suÆcient to aggregate the objectives

through weighted sums.

It is long known that for multiobjective linear programming problems

minfCx : Ax = b; x � 0g

the set of eÆcient solutions is exactly the set of solutions that can be obtained by solving

LP's

min

8<: X
j=1;:::;Q

�jc
jx : Ax = b; x � 0

9=; ;

where
PQ

j=1 �j = 1; �j > 0, j = 1; : : : ; n; see e.g. [150]. But the discrete structure of the

MOCO problem makes this result invalid. Thus there usually exist eÆcient solutions, which

are not optimal for any weighted sum of the objectives. This is true even in cases where

the constraint matrix is totally unimodular, contrary to a proposition in [175] (see [330] for

an example). These solutions are called nonsupported eÆcient solutions NE, whereas the

remaining are called supported eÆcient solutions, SE. In early papers referring to MOCO,

NE was usually not considered. Most authors focussed on scalarizing the objectives by

means of weighting factors �j.

Nevertheless, the set NE is important. Usually there are many more nonsupported than

supported eÆcient solutions, see e.g. [341] for numerical results. Moreover, the nonsup-

ported solutions contribute essentially to the diÆculty of MOCO problems. Below, we shall

brie
y discuss the concepts of computational complexity of (MOCO). For introductions to

the theory of INP -completeness and #IP -completeness we refer to [103] and [336, 335, 337],

respectively. These notions deal with the diÆculty of �nding a, respectively counting the

number of solutions of a (MOCO).
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In order to transfer the notions of IP; INP and #IP to MOCO we �rst introduce a decision

problem related to (MOCO) in a straightforward manner:

Given constants k1; : : : ; kQ 2 ZZ, does there

exist a feasible solution S 2 X such that

zj(S) � kj; j = 1; : : : ; Q?
D(MOCO)

The corresponding counting problem is:

How many feasible solutions S 2 X do satisfy

zj(S) � kj; j = 1; : : : ; Q?
#(MOCO)

It turns out that the respective versions of (MOCO) in the sense of �nding or counting

eÆcient solutions are in general INP - and #IP -complete, respectively. This is true even

for problems which have eÆcient algorithms in the single objective case. We refer to

[286, 81] and [75] for results in this respect. Therefore the development of heuristics with

guaranteed worst case performance (bounded error) is interesting. However, not much is

known in this regard: [75] gives some general results on approximating the eÆcient set by a

single solution, [246] uses a Tchebyche� metric to measure the error, and [270, 269] consider

the existence of such algorithms. Some speci�c results about 
ow problems, shortest path

problems and the TSP are discussed in Section 6.

Another aspect related to the diÆculty of MOCO is the number of eÆcient solutions. It

turns out that it may be exponential in the problem size, thus prohibiting any eÆcient

method to determine all eÆcient solutions. Such results are known for the spanning tree,

matroid base, shortest path, assignment, and travelling salesperson problem (see [288, 119,

82] for details). Consequently such problems are called intractable. Even the size of the set

SE may be exponential, see [267]. However, numerical results available on the knapsack

problem [341] show the number of supported solutions grows linearly with the problem

size, but the number of nonsupported solution grows following an exponential function.

As far as the other de�nitions of optimality in (MOCO) are concerned, we note that the

max-ordering problem with sum objectives is INP -hard in general (see [31]), but can be

reduced to a single objective problem in the case of bottleneck objectives [72]. Bounds

and heuristic methods for the former problem have been investigated in [249]. At least

one solution of the max-ordering problem is always eÆcient, but possibly nonsupported.

Similarly, a lexicographic max-ordering solution, although always eÆcient and optimal for

the max-ordering problem may be nonsupported, [72].

For lexicographic optimization it is known that a lexicographically optimal solution is al-

ways eÆcient, and even a supported eÆcient solution, see [119]. Lexicographic optimization

can also be viewed as a special case of algebraic optimization, see [356].

In view of the new trend to apply metaheuristics and local search in MOCO problems

(see Section 5 below), it is interesting to consider the issue of neighbourhoods of feasible

solutions, and their relations to eÆcient solutions. Using a neighbourhood corresponding

to Simplex basis pivots for the shortest path problem and exchanges of one edge for the

spanning tree problem it was shown in [77, 78] that the set of eÆcient solutions can be an

unconnected subset of X with respect to the neighbourhood. So it is possible that local

search methods (in principle) cannot �nd all eÆcient solutions.
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4 Classi�cation of the Literature

In this section, we describe the classi�cation scheme we used below to annotate the refer-

ences. We classify a paper according to four categories, namely combinatorial structure,

objective function type, problem type, and method applied. The �rst three pertain to the

description of the problem discussed in a given paper.

As indicated in Section 2, to classify a certain paper, we �rst have to identify the problem

discussed. This consists of the combinatorial structure (i.e. shortest path, knapsack, etc.),

the type and number of objectives (i.e. sum, bottleneck, or eventually something else),

and the type of problem (e.g. �nding the eÆcient set, max-ordering, lexicographic).

In addition to the identi�cation of the problem, we give the methodology used in the paper.

We can distinguish between exact and approximation (or heuristic) methods, where exact

means that the optimal solutions mentioned in the problem description are found, whereas

approximation means that only some solutions representing this set, not necessarily opti-

mal, are found.

So, we introduce a classi�cation using positions

Pos1=Pos2=Pos3=Pos4:

Below, we provide tables where the di�erent entries for each position are listed.
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Entries for Pos1: Combinatorial Structure

Entry Explanation

SP Shortest Path Problem

TP/TS Transportation resp. Transshipment Problem

AP Assignment Problem

QAP Quadratic Assignment Problem

MB/MI Matroid Base resp. Matroid Intersection Problem

TSP Travelling Salesperson Problem

ST Spanning Tree Problem

KP Knapsack Problem

DL/NL Discrete resp. Network Location Problem

SCP Set Covering Problem

PA Set Partitioning Problem

SA Satisfaction Problem

U Unconstrained Problem

SCH Scheduling Problem

VRP Vehicle Routing Problem

FLP Facility Layout Problem
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Entries for Pos2 do not need a table, they simply de�ne the number and type of objective

functions considered. We could restrict ourselves to the sum and bottleneck objectives, with

occasional exceptions explained where appropriate. Most of the papers that deal with other

types of objectives, are listed separately, because almost each f them would have required

its own entry here. Note that Q stands for an arbitrary number of objectives.

We note that sometimes two entries appear in one position. This means that one paper

falls under two categories or that the approach applied in the paper is a combination of

two methods. It may also happen that a single paper appears under several classi�cations

if more than one problem was considered, or several methods proposed.
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Entries for Pos3: Type of Problem

Entry Explanation

E Finding the eÆcient set

e Finding a subset of the eÆcient set

SE Finding supported eÆcient solutionsb� Finding an approximation of �

lex Solving the lexicographic problem (preemptive priorities)

MO Max-ordering problem

lexMO Solving the lexicographic max-ordering problem

U Optimizing a utility function

C/S Finding a compromise respectively satisfying solution

Entries for Pos4: Solution Method Applied

Entry Explanation

SP Exact algorithm speci�cally designed for the problem

LS/LC Label setting resp. label correcting method

DP Algorithm based on dynamic programming

BB Algorithm based on branch and bound

IA Interactive method

H Heuristic speci�cally designed for the problem

SA Simulated annealing algorithm

TS Tabu search algorithm

GA Genetic or evolutionary algorithm

GRASP Greedy randomized adaptative search procedure

GP Goal programming

2P Two phases method

A Approximation algorithm with worst case performance bound

LP Method based on linear programming
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5 Solution Methods for MOCO Problems

In the context of multiobjective programming (MOP), it is usual to distinguish the meth-

ods following the role of the decision maker in the resolution process. Information provided

by the decision maker often concerns his preferences. In \a priori mode", all the prefer-

ences are known at the beginning of the decision making process. The techniques used

seek for a solution on the basis of these parameters. The best example is given by goal-

programming methods. In \a posteriori mode" the set of all eÆcient solutions is generated

for the considered problem. At the end, this set is analyzed according to the decision

maker's preferences. Many approximation (heuristic) methods are conceived following this

resolution mode. In the \interactive mode", the preferences are introduced by the decision

maker during the resolution process. The methods involve a series of computing steps

alternated with dialogue steps and can be viewed as the interactive determination of a

satisfying compromise for the decision maker. Thus they require a high participation level

on the part of the decision maker. Practical problems are often resolved according to the

interactive mode.

The appropriate resolution mode is chosen considering the situation of the decision process.

The method involved in the process could be exact or approximation methods.

5.1 Exact Methods

Here we discuss some of the methods used to solve MOCO problems. Many of these

essentially combine the multiple objectives into one single objective. The most popular,

and the one used �rst, is weighted sum scalarization. The problem solved is

min

8<:
QX
j=1

�jz
j(x) : x 2 X

9=; ; (P�)

where 0 � �j � 1 and
PQ

j=1 �j = 1: Varying the weights, it is known that all supported

eÆcient solutions can be found, using results from [150] and linear programming [107].

The advantage of the method (especially for problems where the single objective version is

solvable in polynomial time) is that for each � 2 IRQ the problem (with sum objectives) is

only as diÆcult as the single objective counterpart of (MOCO). Parametric programming

can be used to solve the problem for all �.

The approach has been applied to many MOCO problems: see [348, 134] for shortest path,

[151, 63, 64, 6, 298] for the transportation problem, [57] for assignment, [164, 185, 202] for

network 
ow, [119, 283, 282] for spanning tree, [67, 264] for knapsack and [200] for location

problems. In many of these papers, the existence of nonsupported eÆcient solutions was

either not known, or ignored. When a sum and a bottleneck objective are present, the

minimization of the sum of the objectives has been discussed in [215] and [248] for general

combinatorial optimization problems.
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A second well known approach in multicriteria optimization is the compromise solution

method [352], where one tries to minimize the distance to an ideal point zI or to a utopian

point zU = zI � �e); where e = (1; : : : ; 1) 2 IRQ is the vector of all ones, and � > 0:. The

ideal point is de�ned according to the individual minima of each objective

zIj := min
x2X

zj(x):

Usually, the Tchebyche� norm is used as distance measure:

min

�
Q

max
j=1
f�jjz

j(x)� zIj jg : x 2 X

�
:

Unfortunately, when we consider sum objectives, this type of problem is usually INP -

complete, see e.g. [223] for references on the shortest path problem. This explains why it

is rarely used, even though, theoretically the whole of the eÆcient set can be found, see e.g.

[275]. Using another norm, e.g. an lp norm, p =2 f1;1g leads to nonlinear objectives, and

we found no reference using this approach for MOCO. Note that for p = 1, the compromise

solution method coincides with the weighted sums approach.

A special approach to multiobjective optimization is goal programming, see e.g. [147, 187]

for details. Here, for each of the objectives a target value (goal) is speci�ed by the decision

maker. The overall aim is to minimize the deviation from the speci�ed goals. This approach

is very popular and although it is sometimes considered a di�erent �eld from multiobjective

optimization we list the references here.

One approach that is popular for bicriteria problems is the use of ranking methods. First,

de�ne

zIj = min
x2X
fzj(x)g; j = 1; 2 (1)

and then

zNj := min
x2X

n
zj(x) : zi(x) = zIi

o
; j = 1; 2; i 6= j: (2)

The ideal point zI = (zI1 ; z
I
2) and Nadir point z

N = (zN1 ; ẑ
N
2 ) de�ne lower and upper bounds

on the objective values of eÆcient solutions. Then starting from a solution with z1(x) = zI1 ,

and �nding second best, third best, : : :, K-best solutions with respect to the �rst objective

until zN1 is reached, the eÆcient set can be determined. The approach has been used

for the shortest path problem [210, 34] and the transportation problem [63]. Note that

computation of the Nadir point zN in the bicriteria case essentially means the solution of

two lexicographic optimization problems.

A generalization of this approach to more than three objectives is not possible without

knowledge of the Nadir point, which is diÆcult to obtain when Q > 2, see [173]. Note

that a generalization of (2) (stated without proof in [210]) does not necessarily provide an

upper bound on objective values of eÆcient solutions. Not even considering lexicographic

optimization with respect to all permutations of objectives is guaranteed to produce upper

bounds on objective values of eÆcient solutions.
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Moreover, the ranking approach can be e�ectively used to solve max-ordering problems

with any number of criteria. First a weighting vector is chosen, then K-best solutions xK

are created according to the combined objective
P
�jz

j. When for the �rst time

min
k=1;:::;K�1

max
j=1;:::;Q

zj(xk) �
QX
j=1

�jz
j(xK)

an optimal solution is among fx1; : : : ; xKg. We refer to [119], [70] and [117] for applications

to the spanning tree, uniform matroid, and network 
ow problem, respectively.

Let us now look at methods adapted from single objective combinatorial optimization.

Among the very well established procedures is dynamic programming [17]. The method

applies to sequential decision problems, which admit a recursion formula such as

min

 
gN(xn) +

N�1X
k=0

gk(xk; uk)

!
;

where g is a cost function depending on the state variable xk and control variable uk at stage

k. Theoretically, this recursion can easily be adapted to the multiobjective case. Therefore

dynamic programming algorithms appear most often for problems, where they have been

established for the single objective versions earlier. These are the shortest path problem

[294, 273, 174, 133, 262, 313, 27, 134, 254], the knapsack problem [67, 30, 162, 163, 161],

the TSP [319, 87] and the transportation problem [97].

An implicit enumeration algorithm, which is widely used to solve hard combinatorial op-

timization problems is branch and bound. Its philosophy is to partition the problem into

mutually disjoint and jointly exhaustive subproblems. Bounds are computed for subprob-

lems and the process continues until an optimal solution is found. Much to our surprise,

we could only �nd a few papers applying branch and bound for MOCO { to the knapsack

problem, [331, 328, 341] and the max-ordering shortest path problem, [254]. The adapta-

tion of branch and bound poses one diÆcult problem. Since we deal with nondominated

vectors, bounds play the role of Nadir points for subproblems. Thus they may be diÆcult

to compute, or bad, i.e. not discarding enough feasible, noneÆcient solutions.

Many authors used available single objective methods for a particular problem and adapted

them to the multiobjective case. The more natural such a generalization is, the bigger the

number of papers pursuing such an approach. We note the following.

� Shortest Path: [128, 206] for label setting and [293, 320, 22, 220, 321, 40, 339, 42] for

label correcting methods

� Spanning Tree: [39, 119] for adaptations of Prim's algorithm and [282, 286] for the

greedy algorithm

� Assignment: [251, 327, 330] for the Hungarian method
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� Network Flow: [185, 186, 184, 74] for the out-of-kilter algorithm and [247, 25] for the

network simplex method

� TSP: [75] for Christo�des' algorithm

Finally, we explain a general framework for the exact solution of the problem of deter-

mining the eÆcient set for bicriteria (MOCO), the two phases method. The name goes

back to [325] and [330] and is telling: In the �rst phase SE is found using the scalariza-

tion technique, and solving single objective problems. The necessary weights are easy to

compute using information generated in the process. The second phase consists of �nding

the nonsupported eÆcient solutions by problem speci�c methods, using bounds, reduced

costs, etc. In fact, most of the algorithms known to the authors (with exception of the

shortest path problem) that are capable of determining the whole of E are some modi�-

cation of the two phases method, e.g. [186, 74] (Network Flow), [328, 341], (Knapsack),

[330] (Assignment) and [253](Spanning Tree).

5.2 Approximation Methods

These last two decades have been highlighted by the development and the improvement

of approximative resolution methods, usually called \heuristics and metaheuristics". In

the context of combinatorial optimization, the term heuristic is used as a contrast to

methods that guarantee to �nd a global optimum, such as the \Hungarian method" for

solving the assignment problem, or Johnson's method for 2-machine sequencing, or implicit

enumeration schemes such as branch and bound or dynamic programming.

A heuristic is de�ned by [259] as a technique which seeks good (i.e. near-optimal) solutions

at a reasonable computational cost without being able to guarantee either feasibility or

optimality, or even in many cases to state how close to optimality a particular feasible

solution is. Often heuristics are problem-speci�c, so that a method which works for one

problem cannot be used to solve a di�erent one.

In contrast, metaheuristics are powerful techniques applicable generally to a large number

of problems. A metaheuristic refers to an iterative master strategy that guides and mod-

i�es the operations of subordinate heuristics by combining intelligently di�erent concepts

for exploring and exploiting the search space [109, 235]. A metaheuristic may manipulate a

complete (or incomplete) single solution or a collection of solutions at each iteration. The

family of metaheuristics includes, but is not limited to, constraint logic programming, ge-

netic algorithms, evolutionary methods, neural networks, simulated annealing, tabu search,

non-monotonic search strategies, greedy randomized adaptive search, ant colony systems,

variable neighbourhood search, scatter search, and their hybrids. A comprehensive list of

1380 references on the theory and application of metaheuristics is presented in [235]. The

success of these methods is due to the capacity of such techniques \to solve in practice"

some hard combinatorial problems.

As in the single objective case, a reasonable alternative to exact methods for solving large-

scale instances of MOCO problem is to derive an approximation method. Such methods
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yield a good tradeo� between the quality of an approximation of the eÆcient solutions set

denoted by bE, and the time and memory requirements. Heuristics have been developed,

especially in the context of multiobjective scheduling problems [167, 168, 170]. But the

adaptation of metaheuristic techniques for the resolution of MOP problems, denoted by

multiobjective metaheuristics, MOMH, has mushroomed. Generally, the �rst adaptations

use the components known in the single-objective methods to deal with the eÆcient solution

concept, too. Chronologically, adaptations have concerned the genetic algorithms (GA,

1985), the neural networks (NN, 1990), the simulated annealing (SA, 1992), the tabu

search (TS, 1994), and more recently, the greedy randomized adaptive search procedure

(GRASP, 1998). The problem resolution spectrum of approximation methods is wide.

But this paper limits the description to the heuristics and MOMH methods in relation to

MOCO (and related) problems.

Two main approaches appear in these methods. The �rst is based on the principle of search

directions. The second approach takes advantage of information carried by the population

of solutions, using the notion of domination.

� Methods of Local Search in Objective Space Starting from an initial solution,

the procedure approximates a part of the nondominated frontier corresponding to

the search direction � given.A local aggregation mechanism of the objectives, of-

ten based on a weighted sum, produces the e�ect to focus the search on a part of

the nondominated frontier. The principle is repeated for several search directions

to approximate completely the nondominated frontier. Following the methods, the

directions can be de�ned a priori [325, 98], guided [99, 124] or aleatory [52, 221].

At any time the search mechanism uses only one solution and an iteration tries to

attract the solution generated towards E along direction �. The eÆciency of theses

adaptations is strongly dependent of the de�nition of �.

� Population based methods Contrary to the �rst approach, where only one individ-

ual is attracted toward the nondominated frontier, here all the population contributes

to the evolution process toward the nondominated frontier. By maintaining a popula-

tion of solutions, such a method can search for many eÆcient solutions in parallel via

self adaptation and cooperation. Self adaptation means that the individuals evolve

independently while cooperation implies an exchange of information among the in-

dividuals. This characteristic makes population-based methods very attractive for

solving multiobjective problems. Most operational procedures are based on genetic

algorithms. For example, a list maintained on the WWW [35] counts more than 320

papers only for multiobjective genetic algorithms. However, few of them concern the

resolution of MOCO problems.

It is not easy to draw a framework wide enough to classify all the collected contributions as

they are too varied. Moreover the authors carry on with the development of their methods

following the experience acquired. We only suggest some guidelines:

� A �rst distinction concerns the case of a general method versus a dedicated method.

With some minor adaptation (de�nition of a solution, neighbourhood structure, etc.)
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into the implementation, the general methods are able to be applied to a wide variety

of problems (for example [279, 221, 325, 52, 99, 124]). The speci�c methods have

been designed for particular MOCO problems as e.g. [168] or result from a strong

customization of a general method as [98].

� A second distinction is the interaction mode. The di�erentiation refers to the a priori

mode, the interactive mode [324, 130, 4], and the a posteriori mode [279, 221, 325,

52, 99, 124].

� The kind of method is the third distinction: We can separate the local search based

procedures (SA, TS, GRASP), population based procedure (GA, EA), speci�c pro-

cedures (e.g. stochastic methods) and hybridization.

� The last distinction refers to technical components integrated in the procedure. For

example, the identi�cation of the kind of initial solutions used by the method (only

feasible solutions, infeasible solution allowed, a randomly chosen feasible solution, a

constructed solution, a single solution or multiple solutions allocated to one step of

the search process, etc.).

An overview of the approximation methods is now presented.

5.2.1 Simulated Annealing

The use of simulated annealing as a technique for MOP problems was discussed �rst in

Sera�ni [287]. When solution x1 is compared with solution x2 according Q objectives

zj(x); j = 1 : : :Q, and where �zj is the di�erence between solution x1 and x2 in the

objective j, three situations are possibles:

Case 1: 8j �zj � 0

Case 2: 9j; j 0 �zj < 0 and �zj
0

> 0

Case 3: 8j �zj � 0

The main idea of using SA for solving MOP problems consists in using a weighted norm

component in the acceptance of a solution of lower quality (cases 2 and 3).

In [332, 325], an independent SA process is de�ned using a direction �. A scalarizing

function s(x; �) =
P

j=1:::Q �jz
j(x) is used to compute the di�erence �s = s(x2; �)�s(x1; �)

between two solutions. Then let us consider a current solution xt and y 2 N (xt), a solution

randomly selected in the neighbourhood N (xt) of xt. In computing �s for y and xt, a

strategy consists in the following decisions:

a) If �s < 0 then xt+1  y:

b) If �s � 0 then xt+1  y with probability p and xt+1  xt with probability 1� p
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Other alternative rules for the probability of accepting a new solution have been suggested

and discussed in [287]. The set of potential eÆcient solutions in direction � is updated

except if �zj � 0 8j. A feasible initial solution x0 is built at random [325] or using a

greedy algorithm according the search direction [322]. Several lists of potentially eÆcient

solutions cE1,
cE2,

cE3; : : : are generated according to di�erent weighting vectors �
1; �2; �3; : : :

and merged to provide bE.
In the method of [52], the main di�erences with the previous SA adaptation concern the

management of weights and the consideration of a set of current solutions. Here, each

solution in this set is \optimized" iteratively following the same mechanisms explained

above (neighbouring solutions that may be accepted according a probabilistic strategy).

But the weights are tuned dynamically in such a way that a solution will tend to move away

from the other eÆcient solution. This will hopefully lead to an approximation uniformly

spread along the nondominated frontier. Details about general procedures and algorithmic

aspects are discussed in :

� [325, 332]: an SA adaptation, called MOSA

� [324]: MOSA in an interactive way

� [52, 131]: an SA adaptation, called PSA

� [130]: PSA in an interactive way

5.2.2 Tabu Search

The �rst papers describing the use of TS as technique for solving MOP problems dealt

with a single objective strategy. In [54] a family of (P�) problems are solved to generate a

subset of dSE. In [136] the method consists in solving a sequence of single objective problems
considering in turn each objective zj associated with a penalty term. More recently, other

tabu search approaches capable of generating both supported and nonsupported eÆcient

solutions have been discussed.

In [99], principles of the TS method have been extended to determine a good approximation

of E. This TS adaptation uses the utopian point zU as point of reference with a scalarizing

function s(x; �) to browse the nondominated frontier. Considering an iteration t and xt, a

current solution and its (sub)neighbourhood N (xt) obtained according to a move de�ned

in relation to the feasible set of the considered problem. At each iteration, zU is updated

according to the values z(x) for all x 2 N (xt). The new current solution xt+1 is the best non

tabu solution according to the current search direction following s(x; �). A tabu memory

connected with the objectives and based on an improvement measure of each objective

is suggested. This structure memorizes the improvement measured for each objective

(indi�erence, weak improvement, strong improvement). It is used to update the search

direction in order to browse, in an equilibrium way, all the eÆcient frontier. Intensi�cation,

diversi�cation and tabu daemon (usually aspiration criteria) are discussed in the MOP

context. A new direction is then de�ned by giving more importance of the improvement

obtained for each objectives (indi�erence, weak improvement, strong improvement).
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In [2], two weight vectors �a; �b belonging to the canonical basis of IRQ are selected at each

iteration. They correspond to the two worst objectives a and b according to the decreasing

values of the ratios zj(xt)=zIj ; j = 1; : : : ; Q, where xt is a given current solution. Then new

weights are randomly generated for (�a; �b).

In [124] a set of \generation solutions", each with its own tabu list is considered. These

solutions are dispersed along the objective space in order to allow a search in areas of

the nondominated frontier. Weights are de�ned for each solution to force the search into

a certain direction of the nondominated frontier and away from other current solutions

that are eÆcient with respect to it. Diversi�cation is ensured by the set of generation

solution and a drift criterion. Details about general procedures and algorithmic aspects

are discussed in :

� [99, 100]: a TS adaptation, called MOTS

� [124, 125]: another TS adaptation, also called MOTS

� [2]: a hybrid resolution process based on TS and GA

� [4]: a hybrid and interactive resolution process based on SA and TS

5.2.3 Genetic Algorithms (Population-Based Methods)

Since VEGA (vector evaluated genetic algorithm) in 1985 [279], many procedures based on

genetic algorithm principles have been developed to deal with multiple objectives (multiple

objective genetic algorithm [88], nondominated sorting GA [296], niched Pareto GA [140],

MOGA [221], GA based on a min-max strategy [36, 38]). Signi�cant progress in the litera-

ture concerns corrections of shortcomings observed in previous algorithms and propositions

of new algorithmic primitives to generate a better approximation of E. For example, [111]

suggests the use of non-domination ranking and selection to move a population toward

the nondominated frontier. This concept is used to avoid the phenomenon of producing

solutions only on the extremity of the nondominated frontier, where one performance is

optimal. The author also suggested a kind of niche method to keep the GA from converging

to a single point on the frontier. This concept is used to avoid a premature convergence of

the algorithm and maintain individuals all along the nondominated frontier. These ideas

have been implemented later in [88], and [140]. [221] presented a procedure not based

on the Pareto ranking principle but on a weighted sum of objective functions to combine

them into a scalar �tness function. The weight values are generated randomly for each

iteration ensuring a good distribution of solutions along the nondominated frontier. Others

papers concerning GA and EA (evolutionary algorithms) based procedures are discussed

in [16, 37, 35, 156, 122, 121, 154].

5.2.4 Other Approaches and New Developments

Other adaptations of heuristic procedures are found like dedicated heuristics [168], a

stochastic search method [306], neural network based methods [199], [303] or the GRASP
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method [102]. We mention also a paper concerning a comparison of neighbourhood search

techniques for MOP [204].

After a large interest in the extension of usual metaheuristics (SA, TS, GA, etc.) to the

multiobjective context, actual research takes various orientations.

Some hybrid methods, marrying for example TS and GA [2], or SA and TS [4] are designed.

The idea here is to take advantage of the power of hybrid concepts in order to obtain a

more eÆcient whole.

Other research adds new components to MOMH in order to grasp the speci�cs of MOCO

problems, for example in using a \generation set" in tabu search [124]. Also a greedy proce-

dure is now often used, for example for the generation of initial solutions [98, 101, 154, 322].

As a greedy initial solution is closer to the nondominated frontier than a randomly cho-

sen feasible solution, the solution procedure saves time during the approximation process.

Using the �rst phase of the GRASP method, greedy randomized initial solutions are also

used [102].

Recently some research exploits available information about the problem to be solved in

order to reduce the search domain. Such knowledge is exploited to focus the search process

on promising areas in terms of eÆcient solutions. For example domination situations are

used to prune part of the domain proved to be void of eÆcient solutions [98].

6 Annotation of the Literature Problem by Problem

In this section we will give an annotated overview over the literature. We found it most

convenient to organize the section according to the combinatorial structure of MOCO

problems. Thus, we introduce eleven subsections, dealing with the most important com-

binatorial problems, in terms of the number of papers available. In a last subsection we

brie
y mention other MOCO problems that have appeared in papers, but to a de�nitely

smaller extent.

As an exception to this order, we brie
y mention PhD theses in the subject, since they

are also witness of the growing research e�orts in the �eld. An increasing number of

dissertations have been written on MOCO in recent years. Those that we found were not

all dedicated to MOCO speci�cally, but use some MOCO problems in another context: [42]

deals with the multiobjective shortest path problem for routing of hazardous material, [195]

contains information about bicriteria spanning trees, [36] is about evolutionary techniques

in multiobjective optimization, and [72] presents some general results for certain general

MOCO problems. Among those which are speci�cally dedicated to MOCO problems we

mention [84] and [184] on the 
ow problem, [139] and [314] in scheduling. [125] explores the

use of metaheuristics for MOCO, and [325] introduces the two-phases method and develops

it for the assignment and knapsack problem. Finally fast approximation algorithms for

MOCO problems are discussed in [269].
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6.1 Shortest Path Problems

The multiobjective shortest path problem consists in �nding in a network with vector

weights on the edges \optimal" paths. The papers we found usually consider the problem

with speci�ed starting and ending node, or from a given starting node to all other nodes.

The shortest path problem belongs to the most widely studied MOCO problems. There

exists a survey on the topic [326] and a bibliography on the Internet, containing an abstract

collection [209]. Our list contains all papers mentioned there, too.

Most problems in this category are INP -complete: See [286] for the eÆcient paths problem

with two sum objectives, [128] for intractability of the same problem. In [128] ten bicriteria

shortest path problems are introduced and analyzed. In [77] an example shows that a result

from [206] about the connectedness of eÆcient solutions is wrong. INP -completeness of the

max-ordering problem is mentioned in [223]. However, the multicriteria shortest path

problem is an exceptional kind of problem, because a fully polynomial time approximation

scheme is known, as presented in [343].

A variety of algorithms based on dynamic programming (e.g. [294, 134, 174]), label setting

[128, 206] and label correcting methods (e.g. [293, 22, 220]) are available, with computa-

tional experiments [22, 293, 142] comparing di�erent methods. In the biobjective case an

algorithm based on ranking paths has also been proposed, [210, 34]. The general idea is

also applicable to other MOCO problems with two objectives, as explained in Section 5.

Besides, several papers present formulations of speci�c problems in terms of multicriteria

shortest paths, or consider other variations of the classical problem.

� P/2-
P
/E/LC: [293], [320], [22]

� P/2-
P
/E/LS: [128]

� P/2-
P
/E/2P,LC: [220]

� P/2-
P
/E/SP: [142], [34]

� P/2-
P
/E/DP: [134], [53]

� P/2-
P
/ bE/A: [128]

� P/1-
P

1-max/E/SP: [207], [128], [239]

� P/2-
P
/C/IA: [51], [85]

� P/2-
P
/U/SP: [134]

� P/2-
P
/U/IA: [224]

� P/2-
P
/ne/IA: [41]

� P/3-
P
/E/LC: [96]
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� P/3-
P
/C/IA: [96]

� P/Q-
P
/SE/SP: [348], [134]

� P/Q-
P
/E/LS: [206]

� P/Q-
P
/E/LC: [321], [40], [339], [42]

� P/Q-
P
/E/DP: [294], [273], [174], [133], [255], [313]

� P/Q-
P
/E/SP: [301],[10]

� P/Q-
P
/ bE; cMO/A: [343]

� P/Q-
P
/C/IA: [135]

� P/Q-
P
/C/SP: [346]

� P/Q-
P
/U/DP: [27]

� P/Q-
P
/U/SP: [216], [9]

� P/Q-
P
/MO/DP,BB: [254]

� P/Q-
P
/MO/LC: [223]

� P/Q-
P
/MO/SP: [236]

� Other particular multiobjective path problems: [49], [350], [48] [50], [274], [62], [115],

[83], [47], [46]

� Problems formulated as multiobjective shortest path problems: [3], [205], [208], [211]

6.2 The Assignment Problem

The multiobjective assignment problem is the following

\min " Cx

subject to
nX

j=1

xij = 1 i = 1; : : : ; n

nX
i=1

xij = 1 j = 1; : : : ; n

xij 2 f0; 1g

(MOAP)

Total unimodularity of the constraint matrix guarantees that an optimal integer solution

is found by linear programming methods, when only a single objective is considered. With

the Hungarian method (see e.g. [225]), a very eÆcient algorithm is available.
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The (MOAP) literature is again focussed on the determination of (supported) eÆcient

solutions. In fact, (MOAP) belongs to the �rst MOCO problems studied. However, the

�rst papers only deal with SE, using convex combinations of objectives [57], or goal pro-

gramming [28]. However, nonsupported eÆcient solutions exist [330], and the problem is

INP -complete [286] and #IP -complete [229] and an exponential number of eÆcient solutions

may exist.

Exact algorithms to determine the whole set E [251, 330] have been developed. They

make use of single objective methods and duality properties of the assignment problem.

Recently we can also observe the application of metaheuristic techniques for the problem

[322]. Quite a few papers deal with a special version of the problem: [28, 347, 15]. Other

papers deal with variations of the problem or applications. These cannot really be classi�ed

according to the problem and methodology applied or discussed in detail. We list them

separately.

� AP/2-
P
/SE/SP: [57]

� AP/2-
P
/E/2P,SP: [327], [330], [251]

� AP/2-
P
/ bE/SA: [322]

� AP/2-
P
/lex/SP: [245]

� AP/2-
P
/C/IA: [243]

� AP/4-
P
/SE/SP: [214]

� AP/Q-
P
/E/SP: [284]

� AP/Q-
P
/ bE/SA: [311]

� AP/Q-
P
/S/GP: [28], [297]

� AP/Q-
P
/C/IA: [108]

� Papers related to assignment models: [183], [188], [193], [222] [242], [347], [353], [149],

[212], [213], [8], [12], [13] , [241], [15]

6.3 Transportation and Transshipment Problems

Both are generalizations of the assignment problem, where the right hand side of the

constraint may take positive integer values, and the variables any nonnegative integer.

The transshipment problem has transshipment nodes in addition to demand and supply

nodes. The transportation problem is given below.
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\min" Cx

subject to
nX
j=1

xij = ai i = 1; : : : ; m

mX
i=1

xij = bj j = 1; : : : ; n

xij � 0; integer

(MOTP)

The transshipment problem has transshipment nodes in addition to supply and demand

nodes. Again, in the single objective case total unimodularity and integer right hand sides

imply that an optimal solution of the linear relaxation is also an optimal solution of the

problem itself. Making use of this fact, most of the papers use a scalarization by means of

weighted sums or goal programming approaches.

� TP/2-
P
/SE/LP: [6], [299]

� TP/1-
P

1-max/SE/LP: [298], [6], [252], [68]

� TP/1-
P

1-max/S/GP: [191]

� TP/Q-
P
/se, S/IA: [32], [262]

� TP/Q-
P
/SE/LP: [290], [151], [63], [64]

� TP/Q-
P
/SE/DP: [97]

� TP/Q-
P
/S/SP: [55]

� TP/Q-
P
/ bE/GA: [106],[105]

� TS/Q-
P
/S/GP: [218], [178], [179], [302]

� TP/Q-
P
/C/SP: [194]

� Other related problems and applications: [165], [233], [182], [7], [234], [257], [166],

[305], [192], [307], [244], [323]

6.4 Network Flow Problems

The network 
ow problem is a problem that actually is on the borderline between combi-

natorial and linear optimization. Its formulation is

\min" Cx

subject to Ax = 0

l � x � u
(MOFP)
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where A is the node-arc incidence matrix of a network. It is well known that with a single

objective there always exist integer optimal solutions of the LP, due to the unimodularity

of A, which is the reason for considering it a combinatorial problem.

In the multiobjective case we have to distinguish between the linear and the integer case.

In the linear case, we know that SE = E. We deal with the papers in their relevance

for the integer case. [267] demonstrated that an exponential number (in the number of

node of the network) of extreme points among SE may occur. Most of the algorithms

in the literature generalize methods for the single objective 
ow problem, e.g. the out-of-

kilter method [185, 202] or elements from network simplex [247, 25]. The algorithms for

MO and lexMO problems [74, 117] are based on ranking approaches. For linear bicriteria

network 
ow problems algorithms approximating the eÆcient set to any given precision �

are presented in [268, 23, 95] and generalized to bicriteria quadratic network 
ow problems

in [351].

� F/2-
P
/SE/SP: [185], [164], [247], [202]

� F/2-
P
/dSE/A: [268], [95], [271], [23]

� F/2(3)-
P
/E/SP: [186], [184], [227], [228], [141], [285]

� F/Q-
P
/SE/SP: [164]

� F/Q-
P
/E/SP: [74]

� F/Q-
P
/lex/SP: [25], [24]

� F/Q-
P
/MO/SP: [117]

� F/Q-
P
/lexMO/SP: [74]

� F/Q-
P
/C/IA: [86], [84]

� Other network 
ow problems: [351], [226], [208], [258], [7], [165]

6.5 The Spanning Tree Problem

The spanning tree problem is to �nd among all spanning trees of a given graph one that is

\minimal" with respect to the edge weights. This problem appears in network design. It

is known that the problem to �nd eÆcient solutions is INP -complete [26] and intractable

[119]. INP -completeness also holds for the max-ordering problem [119]. The complexity

status of a variety of multiobjective spanning tree problems, involving other than the

typical sum and bottleneck objectives is studied in [26, 60, 59]. The algorithms that have

been proposed to �nd eÆcient trees range from minimizing weighted sums [283, 282, 250]

over generalizations of Prim's [39] and Kruskal's [283] method to approximation [119] and

genetic algorithms [354]. A counterexample to a suÆcient condition for a spanning tree to

be eÆcient [39] has been given in [119]. As far as local search methods are concerned, it is

24



important to note that, de�ning trees to be adjacent, if they have n� 2 edges in common

can imply that the set of eÆcient spanning trees is not connected [77].

� ST/2-
P
/SE/SP: [119]

� ST/1-
P

1-max/SE/SP: [250]

� ST/2-
P
/E/2P,SP: [253]

� ST/2-
P
/ bE/H: [119], [5], [155]

� ST/Q-
P
/SE/SP: [283], [282]

� ST/Q-
P
/E/SP: [39]

� ST/Q-
P
/ bE/GA: [354]

� ST/Q-
P
/MO/SP: [119]

� Other spanning tree problems with di�erent objectives: [59], [60], [145], [146]

6.6 Matroids and Matroid Intersections

The matroid base problem is a generalization of the spanning tree problem. With a single

objective it can be solved by the greedy algorithm. A generalization of this result for

�nding eÆcient bases is given in [286]: For each eÆcient basis B, there exists a topological

sorting of the elements (e.g. edges of a graph), such that the greedy algorithm �nds B.

A topological sorting is a total or linear order that respects the partial order given by the

vector weights. The problem is INP -complete, as was shown e.g. in [286, 70]. A matroid

intersection problem is to �nd a set of minimal weight which is independent with respect

to two matroids.

Few papers deal with these problems in the multiobjective case. We identi�ed the following,

mostly presenting exact algorithms, theoretical properties [112, 342], and complexity issues

[70, 286]

� MB/2-
P
/SE;E/SP: [70], [286]

� MI/Q-
P
,1-max 1-

P
/Lex/SP: [355]

� MB/Q-
P
/MO/SP: [70], [112]

� MB/Q-
P
/dMO/H: [342]
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6.7 The Travelling Salesperson Problem

In combinatorial optimization, the TSP is widely studied. To �nd a shortest tour among

n cities is INP -complete even with one objective, for both the sum and bottleneck case.

Moreover, the number of eÆcient solutions is expected to be exponential, see [82]. For

approximation results, we refer to [75], where limits on the possibility of approximating

eÆcient solution by one heuristic solution are derived and generalizations of the tree and

Christo�des heuristic are analyzed.

These might be reasons why investigation of the multiobjective version is not so common,

and why research concentrates on exact algorithms based on dynamic programming as well

as heuristics. Some papers discuss special versions or generalizations of the TSP, such as

various formulations of vehicle routing problems.

� TSP/1-
P

1-�1/E/DP: [87]

� TSP/1-
P

1-max/dSE/H [291]

� TSP/2,3-
P
/ bE/GA: [154]

� TSP/3-
P
/E/SP: [20]

� TSP/Q-
P
/E/DP: [319]

� TSP/Q-
P
/ bE/A: [75]

� TSP/Q-
P
/ bE/TS: [126]

� TSP/Q-
P
/ dMO/H: [114]

� Other versions of the problem, e.g. vehicle routing: [160], [46], [158], [304], [159],

[237], [238], [110], [138]

6.8 Knapsack Problems

The knapsack problem is one of the fundamental INP -complete combinatorial optimization

problems. Its multiobjective formulation is

\min " Cx

subject to
nX
i=1

aixi � b

xi 2 f0; 1g

(MOKP)

where all parameters are assumed to be positive integers. All papers that we found deal

with the problem to identify or approximate SE or E. Finding E or SE are obviously

1� denotes an objective de�ned by the products of weights
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INP -complete, too. Thus it is not surprising that the algorithms proposed are either based

on implicit enumeration methods such as dynamic programming [67, 162, 163, 161], branch

and bound [331, 328] or apply heuristic procedures, especially metaheuristics to approxi-

mate E [98, 123, 271, 272]. Some papers also deal with an extension to time-dependent

knapsack problems [162, 163]. An intreactive decision support system for the capital bud-

geting problem is proposed in [312].

� KP/2-
P
/SE/SP: [264]

� KP/2-
P
/SE/DP: [67]

� KP/2-
P
/dSE/H: [264]

� KP/2-
P
/E/2P,BB: [328], [331], [341]

� KP/2-
P
/ bE/TS: [98]

� KP/2-
P
/ bE/H: [272]

� KP/2-
P
/ bE/H: [271]

� KP/2-
P
/ bE/GA+TS: [2]

� KP/2-
P
/be/SA+TS: [4]

� KP/2,3-
P
/ bE/GA: [101]

� KP/Q-
P
/E/DP: [162], [163], [161]

� KP/Q-
P
/ bE/TS: [123], [124]

� KP/Q-
P
/ bE/SA: [333], [332], [52], [311]

� KP/Q-
P
/SE/IA: [66]

� KP/Q-
P
/U/DP: [30]

� KP/Q-
P
/S/GP: [18], [58], [157], [120]

6.9 Multiobjective Scheduling Problems

The scheduling problems constitute a particular category. Although these problems can

often be formulated using 0-1 variables, they have generally no particular structure. More-

over, they have a usual classi�cation de�ned according the shop organization which they

refer to (single machine, parallel machines, 
ow shop, job shop, open shop, etc.). Also, the

usual objective functions in scheduling have a speci�c sense (the makespan, the total 
ow

time, the tardiness, etc.).
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For example we look at [171]. Let us consider n jobs to be processed on a single machine at

time zero. Let pi and di denote the processing time and the due date of job i respectively.

Let

Ji : job i, i = 1; : : : ; n

Ci(�) : completion time of job i in schedule �

F (�) : total 
owtime of jobs in schedule �

Tmax(�) : maximum tardiness of schedule �


 : set of all possible sequences:

Then the objective is to �nd a schedule �� such that

f(F (��); Tmax(�
�)) = min

�2

f(F (�); Tmax(�))

where

F (�) =
nX
i=1

Ci(�); Tmax(�) = max
i
fmax(Ci(�)� di; 0)g

and f is any arbitrary nondecreasing function of F (�) and Tmax(�).

This problem is denoted by 1=di=f(
P
Ci; Tmax). A sequence � is eÆcient with respect to

total 
owtime and the number of tardy jobs if there does not exist a sequence �0 with

F (�0) � F (�) and Tmax(�
0) � Tmax(�) with at least one of the above holding as a strict

inequality.

We observe a constant interest on multiobjective scheduling problems during the last years,

because the consideration of more than one objective is more in line with the real context

of such practical problems. In a recent survey [316] more than one hundred are classi�ed

according the usual notation introduced by Graham extended by T'Kindt and Billaut

to the multiobjective case. Also, the approximate resolution algorithms for scheduling

problems and related problems (like [308], [219], [130], [170], [338]) often are inspired by

multiobjective metaheuristic methods developed for MOCO problems. For these reasons,

we mention actual developments for this category of problems but for more details about

multiobjective scheduling problems we refer to [139], [29], [316], [314].

� Single machine problems: [345], [171], [168], [172], [11], [169], (SCH/2/ bE/SA) [170],
[271], [219] (SCH/2/ bE/GA), [308] (SCH/Q/ bE/GA)
� Multiple machine problems: [21], [315], [318], [278], [143], [217]

� Surveys: [316], [317],

� PhD theses: [139], [314],

� Papers related to others scheduling or production management problems : cell for-

mation problem (SCH/Q/CS/TS) [136], resource constrained project scheduling

(SCH/Q/ bE/SA,TS) [338],
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6.10 Location Problems

Location planning is an active area of research. The objective in a location problem is

to �nd one (or more) locations, such that some objective, usually related to the distance

to a set of existing facilities is minimized or maximized. These objectives usually are the

weighted sum or maximum of individual distances. Moreover, location problems can be

divided into three categories, namely planar, network and discrete problems. In planar

location, the feasible set is (a subset of) the Euclidean plane. Network location problems

deal with a network of nodes and arcs, new facilities can be built either on the nodes only,

or also on arcs. Finally, for discrete location problems a set of potential sites is speci�ed.

Problems of the latter category are usually formulated as mixed integer programs. From

the point of few of MOCO, we will consider only network and discrete location problems.

For details about planar problems and single objective location problems, we refer to the

specialized literature, e.g. [181, 180] for surveys. We refer also to two reviews on the

topic in MOCO context, [45] and [260]. Most of the applications use a goal programming

approach.

� NL/1-
P
, 1-max/E/SP: [340]

� NL/Q-
P
/lex,E/SP: [118]

� NL/Q-
P
/E; SE/SP,IA: [265]

� NL/Q-
P
/E/SP: [129]

� NL/Q-
P
/MO,lexMO/SP: [79]

� DL/Q-
P
, Q-max/E/SP: [231]

� DL/Q-
P
/SE/SP: [200]

� DL/Q-
P
/lexMO/SP: [232]

� DL/Q-
P
/U,S/IA,GP: [201]

� DL/Q-
P
/S/GP: [14]

� Warehouse location: [80], [113], [190]

� Others and applications: [280], [281], [266], [261], [234], [189], [144], [295], [137]

6.11 The Set Covering Problem

The set covering problem is an INP -complete problem with applications in the location of

emergency facilities. Suppose there are m sites of potential emergency and n potential

locations for emergency facilities, incurring cost ci to build this site. Then the aim is to

select { at minimal cost { enough sites to cover all risks. Thus the problem is
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\min " Cx

subject to
nX
i=1

ajixi � 1 j = 1; : : : ; m

xi 2 f0; 1g

(MOSCP)

where aji = 1 if site j can be covered from location i, and all coeÆcients of C are assumed

positive. (MOSCP) has not gained much attention in the literature, and the main results

in one of the references [276] are wrong. [132] deals with a particular problem. Note also

that some of the problems discussed in the shortest path section 6.1 above and in the other

MOCO problems section 6.12 below deal with aspects of \covering".

� SCP/Q-
P
/E/SP: [276]

� SCP/Q-
P
/SE/SP: [56]

� SCP/2-
P
/ bE/GRASP: [102]

6.12 Other MOCO Problems

In the previous sections we have discussed the most important multiobjective combinatorial

optimization problems. Besides these there is some literature on other problems: Some

classical problems have been discussed only in a few papers, others deal with problems

that are so speci�c that they would require their own category. All of these are discussed

summarily here.

In [116] a lexicographic 
ow problem is used to determine minimal cuts with a minimal

number of arcs in a network. [292] deals with the one dimensional cutting stock problem

with two objectives in a lexicographic context (priorities on the objectives). Both an exact

and a heuristic algorithm are given. In [1] an interactive approach is proposed to solve the

multiobjective cutting stock problem.

We also found few references [198, 152] on the quadratic assignment problem in a multi-

criteria context. This is closely related to the facility layout problem which is discussed

in a number of papers. They actually use approaches based on the quadratic assign-

ment problem: [263, 65, 89, 334, 197]. Other references on the facility layout problem are

[152, 289, 176, 344]

Many of the papers listed in the surveys [44] and [43] about multiobjective transportation

and routing problems also are among these speci�c problems. A variety of multiobjective

routing problems is also discussed in [19]. For network design problems we refer to [230,

92, 90, 196, 148, 91, 93, 94, 153, 240, 104]. Some other problems which are combinatorial

in nature have been discussed in [54] (the channel minimization problem) and in [203].
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7 Open Questions and Conclusions

Our survey of the state of the art in multiobjective combinatorial optimization clearly

identi�es potential areas of research and weak points in the existing literature. We brie
y

outline these below.

7.1 General Remarks

1. Three is more than two plus one. Many of the existing methods concern the biobjec-

tive case (to various extents, depending on the problem). The multiobjective case is

still hard to be solved, not only due to the computational complexity, but also due

to the higher number of eÆcient solutions of the MOCO problem.

2. Theoretical results. Very few theoretical results are available about the properties of

MOCO problems, like characterization of eÆcient solutions, the number of eÆcient

solutions (supported and nonsupported) both in the worst case or on average, the

topology of the nondominated frontier, the elicitation of lower and upper bounds, etc.

Taking into account the fact that MOCO problems are almost always very hard in

terms of computational complexity the need for a thorough theoretical understanding

of MOCO problems is all the more evident. It is also clear that a better theoreti-

cal comprehension of these problems will contribute to the development of eÆcient

solution methods.

3. Adaptation of well known methods versus new methods. Many of the current ex-

tensions of methods useful for single objective optimization to the multiobjective

situation have exhibited some diÆculties for �nding E. One such example is the the

VEGA method. MOCO problems have speci�c properties and need speci�c tech-

niques to cope in an eÆcient way with these. Some adaptations such as MOSA,

PSA, etc. could produce good results on a particular problem like the knapsack

problem. The question is, whether such method show good performances when ap-

plied to other problems. From the evolution of these methods over the last years,

one can have some doubts. No comparative studies on the performance of solution

strategies like branch and bound or dynamic programming on a variety of problems

are available.

4. Applications of MOCO. Few papers refer to practical application of MOCO prob-

lems. Moreover, when the MOCO problem is extracted from a practical context, the

resolution is often reduced to a single objective problem. For example, this is the

case to the channel minimization problem of [54], but also for a lot of scheduling

problems (see [314]). Thus there is a need to attract the attention of decision makers

to the area of MOCO and solve the problems arising in practice in a real multicriteria

context.
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7.2 Remarks on Exact Methods

1. Two versus many criteria. Especially for exact methods, i.e. those identifying the

whole of E there is a huge gap between the bicriteria and the general case. Many

procedures have been developed especially for bicriteria problems and cannot be

modi�ed to deal with the general case, a remark that is especially true for the two

phases method. This gap is probably caused by the lack of theoretical understanding

of MOCO problems with three or more objectives, as pointed out above.

2. The two phases approach. As far as we know there are no procedures to compute

supported eÆcient solutions in the multiobjective case. This would be of course the

�rst step to an application of the two phases method in three or more criteria MOCO.

3. Computation of bounds. For the e�ective adaptation of some bicriteria methods

to the general case, knowledge of good lower and upper bounds on the eÆcient set

is needed. The computation of the Nadir point (which is pretty easy in bicriteria

problems) is an unsolved problem in general. Another research area would be to

consider the computation of sets of solutions that constitute a set of lower and upper

bounds on E. The lack of such results makes it impossible to adapt certain procedures

to general MOCO at this time.

4. Problems not treated as MOCO. There is a wide variety of combinatorial problems

that have never been investigated in a multicriteria context, as is evident from the

problems list in Section 6.

5. Level set approach. An important concept in MOP is that of level sets. It can be

seen as a general framework for MOP, which allows a characterization of eÆcient

solutions [76], as well as interactive procedures. Applications to MOCO could be

promising but are not existing now.

7.3 Remarks on Heuristic Methods

1. A real multiobjective metaheuristic for MOCO. Closely related to the remark about

adaptation of single objective methods is the question of multiobjective metaheuris-

tics to solve MOCO problems. We are not convinced of the eÆciency of a real

metaheuristic in the sense of a meta-method able to solve eÆciently any MOCO.

Each problem has its own speci�cs and a general MOMH cannot cope with all of

these. One research direction is the identi�cation of techniques for which the com-

putational results obtained are promising. For example, greedy algorithms are more

and more used in procedures for the generation of initial solutions.

2. Methods for obtaining quickly a �rst approximation of E. If a heuristic method

de�ned according to the \a posteriori mode" is available, it is easy and alway possible

to transform it to the \interactive mode". The main challenge for heuristic methods

is then how obtain very quickly a good approximation of the whole nondominated
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frontier. With such an approximation, the procedure could then be to continue either

in increasing the approximation quality for the nondominated frontier or in focusing

the approximation on a part of the nondominated frontier following the preference

of a decision maker in the context of an interactive procedure.

3. The quality of approximated solutions. This is an important question in the context

of approximation methods: How to measure and compare approximations, and how

to evaluate the quality of an approximation, especially for problems with multiple

objectives? Ideas have been put forward in [322, 127, 277]. Some attributes like

coverage, uniformity and cardinality to judge the approximation to be satisfactory

or not by a decision maker have been de�ned. Such attributes are also useful when

de�ning stopping rules in approximation methods, and again when the tuning of

heuristic algorithms is examined. New attributes are then especially welcome.

4. Using bounds and domination conditions to reduce the search space. In the contin-

uation of the previous remark, all available information to bracket and reduce the

decision space is welcome. Such information could be used for scanning the \core"

of the problem, identifying and discarding irrelevant aspects of the problem inves-

tigated. Information could be derived from the decision space as well as from the

objective space.

5. Combination of exact and heuristic methods. For some MOCO problems, the resolu-

tion could be decomposed in several steps. For example, in a �rst step the procedure

could try to identify the supported eÆcient solution using an exact method. Infor-

mation could be extracted from the �rst results to reduce the search space and in a

second step try to identify the nonsupported solutions by a heuristic method. Such

a \semiexact" method is especially attractive for problems that can be eÆciently

solved as single objective combinatorial problems. Note that usually the cardinality

of the sets SE is much smaller than the number of nonsupported eÆcient solutions.
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