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Abstract

We examine the feasibility polyhedron of the uncapacitated hub location problem
(UHL) with multiple allocation, which has applications in the fields of air passenger
and cargo transportation, telecommunication and postal delivery services. In partic-
ular we determine the dimension and derive some classes of facets of this polyhedron.
We develop some general rules about lifting facets from the uncapacitated facility
location (UFL) for UHL and projecting facets from UHL to UFL. By applying these
rules we get a new class of facets for UHL which dominates the inequalities in the ori-
ginal formulation. Thus we get a new formulation of UHL whose constraints are all
facet—defining. We show its superior computational performance by benchmarking

it on a well known data set.
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1 Introduction

The Uncapacitated Hub Location Problem (UHL) with multiple allocation involves so
called transshipment or hub nodes, which have the function to collect commodities from
their origin, transfer them to other hubs and distribute them to their final destination.
The problem is to locate the hub nodes and to route the commodities through the hubs.
As we allow multiple allocation, commodities having the same origin (or destination) may
be allocated to different hubs (see Figure 1). The objective is to minimize the total costs,
which consist of transportation costs per unit and fixed charge costs for establishing hubs
at nodes, under the constraint that all commodities have to be routed via one or two hub

nodes .

During the last years, different kinds of hub location problems have been discussed in the
literature (for an overview of some basic problems see |Campbell, 1994]). Main applica-
tions of hub location problems concern air passenger and cargo transportation, telecom-
munication and postal delivery services. The main types of problems which are dealt
with are p—hub location, where the number of hubs to be located is fixed to p (see e.g.
[Skorin-Kapov et al., 1996]), and fized charge hub location problems, where this number
is unlimited, but a certain fixed cost has to be paid for establishing a hub facility (see
e.g. [Ebery et al., 1998], [Campbell, 1994]). Furthermore one distinguishes between single
allocation (see e.g. [Ernst and Krishnamoorthy, 1996], [O’Kelly, 1987]) and multiple al-
location (see e.g. |Ernst and Krishnamoorthy, 1998|) problems. In the single allocation
case all commodities having the same origin (or destination, respectively) must be alloc-
ated to the same first (or second, respectively) hub, while in multiple allocation they can
be allocated to different hubs.

Very little is known about the polyhedral aspect of hub location problems. For the single
allocation problem with two fixed hub locations, the allocation part can be written as a
linear program and therefore solved in polynomial time [Sohn and Park, 1997|, while in
case of three fixed hub locations, the allocation part is NP-hard and some facets of the

feasibility polytope were computed [Sohn and Park, 1996|.

UHL is NP-hard because it generalizes the One- and Two-Level Uncapacitated Fa-
cility Location Problems (UFL and TUFL) which are known to be NP-hard (see e.g.
|Cornuéjols and Thizy, 1982|, [Aardal et al., 1996]).

The remainder of this paper is organized as follows: in Section 2 we will present the mixed
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Figure 1: Example for a hub network (multiple allocation)

integer formulation of UHL.

In the following Section 3 we compare UHL with the uncapacitated facility location prob-
lem. We determine the dimension of the feasibility polytope of UHL and develop a general
rule how facets from UFL can be lifted to obtain new facets of UHL. These new facets
can be used for a tighter and more compact formulation of UHL, which is also presented

in Section 3.

In addition we consider the other direction and show how facets from UHL can be pro-
jected to UFL in Section 4.

We show the efficiency of a new facet-based UHL formulation by benchmarking it on a
well-known data set and comparing its performance with different other formulations in

Section 5. Finally we give some conclusions in Section 6.

2 Mixed Integer Formulation of UHL

Let IC be a set of commodities and H be a set of potential hub nodes. For every commodity
k € K and every ordered pair of hubs (i,5) € H x H let C;;; denote the transportation
costs for routing commodity & via hubs ¢ and j (in this direction). Moreover, F; represents

the fixed costs for establishing node j (j € H) as a hub node.

Let Y; (j € H) be equal to 1, if node j is established as a hub node and 0 otherwise; and
let X >0 (4,7 € H,k € K) determine the fraction of commodity & which is routed via
first hub node 7 and second hub node j.
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We want to determine which hub nodes should be opened and to which hubs each com-
modity should be assigned such that the total costs are minimized under the constraint

that all commodities have to be routed via one or two hubs.

The Uncapacitated Hub Location Problem with multiple allocation can be modeled as

the following mixed—integer linear program [Skorin-Kapov et al., 1996]:
(UHL)

i€H jEH kek JEH

s.t. YY) Xip=1 forallkek, (1)

1€H jEH
Y Xy <Y forallie H,keK, (2)

JEH
Y Xy <Y; foralljeH,kek, (3)

1€EH
Xijk >0 foralli,jeH, kel (4)
0<Y;<1 foralljeH, (5)
Y;eZ foralljeH. (6)

In the objective function we minimize the total (variable plus fixed) costs. All flow of
every commodity k has to be routed via one or two nodes ¢ and j (1), but only if i and j
are hub nodes ((2) and (3)).

We note that there always exists an optimal solution of UHL in which all Xj;;, variables

are integer—valued because there are no capacity constraints on the hubs.

Let q := |K| and n := |H|. UHL involves n* ¢ + n variables, n of them are binary. There

are (2n + 1)q linear constraints to be satisfied.
For sake of simplicity let X := (X;jx)ijenrexc and Y = (V) en.

Furthermore let Xy g be the set of feasible solutions of UHL, that is Xy := {(X,Y) €
R™+7 : (XY ) satisfies (1) — (6)}, Zyny be the set of feasible integral points of UHL,
that is Zypr = {(X,Y) € Xypr : Xijr € {0,1} for all 4,5 € H,k € K}, and let Pyyy be
the polyhedron obtained by the convex hull of Zy ., that is Pyyp := conv(Zygyp)-
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3 Lifting facets from UFL to UHL

The (One-Level) Uncapacitated Facility Location Problem (UFL) (see e.g.
[Cho et al., 1983a], [Cho et al., 1983b|, [Cornuéjols et al., 1990], [Guignard, 1980])

can be modeled as the following linear mixed integer program:
(UFL)

min Y N ety fiy

jEH kek jEH

5.t Y =1 forallkeKk, (7)
jEH

zjp<y; foralljeH kek,

xzjp >0 forall j € H,kelk,

0<y; <1 foralljewH, (10

y; €Z forall j € H, (11

where c;;, are the transportation costs for facility j to serve customer £, f; are the fixed
costs for establishing a facility at node j, x;; is the fraction of client £’s demand served
by facility j € H; and where y; = 1 if facility j is open, and y; = 0 otherwise. As before,

we assume that n and ¢ are both greater or equal to 2.

Let © := (k) jerkei, ¥ := (Y;)jen, Xvrr = {(z,y) € R"*" : (z,y) satisfies (7) — (11)},
ZUFL = {(x,y) € XUFL - Lk c {0, 1} for a.llj € H, k e K:} and PUFL = COHV(ZUFL) .

The dimension of Pygp can be derived straightforwardly by showing that the & equality
constraints in (7) are linearly independent and every other equality satisfied by all points

in Pypr is a linear combination of equalities of (7) (see [Cornuéjols et al., 1990]).
Proposition 3.1 The dimension of Pypr, is dimPypr, = ng+n — q.

We define a function o : Pyrr, — Punr by

Y;:=y; forall j € 'H,
X =z forall j e H, ke K,
Xijr:=0forallte H,je H:1# j, ke K.
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for all (x,y) € Pyrr and denote by o-UFL the following mixed integer program:

min ZZZCZ]kXZ]k—i-ZF}}/J

1€H jeH ke JEH
s.t. (X, Y) € Xygr and
Xijp=0forallte H,je H:1# j, ke K. (12)

We choose cj;, := Cjj and f; := Fj for all j € H,k € K as data in UFL. Then o-UFL is
equivalent to UFL in the sense that (z,y) is a feasible (or optimal, respectively) solution

of UFL if and only if o(z,y) is a feasible (or optimal, respectively) solution of o-UFL.

We define X, yrr, Z,_vrr and P,_ypp analogously as for UFL. Clearly o(Pypr) =
Po_vrr and dimP,_ypr, = dim Pypr. Furthermore Fypr is a p—dimensional face of

Purr if and only if F,_ypr is a p-dimensional face of P,_ypr. (for 0 < p < ng+n—q).
We will use the o-UFL formulation in the remainder of the paper whenever it is helpful.

As P,_urr, C Punr we have the following result (see Figure 2).

Proposition 3.2 UHL s a relaxation of o-UFL. In particular every valid inequality for

Puwr is also valid for P,_yry. O

Figure 2: The polyhedra Pyyp and Pypr.

By means of P,_yrr we can derive the dimension of the polytope Pyyr.

Theorem 3.3 The dimension of the polytope Py is dim Pyyr = n’q +n — q.
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Proof: We have to show that there are n?q + n — ¢ + 1 affinely independent points lying
on Pypyyr. First, by Proposition 3.1 we have nqg +n — ¢ + 1 affinely independent points
on the polytope P,_yrr. In every of these vectors of P,_ypy, all entries of the form X
(ke K,i€H,j€H:iHj) are zero.

Then, for every k' € K and every ¢/ € H,j’ € H with i’ # j' we define a point (X,Y)
on Pyyr with Yy =Y, =1, Xy = 1 and Xy = 1 for all k # £, all other values
equal to zero. In every of those vectors there is exactly one of the entries of the form X
(k € K,i € H,j € H:i# j) not equal to zero, so these (n> — n)q points are affinely

independent.

As all X, entries are zero for ¢ # j in the ng+n — ¢+ 1 points of P,_ypy, defined first,
in total we have ng+n —q+1+ (n* —n)qg =n?q+n — g+ 1 affinely independent points

on PUHL- O

Now we develop a general rule for lifting facets from UFL to UHL be-
cause for UFL many classes of facets are known (see e.g.  [Cho et al., 1983a],
[Cho et al., 1983b|,|Cornuéjols and Thizy, 1982]).

Theorem 3.4 Let a;j,bj,d € R for all j € H,k € K such that
for all {i,j}(i € H,j € H) there exists a k' € IC with b; > min{a; — a;, 0} (*),
and let

Z Z AjkTjk + Z bjy; < d (13)
JEH kek jeH
represent a facet of Pyrpr that is not a non-negativity constraint for some ;. Then
ZZZmax{aik,ajk}Xijk + Zb]}/] S d (14)
i€H jEH kek jEH

represents a facet of Puyr.

Proof: First we verify the validity of (14). Assume (14) is not valid. This means there
exists an (7, ?) € Zypyr with

> DY max{an, ap} X + > bY; > d.

1€H jeH ke JjEH
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For every k € K there is exactly one (i, jr) € H? with X; ;,x = 1. By (2) and (3) we
have Y;, =Y, = 1, such that the following solution (7,7) is feasible for UFL:

U =Y, for all 1 € H,
Tk =1, if aj ., > a5, forall k € K,
Tk =1, if a;, 1 < aj, for all k € K,

and T;, := 0 for all other 1 € H, k € K.

If we evaluate (13) in (Z,7), we get
Z Z ajkfjk -+ Z bjyj = Z Z Z max{aik, ajk}yijk -+ Z bj?j > d
jEH kek jeH ieH jeM kek jeH

so (13) is not valid for Pyry, which is a contradiction.

We note that the assumption (*) is not required for the validity part.

To show that (14) is facet—defining we have to show that there are dim Py = n*g+n—q
affinely independent points of Py lying on the face

FUHL = {(X, Y) c PUHL : ZZ Zmax{aik,ajk}Xijk + Zb])/] = d}

i€H jeH ke JEH

We get dim Pyrr, = ng + n — ¢ affinely independent points (X,Y) on Fypgy by taking
ng + n — ¢ affinely independent points on

Fovrr = {(X,Y) € Pyvrr : Z Zaijjjk + Z b;Y; = d}

JEH kel JjEH

Since (14) is not a non-negativity constraint and F,_pypy, is a facet of P,_ypr, for every
1 € H,k € K there is a point on F,_yrp with X;;, = 1.

Now we will define another (n? — n)q affinely independent points on Fygr. For every
i',j' € H:1 # 7 and k' € K we will define a point P, on Fypy with X, = 1 and
Xz'jk’ =0 for all (Z,j) 7& (i,,j,).

According to the assumptions of this theorem w.l.o.g. there exists a k" € K such that
bj/ Z min{ai/kn — Cljlk//,O}. Let PO describe a point (7, ?) € fUHL with ?i’ = 1 and

X = 1.

case (a): by > min{a;p — ajx,0}:
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If Qi k! S ajrg!, then b]/ Z gt — Qs
If ayw > ajir, then by > 0.

In both cases the following point P, = (X,Y) € Pyy with

}/i’ = }/j/ = 1’
Xi/j’k/ = 1’
X = 0,

all other values as in F

satisfies

Z Z Z max{ai, a;x } Xijr + Z b;Y;

1€H jEH ke JjeEH
= E CLZkak + max{ai/k/, aj/k/}Xi/j/k/ -+ E b]}/] + bj’}/j’
i€H,kEK: JEH:
(&.k)#( k) i#i’
> E i X ik + Qi Xy + E b;Y;+0;Y =d
iEH,KEK: JEH:
(&,k)# (! k) J#5’

and, since (14) is a valid inequality, P, € Fyur.
case (b) There is a k” 7é k/ - IC Wlth min{ai/k/ — Cljlk/, 0} Z b]/ Z min{ai/ku — aj’k”7 0}

Then we can define a point P, = (X,Y) € Fypy as in (a) with

}/i’ — }/j/ = 1’
Xi’j’k” = 17
XZ'/Z'/kN = 07

all other values as in F,.

From this point we define a point P, = (X,Y) € Pyy, with

)/7:/ = }/j/ = 17
Xi’j’k/ = Xi/j’k” = 1,

Xi/i/k/ = Xi/i/k” = 07

all other values as in P;.
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P, satisfies again

Z Z Z max{a;, ajk})N(ijk + Z bjf/j > Z Z @ik X ik + Z b;Y; = d,

i€ jEH kek jEH i€H kek jEH
and, since (14) is a valid inequality, P, € Fyyp.

All points defined so far are affinely independent because they can be written as rows of a
(n*q+mn—q) x (n?q+n) matrix in the following way: The first (ng-+mn —¢q) rows are those
affinely independent points of Fy g with X;;;, = 0 for all ¢ # j. The second part of rows
of the matrix corresponds to the points defined in case (a), while the last part of rows
describes the points defined in case (b). Then the columns of the matrix corresponding

to Xiji for ¢ # j form a lower triangle matrix. O

Figure 3: Facet lifting from Pyrr, to PuyrL

Corollary 3.5 The following inequalities are valid for Xy and define facets of Pypyy:

Xijg >0 foralli,jeH:i#jkek,
Xiir >0 forallti e H ke IC, ifn >3,
Y; <1 forall j € H,

ZXijk+ Z X <Y, foralljeH, kelk.
i€H i€H\{j}

Proof: The proofs of (15) and (16) are straightforward and therefore omitted. (17) and
(18) are applications of Theorem 3.4 to the inequalities y; < 1 and zj; < y; of UFL,
which are facet—defining for Pypry (see [Cornuéjols et al., 1990]). O
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Lemma 3.6 Let ¢ > n and let S = {k(1),k(2),...,k(n)} C K be a set of n different
commodities. Then
> (Y + X)) = 2 (19)
=

s valid for Xygr.

Proof: If Y, =Y, =1 for some j; # ja, (19) follows immediately.
If Y;, =1 for one j; € H and all other Y; = 0, it follows that X ; x = 1 for all £ € K and
especially X j k() = 1, so that (19) is implied. O

Corollary 3.7 If ¢ > n > 3, then (19) defines a facet of Pypr.

Proof: This is an application of Theorem 3.4 to the inequalities

> (y; + xj(j)) > 2, which are facet-defining for Pypp, (see [Aardal et al., 1996]). O
jeH

At the end of this section we note that the inequalities of type (2) and (3) do not define
facets of Py because they are dominated by the inequalities of (18). Thus a replacement
of (2) and (3) by (18) provides a better formulation of UHL.

A more compact formulation which makes use of (18) is obtained by using a single index
e for every subset of H containing one or two hubs. To this purpose, let £ := {S C H :
1 < |S] < 2}. We define some modified transportation costs 5ek as Cyp, 1= min{Cjjx, Cjir}
if e = {i,7}, and Cop = Ciip if € = {i}, for all e € £ and k € K. Then we can formulate
UHL as the following equivalent mixed integer program, which is stronger than UHL and

the similar formulations given in [Klincewicz, 1996] and [Krispin and Wagner, 1998|.

(FACET-UHL)

min Z Z 6’ekXek + Z F;Y;,

ce€ kek jEH
s.t. ZXek =1 forall k€K, (20)
ec&
Y X <Y, foralljeH keKk, (21)
ec&:e3j
X >0 forallee& ke, (22)
Y; <1 foralljeH, (23)

Y;€Z forall jeH. (24)
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Here (21) corresponds to (18). We show that in case that there are only two potential
hub nodes, it is sufficient to solve the LP relaxation of FACET-UHL.

Theorem 3.8 If n = 2, the polyhedron of the LP relazation of FACET-UHL, described
by (20) — (23), has only integer vertices.

Proof: Let H := {1,2}. We define Zy;, := Xy, + X123 and Zoi, := Xpoy + X(,23 for all
k € KC. Then by (20) we have X1y, = 1 —Zok, Xjoye = 1 —Z1p, and X oy = Zip+ Zor — 1.
In this sense the polyhedron of the LP relaxation described by (20) — (23) is equivalent
to the polyhedron obtained by following inequalities:

Zu+ 2o, >1 forall k € IC,
Zj, <Y, forallje{l,2}kek,
Zix >0 forall je{l,2},
Y; <1 forallje{1,2}.

25
26
27

(
(
(
(28

)
)
)
)

(25) — (28) describe an instance of a full-dimensional UFL with two facilities.
It has been shown e.g. by [Cho et al., 1983a| that in this case the corresponding constraint
matrix is totally unimodular, so all the extreme points of the LP relaxation polyhedron

are integral. O

Another advantage of FACET-UHL is its smaller number of X;;, variables. We compare
the computational performance of FACET-UHL and UHL in Section 5.

4 Projecting facets from UHL to UFL

In this section we show that some facets of the polytope of UHL also induce facets for
UFL. In our first statement we show that a certain facet—defining inequality for Py g, can

be projected to a facet—defining inequality for Py by means of the formulation o-UFL.

Theorem 4.1 Let a;j;, b;,d € R for alli,j € H,k € KC such that
aijr < max{ag, ajt for alli,j € H, k€ IC, (**)
and let

Z Z Z az’ijijk + Z b])/] S d, (29)

i€H jeH kek JEH
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represent a facet of Punr that is not a non-negativity constraint for some Xji. Then
DD atie+ by < d (30)
jEH kek jEH

represents a facet for Pyry.

Proof: First we prove the validity of (30). Assume that (30) is not valid. Then there

exists an (7,Y) € Zyrr with > Y7 ajpTi + - by, > d.
JEH kEH JEH

For every k € K there is exactly one j, € H with 7, = 1.

Now we can define a feasible solution (X,Y) of UHL with

ijjkk =1 forall k € IC,

Xz'jk =0 for all (17.]) 7é (jk?.]k)?k € ]Ca
Y; =y, for all j € H.

Then

Z Z Z aijkyijk + Z bj?j

1€H jeEH keH JEH

= a6 X gk + Y Y
ke JEH

- § :ajkjkkfjkk + E :bjyj
ke JEH

= E E Cljjkfjk -+ E bjyj > d,
JEH kEX JEH

so (29) is not valid for Py, which is a contradiction.
We note that the assumption (**) is not required for the validity part.

To show that (30) is facet-defining we have to show that there are dimPypr, = ng+n—q

affinely independent points on

FU_UFL = {(Xa Y) € 7DU—UFL : ZZajijjjk + Zb]y; = d}

JjEH kek JjEH

We have dimPy g, = n?q +n — ¢ affinely independent points on

FUHL = {(X, Y) S PUHL . Zzzaiijijk + ij}/J = d}

i€H jeH kek JEH
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If we write these points as rows of an (n?q 4+ n — ¢q) x (n%?q + n) matrix A, the definition
of affine independence implies that the (n?q + n — ¢) x (n?q + n + 1) matrix (A1) has
rank(A|1) = n?q+n —q.

Let (A’|1) be the matrix which is obtained from (A|1) by the following operations:

e Perform some elementary column operations: replace the entries in the columns

ijk by Z Xijk’ + Z ink for all] € H, ke K.
“ijfg;jjk ajilke:[‘;iik

e Delete the columns X, for all4,j € H :i # j, k € K.

Then
rank(A'|1) > n’q+n—q— (0> —n)g=nqg+n—q=dimPyrr.

Every row in (A’|1) corresponds to a point P = (X,Y) € o(Pyry), for which the following
inequality holds by (**):

DD anXpn+ Y bV =) Y Y apXin+ ) bY;=d, (31)
JEH kEH JEH 1€H jJEH kEX JEH
and, since (30) is valid, P is on F, _ypr.

Since (29) is not a non-negativity constraint for some X, F,_ypr is not an improper

(dim Pypr + 1)-dimensional face (i.e. no linear combination of > z;, = 1 for some
jeH
ke K),so Fo_urr is a facet of Pypp. O

For our next theorem we use another class of functions from Pyrr to Pygr. Instead of

letting X, ;i := i as in o, for every k € K we define an i, € H with X;, i := xj%.

Theorem 4.2 Let a;j;, bj,d € R for alli,j € H,k € KC such that
for every k € K there exists an i, € H with a;,jx > a;jix for all j € H and b;, > 0, (**¥)
and let

5SS Y < )
i€M jEM keK jEH
represent a facet of Pumr that is not a non-negativity constraint for some Xji. Then
SN agrra+ Y by <d (33)
jEH kek jEH

represents a facet for Pyry.
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Proof: First we prove the validity of (33). Assume that (33) is not valid. Then there

exists an (7,7) € Zyyr with Y > ;T + Y by; > d.
JEH kEH JEH

For every k € K there is exactly one j, € ‘H with 7, = 1.

Then we can define a feasible solution (X,Y) of UHL with

Xk =1 forall k € K,
X =0 forall (i, ) # (ix, ji), k € K,

Y, =1 foralli, €H,
Y, = y; for all other j € H.

Then by (**%*)

Z Z Z aijkyijk + Z bj?j

i€H jeEH keH JEH

= E Wiy gk X ik + E ;Y
ke JEH

> E i,k Tk T E b7,
ke JEH

= E E aikjkfjk’ + E b]@j > d,
JEH kEX JEH

so (32) is not valid for Py, which is a contradiction.

To show that (33) is facet-defining we have to show that there are dimPypr, = ng+n—q

affinely independent points on

fUFL = {(x,y) € PUFL . ZZaikjkxjk + ijyj = d}

JEH kel JjEH

We have dimPy g, = n?q +n — ¢ affinely independent points on

Fonr = {(z,y) € Punr : Z Z Zaiijijk + Z b;Y; = d}

i€H jeH ke JjEH

If we write these points as rows of an (n?q +n — ¢q) x (n?q + n) matrix A, the definition
of affine independence implies that the (n?q + n — ¢) x (n?q + n + 1) matrix (A1) has
rank(A|1) = n?q+n —q.

Let (A’|1) be the matrix which is obtained from (A|1) by the following operations:
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e Perform some elementary column operations: replace the entries in the columns

Xigik by > Xiji.
ieH

e Delete the columns X, for all 4, j € H i # iy, k € K.

Then
rank(A'|1) > n*q¢+n—q— (> —n)g=nqg+n—q=dimPyrr.

If we now define

Tjk = Xlkjk for all] € H, ke IC,
yj:=Y; forall j eH,

then every row in (A’|1) corresponds to a point P = (z,y) € Pyrr, for which the following
inequality holds:

DD gt Y by =Y > Y apXun+ ) bY;=d, (34)

jEH keH jEH i€H jeH keK JEH
and, since (33) is valid, P is on Fypr.

Since (32) is not a non-negativity constraint for some X, Fypr is not an improper

(dim Pypr, + 1)-dimensional face (i.e. no linear combination of > x;, = 1 for some
jEH

k€ K), so Fyryr is a facet of Pypr. O

5 Computational Results

In this section we test the computational behavior of the new formulation (FACET-UHL)
of the Uncapacitated Hub Location Problem with multiple allocation, which is given in

Section 3.

We compare the performance of FACET-UHL with the original formulation UHL (see
Section 2) and a reformulation called EK-UHL. The latter is based on a formulation
for the p~hub location problem given in [Ernst and Krishnamoorthy, 1998], which has
the advantage of fewer (O(gn)) variables and constraints because every commodity is

represented only by its origin.



5 COMPUTATIONAL RESULTS 17

We implemented all three formulations in AMPLPlus [Fourer et al., 1993| and used the
dual simplex algorithm and the built-in branch-and-bound routine of CPLEX 6.5.2
[ILOG, 1996| to solve the integer programs on a Pentium II PC with 266 Mhz and 64
megabyte RAM.

We use the CAB data set described in [O’Kelly et al., 1995] to benchmark our algorithms.
These data contain the passenger flows and distances between 25 major cities in the U.S.
Every origin—destination pair of these cities represents a different commodity. Every city is
a potential hub node. The transportation costs for an origin—destination pair k = (ky, ko)

routed via first hub ¢ and second hub j are defined by
Cijk 1= Wik, (dryi + odij + diji,),

where Wy, 1, is the given passenger requirement between ky and ko, d,,, is the Euclidean
distance between two cities v and w, and « € [0, 1] is a given discount factor for trans-

portation between two hub nodes.

We get different instances by choosing different subsets of 10, 15, 20 or 25 cities and

a € {0.2,0.4,0.6,0.8,1.0}. As there are no fixed costs given in these data, we define
25 25

Fi:=100-> > dpy, for all k£ € H. The results are shown in Table 1.

I=1m=1
From Table 1 it can be seen that the LP relaxation of (FACET-UHL) produces optimal
solutions of the integer program in almost all cases. (Even in the last case n = 25,
a = 1.0, the gap of the value of the LP relaxation and the optimal integer value is
only 0.22%.) The new formulation FACET-UHL performs better both in computation
time and branch&bound nodes than the original UHL. Although in some cases of o = 1
FACET-UHL needs more computation time than EK-UHL, the number of branch&bound
nodes in FACET-UHL is usually much less than in EK-UHL.

We note that in the optimal solution in case a = 1 every commodity k is allocated to
exactly one hub because there is no discount given to use the interhub connections. This
special case can be solved by a UFL formulation with the advantage of less variables and

less constraints.
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UHL EK-UHL FACET-UHL
cities | « CPU gap B&B | CPU gap B&B | CPU  gap B&B || opt. sol.
sec. % mnod. | sec. % mnod. | sec. % mnod. | # hubs
10 0.2 1.70 3.01 2| 0.58 0.09 3 0.27 - 1 6
0.4 1.70 3.35 8| 0.55 0.45 4| 0.20 - 1 4
0.6 0.95 0.00 2 0.22 - 1] 0.20 - 1 3
0.8 0.31 - 1] 0.21 - 1] 0.21 - 1 3
1.0 0.35 - 11 0.19 - 1] 0.15 - 1 3
15 0.2 1.50 - 1] 1.70 0.13 3 0.81 - 1 10
0.4 3.50 0.00 31 2.00 0.05 8| 0.85 - 1 9
0.6 1.60 - 1| 2.10 0.34 6| 0.84 - 1 8
0.8 5.60 0.00 31 2.50 0.23 41 0.87 - 1
1.0 1.40 - 11 0.65 - 1] 0.87 - 1
20 0.2 12.00 0.27 5| 9.20 0.27 5| 2.60 - 1 15
0.4 || 20.00 0.53 12| 6.30 0.51 8| 2.50 - 1 14
0.6 || 50.00 0.60 17 1 16.00 0.54 66 | 2.70 - 1 12
0.8 || 50.00 0.01 7119.00 0.24 14| 2.80 - 1
1.0 6.60 - 1] 1.80 - 1] 0.74 - 1
25 0.2 52.00 0.39 6 | 10.00 0.12 6.10 - 1 20
0.4 43.00 0.52 13 | 12.00 0.23 6.20 - 1 20
0.6 || 92.00 0.68 28 | 21.00 0.37 23 | 6.20 - 1 16
0.8 || 180.00 0.29 13 1 49.00 0.19 23 | 6.60 - 1 12
1.0 || 100.00 0.21 10 | 41.00 0.21 15| 32.00 0.22 12 8

Table 1: Comparison between UHL, EK-UHL and FACET-UHL using CPLEX 6.5.2

6 Conclusions

In this paper we determined the dimension and some classes of facets for the Uncapacitated

Hub Location (UHL) polyhedron. We developed some rules how to lift facets from the

Uncapacitated Facility Location (UFL) Polyhedron to UHL and vice versa. By applying

these rules to the inequalities in the UFL formulation we got new classes of facets for
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UHL, which provide a closer UHL polyhedron and a better solving time.

Theorem 3.4 can be applied to other classes of facets for UFL, which have been found e.g.
in [Cornuéjols and Thizy, 1982, [Cho et al., 1983a], [Cho et al., 1983b|, [Guignard, 1980|
to obtain new facets of Pypyr. In all these classes the additional requirement (*) of
Theorem 3.4 is satisfied. Thus the goal can be either to prove that this requirement is
necessary in a facet for Pyrr or to find an example for which this theorem cannot be
applied. However, incorporating additional new UHL facets into a branch&cut algorithm

will lead to even better computational results.

Recently new hub location models based on network design formulations have been de-
veloped in [Nickel et al., 2000] for applications in urban public transportation. Polyhedral
examinations of these new models would be of interest in order to obtain fast solution

algorithms for different kinds of real world problems.
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