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Abstract

We examine the feasibility polyhedron of the uncapacitated hub location problem

(UHL) with multiple allocation, which has applications in the �elds of air passenger

and cargo transportation, telecommunication and postal delivery services. In partic-

ular we determine the dimension and derive some classes of facets of this polyhedron.

We develop some general rules about lifting facets from the uncapacitated facility

location (UFL) for UHL and projecting facets from UHL to UFL. By applying these

rules we get a new class of facets for UHL which dominates the inequalities in the ori-

ginal formulation. Thus we get a new formulation of UHL whose constraints are all

facet�de�ning. We show its superior computational performance by benchmarking

it on a well known data set.
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1 Introduction

The Uncapacitated Hub Location Problem (UHL) with multiple allocation involves so

called transshipment or hub nodes, which have the function to collect commodities from

their origin, transfer them to other hubs and distribute them to their �nal destination.

The problem is to locate the hub nodes and to route the commodities through the hubs.

As we allow multiple allocation, commodities having the same origin (or destination) may

be allocated to di�erent hubs (see Figure 1). The objective is to minimize the total costs,

which consist of transportation costs per unit and �xed charge costs for establishing hubs

at nodes, under the constraint that all commodities have to be routed via one or two hub

nodes .

During the last years, di�erent kinds of hub location problems have been discussed in the

literature (for an overview of some basic problems see [Campbell, 1994]). Main applica-

tions of hub location problems concern air passenger and cargo transportation, telecom-

munication and postal delivery services. The main types of problems which are dealt

with are p�hub location, where the number of hubs to be located is �xed to p (see e.g.

[Skorin-Kapov et al., 1996]), and �xed charge hub location problems, where this number

is unlimited, but a certain �xed cost has to be paid for establishing a hub facility (see

e.g. [Ebery et al., 1998], [Campbell, 1994]). Furthermore one distinguishes between single

allocation (see e.g. [Ernst and Krishnamoorthy, 1996], [O'Kelly, 1987]) and multiple al-

location (see e.g. [Ernst and Krishnamoorthy, 1998]) problems. In the single allocation

case all commodities having the same origin (or destination, respectively) must be alloc-

ated to the same �rst (or second, respectively) hub, while in multiple allocation they can

be allocated to di�erent hubs.

Very little is known about the polyhedral aspect of hub location problems. For the single

allocation problem with two �xed hub locations, the allocation part can be written as a

linear program and therefore solved in polynomial time [Sohn and Park, 1997], while in

case of three �xed hub locations, the allocation part is NP�hard and some facets of the

feasibility polytope were computed [Sohn and Park, 1996].

UHL is NP�hard because it generalizes the One� and Two�Level Uncapacitated Fa-

cility Location Problems (UFL and TUFL) which are known to be NP�hard (see e.g.

[Cornuéjols and Thizy, 1982], [Aardal et al., 1996]).

The remainder of this paper is organized as follows: in Section 2 we will present the mixed
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Figure 1: Example for a hub network (multiple allocation)

integer formulation of UHL.

In the following Section 3 we compare UHL with the uncapacitated facility location prob-

lem. We determine the dimension of the feasibility polytope of UHL and develop a general

rule how facets from UFL can be lifted to obtain new facets of UHL. These new facets

can be used for a tighter and more compact formulation of UHL, which is also presented

in Section 3.

In addition we consider the other direction and show how facets from UHL can be pro-

jected to UFL in Section 4.

We show the e�ciency of a new facet�based UHL formulation by benchmarking it on a

well�known data set and comparing its performance with di�erent other formulations in

Section 5. Finally we give some conclusions in Section 6.

2 Mixed Integer Formulation of UHL

Let K be a set of commodities andH be a set of potential hub nodes. For every commodity

k ∈ K and every ordered pair of hubs (i, j) ∈ H × H let Cijk denote the transportation

costs for routing commodity k via hubs i and j (in this direction). Moreover, Fj represents

the �xed costs for establishing node j (j ∈ H) as a hub node.

Let Yj (j ∈ H) be equal to 1, if node j is established as a hub node and 0 otherwise; and

let Xijk ≥ 0 (i, j ∈ H, k ∈ K) determine the fraction of commodity k which is routed via

�rst hub node i and second hub node j.
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We want to determine which hub nodes should be opened and to which hubs each com-

modity should be assigned such that the total costs are minimized under the constraint

that all commodities have to be routed via one or two hubs.

The Uncapacitated Hub Location Problem with multiple allocation can be modeled as

the following mixed�integer linear program [Skorin-Kapov et al., 1996]:

(UHL)

min
∑
i∈H

∑
j∈H

∑
k∈K

CijkXijk +
∑
j∈H

Fj Yj

s.t.
∑
i∈H

∑
j∈H

Xijk = 1 for all k ∈ K, (1)

∑
j∈H

Xijk ≤ Yi for all i ∈ H, k ∈ K, (2)

∑
i∈H

Xijk ≤ Yj for all j ∈ H, k ∈ K, (3)

Xijk ≥ 0 for all i, j ∈ H, k ∈ K, (4)

0 ≤ Yj ≤ 1 for all j ∈ H, (5)

Yj ∈ Z for all j ∈ H. (6)

In the objective function we minimize the total (variable plus �xed) costs. All �ow of

every commodity k has to be routed via one or two nodes i and j (1), but only if i and j

are hub nodes ((2) and (3)).

We note that there always exists an optimal solution of UHL in which all Xijk variables

are integer�valued because there are no capacity constraints on the hubs.

Let q := |K| and n := |H|. UHL involves n2 q + n variables, n of them are binary. There

are (2n+ 1)q linear constraints to be satis�ed.

For sake of simplicity let X := (Xijk)i,j∈H,k∈K and Y := (Yj)j∈H.

Furthermore let XUHL be the set of feasible solutions of UHL, that is XUHL := {(X, Y ) ∈
R

n2q+n : (X, Y ) satis�es (1) � (6)}, ZUHL be the set of feasible integral points of UHL,

that is ZUHL := {(X, Y ) ∈ XUHL : Xijk ∈ {0, 1} for all i, j ∈ H, k ∈ K}, and let PUHL be

the polyhedron obtained by the convex hull of ZUHL, that is PUHL := conv(ZUHL).
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3 Lifting facets from UFL to UHL

The (One�Level) Uncapacitated Facility Location Problem (UFL) (see e.g.

[Cho et al., 1983a], [Cho et al., 1983b], [Cornuéjols et al., 1990], [Guignard, 1980])

can be modeled as the following linear mixed integer program:

(UFL)

min
∑
j∈H

∑
k∈K

cjk xjk +
∑
j∈H

fj yj

s.t.
∑
j∈H

xjk = 1 for all k ∈ K, (7)

xjk ≤ yj for all j ∈ H, k ∈ K, (8)

xjk ≥ 0 for all j ∈ H, k ∈ K, (9)

0 ≤ yj ≤ 1 for all j ∈ H, (10)

yj ∈ Z for all j ∈ H, (11)

where cjk are the transportation costs for facility j to serve customer k, fj are the �xed

costs for establishing a facility at node j, xjk is the fraction of client k's demand served

by facility j ∈ H; and where yj = 1 if facility j is open, and yj = 0 otherwise. As before,

we assume that n and q are both greater or equal to 2.

Let x := (xjk)j∈H,k∈K, y := (yj)j∈H, XUFL := {(x, y) ∈ R
nq+n : (x, y) satis�es (7) � (11)},

ZUFL := {(x, y) ∈ XUFL : xjk ∈ {0, 1} for all j ∈ H, k ∈ K} and PUFL := conv(ZUFL) .

The dimension of PUFL can be derived straightforwardly by showing that the k equality

constraints in (7) are linearly independent and every other equality satis�ed by all points

in PUFL is a linear combination of equalities of (7) (see [Cornuéjols et al., 1990]).

Proposition 3.1 The dimension of PUFL is dimPUFL = nq + n− q.

We de�ne a function σ : PUFL → PUHL by

Yj := yj for all j ∈ H,
Xjjk := xjk for all j ∈ H, k ∈ K,
Xijk := 0 for all i ∈ H, j ∈ H : i �= j, k ∈ K.



3 LIFTING FACETS FROM UFL TO UHL 6

for all (x, y) ∈ PUFL and denote by σ-UFL the following mixed integer program:

min
∑
i∈H

∑
j∈H

∑
k∈K

CijkXijk +
∑
j∈H

Fj Yj

s.t. (X, Y ) ∈ XUHL and

Xijk = 0 for all i ∈ H, j ∈ H : i �= j, k ∈ K. (12)

We choose cjk := Cjjk and fj := Fj for all j ∈ H, k ∈ K as data in UFL. Then σ-UFL is

equivalent to UFL in the sense that (x, y) is a feasible (or optimal, respectively) solution

of UFL if and only if σ(x, y) is a feasible (or optimal, respectively) solution of σ-UFL.

We de�ne Xσ−UFL, Zσ−UFL and Pσ−UFL analogously as for UFL. Clearly σ(PUFL) =

Pσ−UFL and dimPσ−UFL = dimPUFL. Furthermore FUFL is a p�dimensional face of

PUFL if and only if Fσ−UFL is a p�dimensional face of Pσ−UFL. (for 0 ≤ p ≤ nq + n− q).
We will use the σ-UFL formulation in the remainder of the paper whenever it is helpful.

As Pσ−UFL ⊆ PUHL we have the following result (see Figure 2).

Proposition 3.2 UHL is a relaxation of σ-UFL. In particular every valid inequality for

PUHL is also valid for Pσ−UFL. �

PUHL

PUFL

Figure 2: The polyhedra PUHL and PUFL.

By means of Pσ−UFL we can derive the dimension of the polytope PUHL.

Theorem 3.3 The dimension of the polytope PUHL is dimPUHL = n2q + n− q.
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Proof: We have to show that there are n2q + n− q + 1 a�nely independent points lying

on PUHL. First, by Proposition 3.1 we have nq + n − q + 1 a�nely independent points

on the polytope Pσ−UFL. In every of these vectors of Pσ−UFL all entries of the form Xijk

(k ∈ K, i ∈ H, j ∈ H : i �= j) are zero.

Then, for every k′ ∈ K and every i′ ∈ H, j′ ∈ H with i′ �= j′ we de�ne a point (X, Y )

on PUHL with Yi′ = Yj′ = 1, Xi′j′k′ = 1 and Xi′i′k = 1 for all k �= k′, all other values

equal to zero. In every of those vectors there is exactly one of the entries of the form Xijk

(k ∈ K, i ∈ H, j ∈ H : i �= j) not equal to zero, so these (n2 − n)q points are a�nely
independent.

As all Xijk entries are zero for i �= j in the nq + n− q + 1 points of Pσ−UFL de�ned �rst,

in total we have nq + n− q+ 1 + (n2 − n)q = n2q+ n− q+ 1 a�nely independent points

on PUHL. �

Now we develop a general rule for lifting facets from UFL to UHL be-

cause for UFL many classes of facets are known (see e.g. [Cho et al., 1983a],

[Cho et al., 1983b],[Cornuéjols and Thizy, 1982]).

Theorem 3.4 Let ajk, bj , d ∈ R for all j ∈ H, k ∈ K such that

for all {i, j}(i ∈ H, j ∈ H) there exists a k′ ∈ K with bj ≥ min{aik′ − ajk′, 0} (*),

and let

∑
j∈H

∑
k∈K

ajkxjk +
∑
j∈H

bjyj ≤ d (13)

represent a facet of PUFL that is not a non�negativity constraint for some xjk. Then

∑
i∈H

∑
j∈H

∑
k∈K

max{aik, ajk}Xijk +
∑
j∈H

bjYj ≤ d (14)

represents a facet of PUHL.

Proof: First we verify the validity of (14). Assume (14) is not valid. This means there

exists an (X, Y ) ∈ ZUHL with

∑
i∈H

∑
j∈H

∑
k∈K

max{aik, ajk}Xijk +
∑
j∈H

bjYj > d.
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For every k ∈ K there is exactly one (ik, jk) ∈ H2 with Xikjkk = 1. By (2) and (3) we

have Yik = Yjk
= 1, such that the following solution (x, y) is feasible for UFL:

yi := Y i for all i ∈ H,
xikk := 1, if aikk ≥ ajkk, for all k ∈ K,
xjkk := 1, if aikk < ajkk, for all k ∈ K,

and xik := 0 for all other i ∈ H, k ∈ K.

If we evaluate (13) in (x, y), we get

∑
j∈H

∑
k∈K

ajkxjk +
∑
j∈H

bjyj =
∑
i∈H

∑
j∈H

∑
k∈K

max{aik, ajk}X ijk +
∑
j∈H

bjY j > d

so (13) is not valid for PUFL, which is a contradiction.

We note that the assumption (*) is not required for the validity part.

To show that (14) is facet�de�ning we have to show that there are dimPUHL = n2q+n−q
a�nely independent points of PUHL lying on the face

FUHL := {(X, Y ) ∈ PUHL :
∑
i∈H

∑
j∈H

∑
k∈K

max{aik, ajk}Xijk +
∑
j∈H

bjYj = d}

We get dimPUFL = nq + n − q a�nely independent points (X, Y ) on FUHL by taking

nq + n− q a�nely independent points on

Fσ−UFL := {(X, Y ) ∈ Pσ−UFL :
∑
j∈H

∑
k∈K

ajkXjjk +
∑
j∈H

bjYj = d}

Since (14) is not a non�negativity constraint and Fσ−UFL is a facet of Pσ−UFL, for every

i ∈ H, k ∈ K there is a point on Fσ−UFL with Xiik = 1.

Now we will de�ne another (n2 − n)q a�nely independent points on FUHL. For every

i′, j′ ∈ H : i′ �= j′ and k′ ∈ K we will de�ne a point P1 on FUHL with Xi′j′k′ = 1 and

Xijk′ = 0 for all (i, j) �= (i′, j′).

According to the assumptions of this theorem w.l.o.g. there exists a k′′ ∈ K such that

bj′ ≥ min{ai′k′′ − aj′k′′, 0}. Let P0 describe a point (X, Y ) ∈ FUHL with Y i′ = 1 and

X i′i′k′ = 1.

case (a): bj′ ≥ min{ai′k′ − aj′k′, 0}:
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If ai′k′ ≤ aj′k′, then bj′ ≥ ai′k′ − aj′k′.

If ai′k′ ≥ aj′k′, then bj′ ≥ 0.

In both cases the following point P1 = (X, Y ) ∈ PUHL with

Yi′ = Yj′ := 1,

Xi′j′k′ := 1,

Xi′i′k′ := 0,

all other values as in P0

satis�es

∑
i∈H

∑
j∈H

∑
k∈K

max{aik, ajk}Xijk +
∑
j∈H

bjYj

=
∑

i∈H,k∈K:
(i,k) �=(i′,k′)

aikXiik + max{ai′k′, aj′k′}Xi′j′k′ +
∑
j∈H:
j �=j′

bjYj + bj′Yj′

≥
∑

i∈H,k∈K:
(i,k) �=(i′,k′)

aikX iik + ai′k′X i′i′k′ +
∑
j∈H:
j �=j′

bjY j + bj′Y j′ = d

and, since (14) is a valid inequality, P1 ∈ FUHL.

case (b): There is a k′′ �= k′ ∈ K with min{ai′k′ − aj′k′, 0} ≥ bj′ ≥ min{ai′k′′ − aj′k′′ , 0}.
Then we can de�ne a point P1 = (X, Y ) ∈ FUHL as in (a) with

Yi′ = Yj′ := 1,

Xi′j′k′′ := 1,

Xi′i′k′′ := 0,

all other values as in P0.

From this point we de�ne a point P2 = (X̃, Ỹ ) ∈ PUHL with

Ỹi′ = Ỹj′ := 1,

X̃i′j′k′ = X̃i′j′k′′ := 1,

X̃i′i′k′ = X̃i′i′k′′ := 0,

all other values as in P1.
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P2 satis�es again

∑
i∈H

∑
j∈H

∑
k∈K

max{aik, ajk}X̃ijk +
∑
j∈H

bjỸj ≥
∑
i∈H

∑
k∈K

aiikXiik +
∑
j∈H

bjY j = d,

and, since (14) is a valid inequality, P2 ∈ FUHL.

All points de�ned so far are a�nely independent because they can be written as rows of a

(n2q+n−q)× (n2q+n) matrix in the following way: The �rst (nq+n−q) rows are those
a�nely independent points of FUHL with Xijk = 0 for all i �= j. The second part of rows

of the matrix corresponds to the points de�ned in case (a), while the last part of rows

describes the points de�ned in case (b). Then the columns of the matrix corresponding

to Xijk for i �= j form a lower triangle matrix. �

PUHL

FUFL

PUFL

UHLF

Figure 3: Facet lifting from PUFL to PUHL

Corollary 3.5 The following inequalities are valid for XUHL and de�ne facets of PUHL:

Xijk ≥ 0 for all i, j ∈ H : i �= j, k ∈ K, (15)

Xiik ≥ 0 for all i ∈ H, k ∈ K, if n ≥ 3, (16)

Yj ≤ 1 for all j ∈ H, (17)∑
i∈H

Xijk +
∑

i∈H\{j}
Xjik ≤ Yj for all j ∈ H, k ∈ K. (18)

Proof: The proofs of (15) and (16) are straightforward and therefore omitted. (17) and

(18) are applications of Theorem 3.4 to the inequalities yj ≤ 1 and xjk ≤ yj of UFL,

which are facet�de�ning for PUFL (see [Cornuéjols et al., 1990]). �
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Lemma 3.6 Let q ≥ n and let S = {k(1), k(2), . . . , k(n)} ⊆ K be a set of n di�erent

commodities. Then

∑
j∈H

(Yj +Xjjk(j)) ≥ 2 (19)

is valid for XUHL.

Proof: If Yj1 = Yj2 = 1 for some j1 �= j2, (19) follows immediately.

If Yj1 = 1 for one j1 ∈ H and all other Yj = 0, it follows that Xj1j1k = 1 for all k ∈ K and

especially Xj1j1k(j1) = 1, so that (19) is implied. �

Corollary 3.7 If q ≥ n ≥ 3, then (19) de�nes a facet of PUHL.

Proof: This is an application of Theorem 3.4 to the inequalities∑
j∈H

(yj + xjk(j)) ≥ 2, which are facet�de�ning for PUFL (see [Aardal et al., 1996]). �

At the end of this section we note that the inequalities of type (2) and (3) do not de�ne

facets of PUHL because they are dominated by the inequalities of (18). Thus a replacement

of (2) and (3) by (18) provides a better formulation of UHL.

A more compact formulation which makes use of (18) is obtained by using a single index

e for every subset of H containing one or two hubs. To this purpose, let E := {S ⊆ H :

1 ≤ |S| ≤ 2}. We de�ne some modi�ed transportation costs C̃ek as C̃ek := min{Cijk, Cjik}
if e = {i, j}, and C̃ek := Ciik if e = {i}, for all e ∈ E and k ∈ K. Then we can formulate

UHL as the following equivalent mixed integer program, which is stronger than UHL and

the similar formulations given in [Klincewicz, 1996] and [Krispin and Wagner, 1998].

(FACET-UHL)

min
∑
e∈E

∑
k∈K

C̃ekXek +
∑
j∈H

FjYj,

s.t.
∑
e∈E

Xek = 1 for all k ∈ K, (20)

∑
e∈E:e�j

Xek ≤ Yj for all j ∈ H, k ∈ K, (21)

Xek ≥ 0 for all e ∈ E , k ∈ K, (22)

Yj ≤ 1 for all j ∈ H, (23)

Yj ∈ Z for all j ∈ H. (24)
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Here (21) corresponds to (18). We show that in case that there are only two potential

hub nodes, it is su�cient to solve the LP relaxation of FACET-UHL.

Theorem 3.8 If n = 2, the polyhedron of the LP relaxation of FACET-UHL, described

by (20) � (23), has only integer vertices.

Proof: Let H := {1, 2}. We de�ne Z1k := X{1}k +X{1,2}k and Z2k := X{2}k +X{1,2}k for all

k ∈ K. Then by (20) we have X{1}k = 1−Z2k, X{2}k = 1−Z1k and X{1,2}k = Z1k +Z2k−1.

In this sense the polyhedron of the LP relaxation described by (20) � (23) is equivalent

to the polyhedron obtained by following inequalities:

Z1k + Z2k ≥ 1 for all k ∈ K, (25)

Zjk ≤ Yj for all j ∈ {1, 2}, k ∈ K, (26)

Zjk ≥ 0 for all j ∈ {1, 2}, (27)

Yj ≤ 1 for all j ∈ {1, 2}. (28)

(25) � (28) describe an instance of a full�dimensional UFL with two facilities.

It has been shown e.g. by [Cho et al., 1983a] that in this case the corresponding constraint

matrix is totally unimodular, so all the extreme points of the LP relaxation polyhedron

are integral. �

Another advantage of FACET-UHL is its smaller number of Xijk variables. We compare

the computational performance of FACET-UHL and UHL in Section 5.

4 Projecting facets from UHL to UFL

In this section we show that some facets of the polytope of UHL also induce facets for

UFL. In our �rst statement we show that a certain facet�de�ning inequality for PUHL can

be projected to a facet�de�ning inequality for PUFL by means of the formulation σ-UFL.

Theorem 4.1 Let aijk, bj , d ∈ R for all i, j ∈ H, k ∈ K such that

aijk ≤ max{aiik, ajjk} for all i, j ∈ H, k ∈ K, (**)
and let

∑
i∈H

∑
j∈H

∑
k∈K

aijkXijk +
∑
j∈H

bjYj ≤ d, (29)
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represent a facet of PUHL that is not a non�negativity constraint for some Xijk. Then

∑
j∈H

∑
k∈K

ajjkxjk +
∑
j∈H

bjyj ≤ d (30)

represents a facet for PUFL.

Proof: First we prove the validity of (30). Assume that (30) is not valid. Then there

exists an (x, y) ∈ ZUFL with
∑
j∈H

∑
k∈H

ajjkxjk +
∑
j∈H

bjyj > d.

For every k ∈ K there is exactly one jk ∈ H with xjkk = 1.

Now we can de�ne a feasible solution (X, Y ) of UHL with

Xjkjkk = 1 for all k ∈ K,
X ijk = 0 for all (i, j) �= (jk, jk), k ∈ K,
Y j = yj for all j ∈ H.

Then

∑
i∈H

∑
j∈H

∑
k∈H

aijkX ijk +
∑
j∈H

bjY j

=
∑
k∈K

ajkjkkXjkjkk +
∑
j∈H

bjY j

=
∑
k∈K

ajkjkkxjkk +
∑
j∈H

bjyj

=
∑
j∈H

∑
k∈K

ajjkxjk +
∑
j∈H

bjyj > d,

so (29) is not valid for PUHL, which is a contradiction.

We note that the assumption (**) is not required for the validity part.

To show that (30) is facet-de�ning we have to show that there are dimPUFL = nq+n− q
a�nely independent points on

Fσ−UFL := {(X, Y ) ∈ Pσ−UFL :
∑
j∈H

∑
k∈K

ajjkXjjk +
∑
j∈H

bjYj = d}.

We have dimPUHL = n2q + n− q a�nely independent points on

FUHL := {(X, Y ) ∈ PUHL :
∑
i∈H

∑
j∈H

∑
k∈K

aijkXijk +
∑
j∈H

bjYj = d}
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If we write these points as rows of an (n2q + n− q) × (n2q + n) matrix A, the de�nition

of a�ne independence implies that the (n2q + n − q) × (n2q + n + 1) matrix (A|1) has

rank(A|1) = n2q + n− q.
Let (A′|1) be the matrix which is obtained from (A|1) by the following operations:

• Perform some elementary column operations: replace the entries in the columns

Xjjk by
∑
i∈H:

aijk≤ajjk

Xijk +
∑
i∈H:

ajik>aiik

Xjik for all j ∈ H, k ∈ K.

• Delete the columns Xijk for all i, j ∈ H : i �= j, k ∈ K.

Then

rank(A′|1) ≥ n2q + n− q − (n2 − n)q = nq + n− q = dimPUFL.

Every row in (A′|1) corresponds to a point P = (X, Y ) ∈ σ(PUFL), for which the following

inequality holds by (**):

∑
j∈H

∑
k∈H

ajjkXjjk +
∑
j∈H

bjY j ≥
∑
i∈H

∑
j∈H

∑
k∈K

aijkXijk +
∑
j∈H

bjYj = d, (31)

and, since (30) is valid, P is on Fσ−UFL.

Since (29) is not a non�negativity constraint for some Xijk, Fσ−UFL is not an improper

(dimPUFL + 1)�dimensional face (i.e. no linear combination of
∑
j∈H

xjk = 1 for some

k ∈ K), so Fσ−UFL is a facet of PUFL. �

For our next theorem we use another class of functions from PUFL to PUHL. Instead of

letting Xjjk := xjk as in σ, for every k ∈ K we de�ne an ik ∈ H with Xikjk := xjk.

Theorem 4.2 Let aijk, bj , d ∈ R for all i, j ∈ H, k ∈ K such that

for every k ∈ K there exists an ik ∈ H with aikjk ≥ aijk for all j ∈ H and bik ≥ 0, (***)

and let

∑
i∈H

∑
j∈H

∑
k∈K

aijkXijk +
∑
j∈H

bjYj ≤ d, (32)

represent a facet of PUHL that is not a non�negativity constraint for some Xijk. Then

∑
j∈H

∑
k∈K

aikjkxjk +
∑
j∈H

bjyj ≤ d (33)

represents a facet for PUFL.



4 PROJECTING FACETS FROM UHL TO UFL 15

Proof: First we prove the validity of (33). Assume that (33) is not valid. Then there

exists an (x, y) ∈ ZUHL with
∑
j∈H

∑
k∈H

aikjkxjk +
∑
j∈H

bjyj > d.

For every k ∈ K there is exactly one jk ∈ H with xjkk = 1.

Then we can de�ne a feasible solution (X, Y ) of UHL with

X ikjkk = 1 for all k ∈ K,
X ijk = 0 for all (i, j) �= (ik, jk), k ∈ K,
Y ik = 1 for all ik ∈ H,
Y j = yj for all other j ∈ H.

Then by (***)

∑
i∈H

∑
j∈H

∑
k∈H

aijkXijk +
∑
j∈H

bjY j

=
∑
k∈K

aikjkkX ikjkk +
∑
j∈H

bjY j

≥
∑
k∈K

aikjkkxjkk +
∑
j∈H

bjyj

=
∑
j∈H

∑
k∈K

aikjkxjk +
∑
j∈H

bjyj > d,

so (32) is not valid for PUHL, which is a contradiction.

To show that (33) is facet-de�ning we have to show that there are dimPUFL = nq+n− q
a�nely independent points on

FUFL := {(x, y) ∈ PUFL :
∑
j∈H

∑
k∈K

aikjkxjk +
∑
j∈H

bjyj = d}.

We have dimPUHL = n2q + n− q a�nely independent points on

FUHL := {(x, y) ∈ PUHL :
∑
i∈H

∑
j∈H

∑
k∈K

aijkXijk +
∑
j∈H

bjYj = d}

If we write these points as rows of an (n2q + n− q) × (n2q + n) matrix A, the de�nition

of a�ne independence implies that the (n2q + n − q) × (n2q + n + 1) matrix (A|1) has

rank(A|1) = n2q + n− q.
Let (A′|1) be the matrix which is obtained from (A|1) by the following operations:
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• Perform some elementary column operations: replace the entries in the columns

Xikjk by
∑
i∈H
Xijk.

• Delete the columns Xijk for all i, j ∈ H : i �= ik, k ∈ K.

Then

rank(A′|1) ≥ n2q + n− q − (n2 − n)q = nq + n− q = dimPUFL.

If we now de�ne

xjk := Xikjk for all j ∈ H, k ∈ K,
yj := Yj for all j ∈ H,

then every row in (A′|1) corresponds to a point P = (x, y) ∈ PUFL, for which the following

inequality holds:

∑
j∈H

∑
k∈H

aikjkxjk +
∑
j∈H

bjyj ≥
∑
i∈H

∑
j∈H

∑
k∈K

aijkXijk +
∑
j∈H

bjYj = d, (34)

and, since (33) is valid, P is on FUFL.

Since (32) is not a non�negativity constraint for some Xijk, FUFL is not an improper

(dimPUFL + 1)�dimensional face (i.e. no linear combination of
∑
j∈H

xjk = 1 for some

k ∈ K), so FUFL is a facet of PUFL. �

5 Computational Results

In this section we test the computational behavior of the new formulation (FACET-UHL)

of the Uncapacitated Hub Location Problem with multiple allocation, which is given in

Section 3.

We compare the performance of FACET-UHL with the original formulation UHL (see

Section 2) and a reformulation called EK-UHL. The latter is based on a formulation

for the p�hub location problem given in [Ernst and Krishnamoorthy, 1998], which has

the advantage of fewer (O(qn)) variables and constraints because every commodity is

represented only by its origin.
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We implemented all three formulations in AMPLPlus [Fourer et al., 1993] and used the

dual simplex algorithm and the built�in branch�and�bound routine of CPLEX 6.5.2

[ILOG, 1996] to solve the integer programs on a Pentium II PC with 266 Mhz and 64

megabyte RAM.

We use the CAB data set described in [O'Kelly et al., 1995] to benchmark our algorithms.

These data contain the passenger �ows and distances between 25 major cities in the U.S.

Every origin�destination pair of these cities represents a di�erent commodity. Every city is

a potential hub node. The transportation costs for an origin�destination pair k = (k1, k2)

routed via �rst hub i and second hub j are de�ned by

Cijk := Wk1k2 (dk1i + αdij + djk2),

where Wk1k2 is the given passenger requirement between k1 and k2, dvw is the Euclidean

distance between two cities v and w, and α ∈ [0, 1] is a given discount factor for trans-

portation between two hub nodes.

We get di�erent instances by choosing di�erent subsets of 10, 15, 20 or 25 cities and

α ∈ {0.2, 0.4, 0.6, 0.8, 1.0}. As there are no �xed costs given in these data, we de�ne

Fk := 100 ·
25∑
l=1

25∑
m=1

dlm for all k ∈ H. The results are shown in Table 1.

From Table 1 it can be seen that the LP relaxation of (FACET-UHL) produces optimal

solutions of the integer program in almost all cases. (Even in the last case n = 25,

α = 1.0, the gap of the value of the LP relaxation and the optimal integer value is

only 0.22%.) The new formulation FACET-UHL performs better both in computation

time and branch&bound nodes than the original UHL. Although in some cases of α = 1

FACET-UHL needs more computation time than EK-UHL, the number of branch&bound

nodes in FACET-UHL is usually much less than in EK-UHL.

We note that in the optimal solution in case α = 1 every commodity k is allocated to

exactly one hub because there is no discount given to use the interhub connections. This

special case can be solved by a UFL formulation with the advantage of less variables and

less constraints.
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UHL EK-UHL FACET-UHL

cities α CPU gap B&B CPU gap B&B CPU gap B&B opt. sol.

sec. % nod. sec. % nod. sec. % nod. # hubs

10 0.2 1.70 3.01 2 0.58 0.09 3 0.27 - 1 6

0.4 1.70 3.35 8 0.55 0.45 4 0.20 - 1 4

0.6 0.95 0.00 2 0.22 - 1 0.20 - 1 3

0.8 0.31 - 1 0.21 - 1 0.21 - 1 3

1.0 0.35 - 1 0.19 - 1 0.15 - 1 3

15 0.2 1.50 - 1 1.70 0.13 3 0.81 - 1 10

0.4 3.50 0.00 3 2.00 0.05 8 0.85 - 1 9

0.6 1.60 - 1 2.10 0.34 6 0.84 - 1 8

0.8 5.60 0.00 3 2.50 0.23 4 0.87 - 1 6

1.0 1.40 - 1 0.65 - 1 0.87 - 1 5

20 0.2 12.00 0.27 5 5.20 0.27 5 2.60 - 1 15

0.4 20.00 0.53 12 6.30 0.51 8 2.50 - 1 14

0.6 50.00 0.60 17 16.00 0.54 66 2.70 - 1 12

0.8 50.00 0.01 7 19.00 0.24 14 2.80 - 1 8

1.0 6.60 - 1 1.80 - 1 0.74 - 1 6

25 0.2 52.00 0.39 6 10.00 0.12 3 6.10 - 1 20

0.4 43.00 0.52 13 12.00 0.23 8 6.20 - 1 20

0.6 92.00 0.68 28 21.00 0.37 23 6.20 - 1 16

0.8 180.00 0.29 13 49.00 0.19 23 6.60 - 1 12

1.0 100.00 0.21 10 41.00 0.21 15 32.00 0.22 12 8

Table 1: Comparison between UHL, EK-UHL and FACET-UHL using CPLEX 6.5.2

6 Conclusions

In this paper we determined the dimension and some classes of facets for the Uncapacitated

Hub Location (UHL) polyhedron. We developed some rules how to lift facets from the

Uncapacitated Facility Location (UFL) Polyhedron to UHL and vice versa. By applying

these rules to the inequalities in the UFL formulation we got new classes of facets for
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UHL, which provide a closer UHL polyhedron and a better solving time.

Theorem 3.4 can be applied to other classes of facets for UFL, which have been found e.g.

in [Cornuéjols and Thizy, 1982], [Cho et al., 1983a], [Cho et al., 1983b], [Guignard, 1980]

to obtain new facets of PUHL. In all these classes the additional requirement (*) of

Theorem 3.4 is satis�ed. Thus the goal can be either to prove that this requirement is

necessary in a facet for PUFL or to �nd an example for which this theorem cannot be

applied. However, incorporating additional new UHL facets into a branch&cut algorithm

will lead to even better computational results.

Recently new hub location models based on network design formulations have been de-

veloped in [Nickel et al., 2000] for applications in urban public transportation. Polyhedral

examinations of these new models would be of interest in order to obtain fast solution

algorithms for di�erent kinds of real world problems.
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