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Abstract 

Let P c Rn, n 2 2, be a centrally symmetric, convex n-polytope with 2r vertices, 
and P be a family of m 2 n + 1 homothetical copies of P. We show that a hyperplane 
transversal of all members of P (it it exists) can be found in O(rm) time. 
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1. INTRODUCTION 

Let C := {Ci, . . . , Cm} be a family of convex sets in n-dimensional Euclidean space R”, n 2 
2. Then a hyperplane H c R” is said to be a hyperplane transversal (or a stubbing hyper- 
plane) with respect to C if H n Ci # 0 for each i E { 1,. - - , r-n). The hyperplune transversal 
problem is to find out whether there exist hyperplane transversals with respect to such a 
family C. (Note that the replacement of the hyperplane above by a k-dimensional affine 
flat, 1 5 k 2 n - 1, yields the more general k-fiat transversal problem.) 

In this paper we solve a special case of the hyperplane transversal problem, namely the case 
when C is restricted to a family P of m 2 n + 1 scaled translates of a centrally symmetric, 
convex n-polytope P with 2r vertices (i.e., P consists of m homothetical copies of P). To 
exclude trivial subcases, we will always assume that the affine hull of the centers of all 
polytopes from P is n-dimensional. Using results from location theory (referring to an 
extension of the point set width problem) we will show that this problem can be solved in 
O(rm) time for any fixed dimension n > 2. 

With respect to the k-flat transversal problem, the following results are known. In the 
planar case a line transversal of a family C of n convex sets can be found in O(n log n) time 
(cf. [12]), and this time complexity has been shown to be optimal by [3], even in the case 
when all members of C are translates of each other. If, in addition, the members of C are 
pairwise disjoint translates of a convex set, then linear time is enough, see [lo]. Finding 
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a line stabber for m translates of a convex polygon with s vertices can be done in O(sm) 
time, cf. [6]. 

. 

Whereas there are mumerous approaches to line stabbing problems in the plane, only a 
few algorithms for analogous problems in higher dimensions are known. For example, [l] 
succeeded in stabbing m line segments in R” by a hyperplane with O(mn) time, and for 
n = 3 a plane stabber for a set of m convex polyhedra with a total of sm vertices can 
be found in O(s2m3) time; For further results on stabbing convex polyhedra in R3 see 
[8]. In higher dimensions, e.g. the following resdlts are known: If P is a family of convex 
n-polytopes having a total of s vertices, then the space of hyperplane transversals of P can 
be constructed in O(P) time, cf. [9] and [7]. If P consists of m convex n-polytopes with a 
total of a edges, then a hyperplane transversal of P can be found in O(m . an-‘) time (see 
[2]), and from [5] and [6] it follows that the same time complexity is sufficient if a denotes 
the total number of directions determined by polytope edges of all members of P. 

More algorithmical approaches to stabbing problems are discussed in section 5 of [ll], and 
mainly theoretical results about k-flat transversals (e.g., related to Helly-type theorems) 
can be found in [21], [4], [26], [27], and [23] (the above mentioned survey [ll] contains also 
a lot of theoretical results). For example, [20] investigates the problem of stabbing boxes in 
higher dimensions, and related results for general convex polytopes were obtained by [6], [I] 
and others. However, we could not find our result presented here in the known literature. 

2. BASIC NOTIONS AND A RELATED LOC’ATION 
PROBLEM 

Since our result on hyperplane transversals is shown to; be strongly related to a result 
from locaton science (namely, that of finding center hyperplanes of finite point sets, in 
Minkowski spaces), we have to introduce some notions related to distance measures and 
finite-dimensional normed spaces. According to [19] ( see also [25] for a modern repre- 
sentation) we define norms geometrically, with the help of the respective unit balls. For 
x E R”, n > 2, and B c R” a compact, convex set with nonempty interior and centred at 
the origin, the norm y : IR” + R is defined by 

Y(F), i= min{X > 0 : x E XB} , 

and B is said to be the unit bull of the n-dimensional Minkowski space AP equipped’with 
y. In the usual way, this yields the distance 

4x, Y> = Y(Y - 4 

between two points x, y E R”, and the distance between a point z E IR” and a hyperplane 
H c R” is given by e 

If, in 

d(x, H) = ;:fIr d(x, y) . 

particular, B is a centrally symmetric, convex polytope with vertex set 

vert B = {bl,. . . , b,, -bl,. e . , -b,} , 
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then y is called a polyhedral norm, and the vectors bi, -bi, i = 1,. . . , T, are also said to be 
the fundamental directions of y. On the other hand, 12 denotes the Euclidean distance with 
unit ball 

Another distance measure (which is neither a norm nor a metric, since the respective inter- 
point distance may be infinite) is the so-called t-distance which, for a given direction t E R”, 
is denoted by 

4(x, Y> := Y~(Y - x> , 
where 

Yt(X) := 
IQ] ifz=at, 
00 otherwise . 

It is clear that (instead of using dt as an interpoint distance) the consideration of t-distances 
between points and hyperplanes, given by 

C&(X, H) := min{ ] A 1: z + At E H} 

with min 8 := 00, makes sense. 

In particular, if t equals the n-th unit vector e, of R”, we get the vertical distance between 
x = (c&y* ,a,) and y = (bl,..., b,): 

dver (2, Y) = 
] b, - U, ] if ai = bi for all i = 1, . . . , n - 1, 
00 otherwise . 

(The reason for introducing the distances dt and d ver is that hyperplane location problems 
with resect to these distances can be solved in a convenient manner, and that these restricted 
location problems form the basic building block for solving the general case referring to 
4x, H) .> 

Now we are ready to present the announced location problem: Given a set of m points 

x = {Xl, * * - ) xm} c IR” 

with corresponding weights WJ~ > 0, i = 1, +. . , m, find a hyperplane H such that 

g(H) := iEfr=ml wi - d(xi, H) ,..‘I 

is minimized. (To exclude trivial subcases, also for the location problem we always assume 
that the affine hull of X is the whole space R”.) A hyperplane minimizing g is called a 
(weighted) center hyperplane with respect to the given point set, and it is obvious that for 
equal weights (2~1 = . . . = w, = 1, say) the search of such an optimal hyperplane (i.e., the 
center hyperplane problem) is equivalent to the point set width problem. For surveys on the 
center hyperplane problem with Euclidean distance we refer to [13], [14], and [15], and its 
extension to finite-dimensional normed spaces is studied by [17] and [22], see also [18] for 
strongly related results. 
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3. THE RELATION BETWEEN BOTH THE PROB- 
LEMS 

It is mentioned already in [13] and [15] that the hyperplane H c R” is a hyperplane 
transversal of the family of balls 

A = {{x : wi : lz(xi, x) 2 1) : i = 1, -. -, m} 

if the objective value of the corresponding center hyperplane problem (with respect to the 
point set X = {zi, - . - , x~} with corresponding positive weights wi) is less than or equal to 
1. In the following we prove a more general statement which will be needed to transform 
algorithms from center problems to transversal problems. 

For any real number X 2 0 and any distance measure d let Ai denote the convex hull of 
all points whose weighted distance to xi. E X is less than or equal to A, i.e., 

, 

Ai := conv {z : wi . d(xi,x) < A} 

for all i E (1, - . - ,m}, and A(A) := {Ai : i = l,--- , m}. Recall that for a hyperplane H 
the objective value of the respective center problem is 

g(H) = iE-y~ml ‘wi - d(xi, H) . 
a..., 

Lemma’ 1. For X = {xl, - - -, x~} c R” and ~1, - - -, 20, > 0, let d be a distance measure 
of a norm such that all sets in A(&} are connected for Xo 2 0. Then for any hyperplane H 

g(H) 5 X,-, H H is a hyperplane transversal of A(&) . 

Proof. 

g := g(H) 5 A0 w wiv d(xi, H) 2 &, for all i E (1, - * -, m} 
ti for each i E {1,-d- , m} there exists an TEE E H with 

wi - d(xi, q) 2 X,, 
ti H n Ai # 0 for all i E (1, - - -, m} 
H H is a hyperplane transversal of d(g) . w 

In a direct way, this lemma implies 

Theorem 1. Let X = {x1,‘.. -,x,} c lRn,n 2 2, and wl, ... , w, > 0 be given as above. 
Then g” is the objective value of the center hyperplane problem with respect to this weighted g 
point set and the distance measure d if and only if g* is the smallest real number X > 0 
for which d(X) has a hyperplane transversal. Moreover, a hyperplane H c R” is a center 
hyperplane with objective value g* if and only if H is a hyperplane transversal of d(g*), and 
for all X < g* no hyperplane transversal of d(X) exists. 

We remark that this equivalence is similar to the equivalence of center problems in the sense 
of point location (i.e., the center hyperplane is replaced by a center point) and piercing 
problems. For a definition of piercing problems, a proof of the corresponding equivalence 
and various approaches we refer to [24]. 



4. FINDING CENTER HYPERPLANES 

As already mentioned, the following results are the basic building block for getting hyper- 
plane transversals of centrally symmetric, homothetical convex polytopes. So it is necessary 
to present them here in a compressed form; for proofs of all results in this section we refer 
to. [17] and [22]. 

, 

Theorem 2. For all distances derived from norms there exists a center hyperplane H c 
Rn, n 2 2, which is at maximum distance from n + 1 afinely independent points from the 
given set X. 

. 

Thus, by enumerating all hyperplanes at maximum distance from n+ 1 affinely independent 
points from X, one can find a center hyperplane in polynomially bounded time. For the 
special case that the distance measure d = dB is derived from a polyhedral norm (i.e., the 
unit ball B is a polytope in R”) we have 

Lemma 2. Let H c R”,n 2 2, be a hyperplane and vert B = {b,, a.. , b,, -bl, a.. , -by} the 
set of fundamental directions of a block norm 7~. Then there exists an index j E { 1, . . . , r} 
such that for all x E R” 

dB(X, H) = dbj (~3 H) * 

Thus one can decompose the center hyperplane problem for block norms into r indepen- 
dent subproblems, by solving the location problem separately for each j E { 1, . . . , r} with 
respect to dbj and then by chasing a hyperplane with the smallest objective value among 
the corresponding r values. 

Further on, each of the r subproblems can be simplified by 

Lemma 3. Let p, q E R”, n 2 2, and D be a linear transformation with D(p) i q and with 
det (D) # 0. Then 

d&‘(x)> D(H)) = &(xc, H) , 

where D(H) := {D(y) : y E H}. 

Obviously, each subproblem with respect to dt = dbj can be transformed to a center hy- 
perplane problem with respect to vertical distance dver, and it is well-known that such a 
location problem can be solved efficiently by linear programming methods, see [16]. Thus 
we can present the following decomposition algorithm. 

Algorithm 1 

Input: Block norm distance dB with fundamental directions bl, -bl, . . . , b,, -b,; xi E R”, n > 
2; Wi > 0 for all i E { 1, * * * , m} 

Output: Hyperplane H* c R” with objective value x* which solves the center hyperplane 
problem with respect to dg 

. 
1. z* := 00 

2. For j = 1 to r do 

1. Determine a transformation D such that D(bj) = en and det (D) # 0. 
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2,. For i E (1,. . . ,m} do: O(q) = Dxi. 

3. Find a hyperplane H,J minimizing 

dH) = &fy!$q wi * &er(Dxi, H) . 

(Use the algorithm due to [16].) 

4. If g(HJ) < x*, then set x* := g(H,J) and H* := D-‘(HJ). 

3. Output: H* with objective value z*. 

This algorithm runs in O(rm) time, since the corresponding center hyperplane problems 
with respect to d ver can be solved in linear time for any fixed dimension, cf. [16]. 

5. TRANSVERSAL ALGORITHM 

With the help of Algorithm 1 we are able to solve the hyperplane stabbing problem efficiently. 
Let A be a given family of scaled translates of a centrally symmetric, convex n-polytope 
‘B c R”, n 2 2. Using Theorem 1 we can establish the following algorithm. 

Algorithm 2 (for finding a hyperplane transversal of a family of homothetical, centrally 
symmetric and convex n-polytopes in R”, n 2 2) 

Input: A convex n-polytope B centred at the origin, defined by its vertex set vert {bi, . . e, b,, 
41, * * * ) -b,}, and a family A = {Al,. - -, A,} of scaled translates of B, i.e., 

Ai = xi + A$, xi E R”, & > 0 for all i E (1,. . s, m} . 

Output: A hyperplane transversal of A, if it exists. 

1. Define for all i E (1,. . . , m} 

1 
?Q := xi and pi := - 

Ai 

as a set of points Z& E R” with positive weights wi. , 
2. Use Algorithm 1 to obtain a hyperplane H* and the objective value Z* for the set of 

given points (571, . . . , ?E~} with corresponding weights wlr . . . , w, > 0. 

3. If Z* 5 1, then H* is a hyperplane transversal of A. If x* > 1, then there is no 
hyperplane transversal of A. 8 

It is obvious that (based on Algorithm 1 above, and on [IS]) also this algorithm is running 
in O(rm) time. And it is also worth mentioning that the assumption that the polytopes 
are n-dimensional is not explicitly used; i.e., this time complexity also refers to the case of 
degenerate convex polytopes with a center of symmetry, e.g. also to line segments. To our 
best knowledge, these results are new. 

A final view on closely related algorithms might be interesting. For example, stabbing m 
parallel line segments in R” yields T = 1 and therefore O(m) time; for arbitrary line segments 
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the best known approach needs O(m”) time, cf. [l]. Further.on, to find a line transversal of 
m translates of a convex polygon P c R2 also runs in O(rm) time, where r is the number 
of different slopes of all edges of P (comparable with the number of fundamental directions 
in our considerations), see [6]. Indeed, this algorithm does not require central symmetry 
of P, but on the other hand our Algorithm 2 refers to scaled translates. And for n = 3 a 
plane stabber of a family of m convex polyhedra with a total of rm vertices can be found 
in O(r2m3), see [l]. Again, this is comparable with our result: if these polyhedra are scaled 
translates of a polyhedron centred at the origin, O(rm) time is enough. 
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