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Abstract

Many polynomially solvable combinatorial optimization problems (COP) become NP�hard
when we require solutions to satisfy an additional cardinality constraint. This family of problems

has been considered only recently.

We study a new problem of this family: the k-cardinality minimum cut problem. Given an

undirected edge-weighted graph the k-cardinality minimum cut problem is to �nd a partition of the

vertex set V in two sets V1, V2 such that the number of the edges between V1 and V2 is exactly k

and the sum of the weights of these edges is minimal. A variant of this problem is the k-cardinality

minimum s-t cut problem where s and t are �xed vertices and we have the additional request that

s belongs to V1 and t belongs to V2. We also consider other variants where the number of edges

of the cut is constrained to be either less or greater than k.

For all these problems we show complexity results in the most signi�cant graph classes.

Keywords: k-cardinality minimum cut, cardinality constraint combinatorial optimization, com-

putational complexity.

y The work of M.B. has been supported by Ph.D. MA.C.R.O. Grant of the Department of Math-
ematics \F. Enriquez", University of Milan.

1



1. Introduction

Let G = (V;E) be an undirected graph with vertex set V and edge set E.

De�nition 1 A cut is a partition of vertex set V in two sets V1; V2. In this way

a cut edge set C := ffv1; v2g 2 E : v1 2 V1; v2 2 V2g is associated to every cut.

We agree that a cut can be determined indi�erently in one of the following ways:

1. by a pair (V1, V2) of vertex sets called the shores of the cut, de�ning a partition

of V;

2. by one vertex set S, understanding V1 = S and V2 = SC ;

3. by the cut edge set C. For going back to the sets V1 and V2 we can use the

following procedure with complexity O(n).

Procedure from C to (V1; V2)

i) Set V1 = ; and V2 = ;;

ii) For all v 2 V n fV1 [ V2g

set V1 := V1 [ fvg;

for all fv; ug 2 Æ(v) \ C

set V2 := V2 [ fug.

Here Æ(v) :=
�
fv1; v2g 2 E : v1 = v or v2 = v

	
.

De�nition 2 Given s; t 2 V an s-t cut is a cut (V1; V2) such that s 2 V1 and

t 2 V2.

When G = (V;E) is a directed graph the previous de�nitions hold, too, but we

agree that cut edge set C contains only the edges directed from V1 to V2. We

note that in this case, unlike for undirected graphs, (V1; V2) and (V2; V1) de�ne

di�erent cuts. From now on we always consider G to be an undirected graph, if

not speci�ed otherwise.

Let w : E ! IN be a positive integer function on the edge set of graph G and let

k be a positive integer.

De�nition 3 The k�cardinality minimum cut problem (k� card cut) is the

problem to �nd a cut such that cut edge set C has cardinality k and a given
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objective function f(C) is minimized.

In particular we address two classical cases,

1. the sum objective function

f(C) =
X
e2C

w(e)

and

2. the bottleneck objective function

f(C) = max
e2C

w(e):

De�nition 4 The k�cardinality minimum s�t cut problem (k�card s�t cut)

is de�ned analogously to k�card cut with the additional request that the cut we

want to �nd is an s�t cut.

De�nition 5 The � k�card cut and � k�card s�t cut problems are de�ned

analogously to k�card cut and k�card s�t cut only that the cardinality of C is

required to be less than or equal to k. Analogously we de�ne the � k�card cut

and � k�card s�t cut problems requiring the cardinality of C to be greater than

or equal to k.

The simple example below shows that k�card cut, � k�card cut and � k�card cut

can have di�erent optimal solutions.

Figure 1. Illustrating di�erent cardinality constraints.
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S1 = feg is the solution for � k�card cut

S2 = fbg is the solution for k�card cut

S3 = fag is the solution for � k�card cut

The optimal values of � k�card cut and of � k�card cut are always less than

or equal to the optimal value of k�card cut because their feasible sets contain

the feasible set of k�card cut. But between � k�card cut and � k�card cut

there is no dominating relation: In the previous example the optimal solution of

� k�card cut has a smaller weight than the optimal solution of � k�card cut,

but the opposite holds if we set w(fd; eg) = 2, for instance.

We can note that for every graph class for which k�card cut is easy � k�card cut

and � k�card cut are easy, too, because they can be solved taking the best solution

of p� card cut with p = 1; 2; : : : ; k and with p = k; k + 1; : : : ; jEj, respectively.

A problem easier than the previous ones is the existence problem where we only

want to decide whether there are feasible solutions. Theorem 1 of [3] establishes

in general for any k-cardinality combinatorial optimization problem (k-card COP)

the equivalence between existence and bottleneck problems in this sense: The

bottleneck problem is solvable in polynomial time if and only if the the existence

problem is polynomially solvable, too. As a consequence the existence and bot-

tleneck problems are both easier than sum problems. Any of the results we prove

below for uniform weights w(e) = 1 therefore apply to existence and bottleneck

problems (with arbitrary weights). We can therefore restrict our discussion to

problems with sum objective.

We note that without cardinality constraints the previous problems are easy be-

cause they become minimal cut problems and several eÆcient algorithms exist in

the literature for solving the latter (see [6], [7] and [8]).
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2. Complexity of K-Cardinality Cut Problems

2.1 General Graphs

Theorem 1 K� card cut and k�card s�t cut are strongly NP � complete even

if w(e) = 1 for all e 2 E.

Proof: We prove the result for k� card cut �rst. It is easy to see that the

recognition version of k�card cut belongs to NP. For proving the strong hardness

we polynomially reduce simple max cut to k�card cut. An instance of simple max

cut is an undirected graph G = (V;E) where we look for a cut with the maximum

number of edges. We can transform this instance into instances for k�card cut

considering the same graph with weight w(e) = 1 for all e 2 E and values of k

between 1 and jEj. A solution of k�card cut for the maximum feasible value

of k is also a solution of simple max cut. Finally the proof follows from strong

NP � completeness of simple max cut (see [1], page 210).

For k�card s�t cut it is easily seen that this problem belongs to NP, too. For

proving the strong hardness we polynomially reduce k�card cut to k�card s�t cut.

Solving k�card s�t cut for all pairs of vertices s; t and taking the best solution

we obtain a solution for k�card cut:

Corollary 1 The existence and bottleneck problems for k�card cut are NP �

complete.

Remark 1 For some classes of graphs, for example for planar graphs, simple max

cut belongs to P (see page 247 of [5]). Therefore for these graphs the proof of

Theorem 1 is not valid. We discuss the problem for planar graphs later.

Proposition 1 The � k� card cut and � k� card s� t cut problems are

strongly NP � complete even if w(e) = 1 for all e 2 E.

Proof: We can proceed through a reduction from simple max cut like in the proof

of Theorem 1.

Proposition 2 The � k�card cut problem is in P if w(e) = 1 for all e 2 E.

Proof: Let k be the cardinality of a solution of the minimal cut problem. If k < k

then � k�card cut is infeasible otherwise any solution of the minimal cut problem
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is also a solution of � k�card cut.

Proposition 3 Let k be the cardinality of a solution of the minimal cut problem.

For all k � k the � k�card cut problem is in P, for all k � k the � k�card cut

problem is in P, even if the weights are not uniform.

Proof: In these cases a solution is given by the solution of the min cut problem

with cardinality k.

We now proceed to consider some speci�c classes of graphs.

2.2 Complete Graphs

Lemma 1 If G = (V;E) is a simple and complete graph k�card cut and k�

card s�t cut are feasible

, k = j(n� j) with j 2
n
1; : : : ;

jn
2

ko
; (1)

where n = jV j.

Proof: Let the vertex set S be a shore of a cut. We can suppose jSj �
�
n
2

�
because otherwise SC (where the superscript C denotes the complement of a set)

is so and it determines the same cut. We set j = jSj, therefore jSC j = n� j. Since

the graph is simple and complete each vertex of S is connected with every vertex

of SC . Therefore the cardinality of the cut is j(n� j) and the cardinalities of all

possible cuts are given by (1).

Proposition 4 If G is a simple and complete graph and w(e) = 1 for all e 2 E

then both k�card cut and k�card s�t cut are in P .

Proof: We have to solve the equation j2 � nj + k = 0 with respect to j. If

� := n2 � 4k < 0 or if ~j := n�
p
�

2
is not integer then both cut problems are

infeasible because of Lemma 1. Otherwise, an optimal solution S is given by any

choice of ~j vertices of V , for k�card cut; and by fsg union any choice of ~j � 1

vertices of V n fs; tg, for k�card s�t cut.

Lemma 2 If G is a simple complete graph with non-uniform weights on the edges

the equicut problem is strongly NP � complete.

Proof: The equicut problem is strongly NP � complete for general graphs as

proved in [9]. Now we will reduce the equicut problem for general graph to the
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equicut problem for complete graphs. Given any graph we transform it into a

complete graph adding edges with weight 0. Since the cuts of the new graph

have the same total weight and the same vertices as the corresponding cuts of the

original graph, an optimal equicut in the original general graph corresponds to an

optimal equicut in the new (complete) graph.

Proposition 5 If G is a simple complete graph with non-uniform weights on the

edges k�card cut is strongly NP � complete.

Proof: Reduction from equicut. Given an instance of equicut we can solve it

solving the k�card cut problem with k =
�
n
2

� �
n
2

�
. The strong hardness derives

from the strong hardness of equicut for complete graphs established by Lemma

2.

2.3 Complete Bipartite Graphs

De�nition 6 A graph G = (V;E) is called complete bipartite if its vertex set

V can be partitioned into two nonempty, disjoint sets L and R such that no two

vertices in L and no two vertices in R are linked by an edge and every vertex in L

is linked to every vertex in R by exactly one edge. If jLj = n and jRj = m, then

G is denoted by Kn;m.

Lemma 3 Given a complete bipartite graph Kn;m = (V;E), k�card cut and

k�card s�t cut are feasible

, k = in+ jm� 2ij

with i 2 f0; 1; : : : ;mg; j 2 f0; 1; : : : ; ng; i+ j �

�
m+ n

2

�
(2)

Proof: Let L and R be the sets introduced in De�nition 6. Let the vertex set S

be a shore of a cut. We can suppose

jSj �

�
jV j

2

�
=

�
m+ n

2

�

because otherwise SC is so and it determines the same cut. Let j = jS \ Lj and

i = jS \ Rj, thus j is an integer between 0 and jLj = n, i is an integer between 0

and jRj = m and

i+ j = jSj �

�
m+ n

2

�
:
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Let us introduce the notation Æ(A;B) and Æ(A) for all A; B � V as follows:

Æ(A;B) := ffv1; v2g 2 E : v1 2 A; v2 2 Bg

Æ(A) := Æ(A;AC):

Therefore

Æ(S) = Æ(S \ L) [ Æ(S \ R) n Æ(S \ L; S \R)

and
jÆ(S)j = jÆ(S \ L)j+ jÆ(S \ R)j � 2jÆ(S \ L; S \ R)j =

= jm+ in� 2ij :

In this way the cardinalities of all possible cuts are given by (2).

Remark 2 Given a k value we can have several pairs of values i; j satisfying (2).

For example for the graph K3;2 both i = j = 1 and i = 1; j = 0 satisfy (2) for

k = 3. Moreover, unlike for complete graphs there is no one to one correspondence

between the cardinality k of the cut and the cardinality of the minimal shore S of

the cut. The example below shows that two cuts with the same cardinality can

have minimal shores with di�erent cardinalities.

Figure 2. The complete bipartite graph K3;2.

Referring to Figure 2., S1 = feg and S2 = fc; dg determine both cuts with cardi-

nality k = 3 but they are sets of di�erent cardinality. Analogously, it is easy to

see that two cuts with di�erent cardinalities can have minimal shores of the same

cardinality.
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Proposition 6 Given a complete bipartite graphKn;m = (V;E) such that w(e) =

1 for all e 2 E, both k�card cut and k�card s�t cut are polynomially solvable.

Proof: Through formula (2) of Lemma 3 we calculate in polynomial time the

cardinalities of all feasible cuts. If the given value of k is not among them then

both k�card cut and k�card s�t cut are infeasible. Otherwise we can go back to

a pair of values of i and j satisfying (2). In this case any choice of j vertices of L

and of i vertices of R is a solution for k�card cut.

For k�card s�t cut we distinguish two cases:

a) Vertices s and t both belong to L. (We can reason analogously if they both

belong to R).

b) Vertex s belongs to L and vertex t belongs to R. (If the opposite occurs we

only have to exchange the names of s and t).

In case a), if every pair of values i; j satisfying (2) for the given value of k, has

j = 0 or j = n then the problem is infeasible. Otherwise suppose i; j satisfy (2)

with j between 1 and n � 1. In this case an optimal solution S is given by fsg

union any choice of j � 1 vertices of L n fs; tg union any choice of i vertices of R.

Now consider case b). Let i; j be a pair of values satisfying (2) for the given value

of k. We distinguish the following three subcases:

i) i � m� 1 and j 6= 0,

ii) i � m� 1 and j = 0,

iii) i = m.

In case i) an optimal solution S is given by fsg union any choice of j � 1 vertices

of L n fsg union any choice of i vertices of R n ftg. In case ii) S is given by ftg

union any choice of i � 1 vertices of R n ftg. Finally, in case iii) S is given by R

union any choice of j vertices of L n fsg.

Remark 3 The problem to establish the complexity of k�card cut and k�card s�

t cut in complete bipartite graphs with non-uniform weights is still open because

unlike for general graphs a reduction of max cut to k�card cut is useless because

max cut is solvable in polynomial time for complete bipartite graphs (see [13]).

Moreover, unlike for complete graphs we cannot reduce the equicut problem to

these problems due to Remark 2.
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2.4 Trees

Lemma 4 For a graph G, C � E is the edge set of a cut if and only if C has an

even number (possibly zero) of edges in common with any cycle of G.

Proof: See [2].

Remark 4 We note that if G is a directed graph Lemma 4 does not hold.

Proposition 7 When G is a tree, k�card cut is in P:

Proof: Since G is a tree, it has no cycle. So from Lemma 4 any choice of k edges

is a k�card cut. Therefore in this case the k edges with smallest weight are a

solution of k�card cut, and this solution can be determined in polynomial time.

Lemma 5 Let G = (V;E) be a tree and s; t 2 V then every s� t cut has an odd

number of edges in common with the path between vertex s and vertex t.

Proof: Let P be the path between vertex s and vertex t (the existence and

uniqueness of the path is ensured from G being a tree). Let C be the edge set

of the s � t cut. Let C \ P = fe1; e2; : : : ; erg and let r be even. We suppose

ei precedes ei+1 along P and ei = fui; vig for i = 1; : : : ; r. Let s 2 S. Since

e1 = fu1; v1g is the �rst edge of C \ P every possible vertex between s and u1

along P belongs to S whereas v1 2 SC implies that every possible vertex between

v1 and u2 along P belongs to SC and v2 2 S. Generalizing, we have u2i�1 and

v2i 2 S whereas u2i and v2i�1 2 SC for i = 1; : : : ; r
2
. Since r is even vr 2 S so

that every other possible vertex that follows vr along P belongs to S, in particular

t 2 S. Since s and t 2 S the edges of C do not make up an s� t cut. Thus r must

be odd.

Theorem 2 When G is a tree, k�card s�t cut belongs to class P:

Proof: Let P be the path between the vertex s and the vertex t. By Lemma 5

every s�t cut has an odd number of edges in common with P . Let F be the set

of the k smallest weight edges in G. If jP \F j is odd then the edge set C = F is a

solution of k�card s�t cut. Else if jP \F j is even we obtain C from F modifying

F as little as possible to have jP \ Cj odd. There are the following four cases:

a) P n F = ;,

b) F n P = ;,
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c) P \ F = ;,

d) any other case.

In case a) let e� 2 P and ~e 2 FC be such that

w(e�) = max
e2P

w(e) w(~e) = min
e2FC

w(e);

respectively.

An optimal solution is given by C = F n fe�g [ f~eg.

In case b) let e� 2 F and ~e 2 PC be such that

w(e�) = max
e2F

w(e) w(~e) = min
e2PC

w(e);

respectively.

An optimal solution is given by C = F n fe�g [ f~eg.

In case c) let e� 2 F and ~e 2 P be such that

w(e�) = max
e2F

w(e) w(~e) = min
e2P

w(e);

respectively.

An optimal solution is given by C = F n fe�g [ f~eg.

In case d) if (P [ F )C 6= ; let e� 2 P n F , ê 2 (P [ F )C , ~e 2 F n P and e 2 P \ F

be such that

w(e�) = min
e2PnF

w(e) w(ê) = min
e2(P[F )C

w(e);

w(~e) = max
e2FnP

w(e) w(�e) = max
e2P\F

w(e)

respectively.

Then it easy to see that if w(e�)�w(~e) � w(ê)�w(�e) an optimal solution is given

by C = F n f~eg [ fe�g, otherwise it is given by C = F n f�eg [ fêg.

If (P [ F )C = ; an optimal solution is C = F n f~eg [ fe�g.
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2.5 Grid Graphs

De�nition 7 A simple grid graph is a graph G = (V;E) with (h+1)(l+1) vertices

arranged in l + 1 horizontal rows and h + 1 columns each, and edges connecting

vertices in adjacent rows (columns) vertically (horizontally). The horizontal and

vertical lengths of G are h and l, respectively.

Lemma 6 If G = (V;E) is a simple grid graph it has a cut of cardinality m with

m = jEj.

Proof: Let h and l be the horizontal length and vertical length of G. Let vi;j be

the vertex at row i and column j in G for i = 0; 1; : : : ; l, j = 0; 1; : : : ; h. It is easy

to see that the set T de�ned as

T := fvi;j 2 V : 0 � i � l; 0 � j � h; i; j both even or i; j both odd g

generates a cut with edge set equal to E.

Lemma 7 If G = (V;E) is a simple grid graph with horizontal length h and

vertical length l, vertex set T de�ned in Lemma 6 has
l
(h�1)(l�1)

2

m
vertices of

degree 4 and h+ l vertices of degree 2 or 3. In particular it has 4 vertices of degree

2 if h and l are both even and it has 2 vertices of degree 2 in any other case.

Proof: The subset P of T made up by vertices of T of degree 4 is given by

P := fvi;j 2 V : 1 � i � l � 1; 1 � j � h� 1; i; j both even or i; j both odd g

The cardinality of P is��
l� 2

2

�
+ 1

���
h� 2

2

�
+ 1

�
+

�
l� 2

2

��
h� 2

2

�
=

�
(h� 1)(l � 1)

2

�
:

The cardinality of T is��
l

2

�
+ 1

���
h

2

�
+ 1

�
+

�
l

2

��
h

2

�
=

�
(h+ 1)(l + 1)

2

�
:

Therefore the number of vertices of degree 2 or 3 is

jT j � jP j =

�
(h+ 1)(l+ 1)

2

�
�

�
(h� 1)(l� 1)

2

�
= h+ l :
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Theorem 3 If G = (V;E) is a simple grid graph k�card cut and k�card s�t cut

are feasible

, k = 2; 3; : : : ;m� 2;m (3)

withm = jEj, that is they are feasible for all values of k unless k = 1 and k = m�1.

Proof: Let us suppose h � 3 and l � 1 (or vice versa) otherwise the theorem is

trivial. Let T and P be the vertex sets de�ned in Lemma 6 and Lemma 7. Let S

be the vertex set of the cut of cardinality k we are looking for.

If k � 4
l
(h�1)(l�1)

2

m
we set S equal to p =

�
k
4

�
vertices of P including vertex v1;1

and
S := S [ fv0;2g if k � 4p = 3

S := S [ fv0;0g if k � 4p = 2

S := S n fv1;1g [ fv0;0; v0;2g if k � 4p = 1

S remains unchanged if k � 4p = 0:

If 4
l
(h�1)(l�1)

2

m
< k � m� d where

d =

�
8 ; if h; l both even

4 ; otherwise

we set S := P , we add to S q vertices of the set

Q := fvi;j 2 V : i = 0; l; 1 � j � h� 1; i; j both even or i; j both odd g

including vertex v0;2, with

q :=

�
k � 4p�

3

�
p� :=

�
(h� 1)(l� 1)

2

�

and we set
S := S [ fv0;0g if k � 4p� � 3q = 2

S := S n fv0;2g [ fv0;0; ~vg if k � 4p� � 3q = 1

S remains unchanged if k � 4p� � 3q = 0;

where

~v =

8<
:
v0;h ; if h even

vl;0 ; if l even and h odd

vl;h ; if l and h both odd.
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If k > m� d we set

S := T if k = m

S := T n fv0;0g if k = m� 2

S := T n fv0;2g if k = m� 3

and in addition in the case h and l are both even we set

S := T n fv1;1g if k = m� 4

S := T n fv0;0; v0;2g if k = m� 5

S := T n fv0;0; v1;1g if k = m� 6

S := T n fv0;2; v1;1g if k = m� 7:

2.6 Planar Graphs

De�nition 8 A planar graph is a graph which is isomorphic to a geometric graph

in the plane, i.e. it can be drawn in the plane in such a way that its edges intersect

only at their endnodes.

De�nition 9 An isthmus of a graph G is an edge whose removal increases the

number of connected components of G.

Theorem 4 When G[ffs; tgg is a planar graph without isthmus, � k�card s�t cut

is in P:

Proof: If graph G contains an edge fs; tg, we let G [ ffs; tgg indicate the union

of G with an additional edge fs; tg. Since the graph G [ ffs; tgg is planar it

is possible to associate to it the dual graph G� according to the following rule:

inside each face Fi of the graph G we put a vertex v�i of the graph G�, and to

each edge ei of G we assign that edge e�i of G� that connects the vertices u�i and

v�i corresponding to the faces Fi, Hi on the two sides of the edge ei. Since G

does not have any isthmus, G� does not have any loop. Let s� and t� be the end

vertices of the dual of edge fs; tg: We can uniquely determine (the position of)

these two vertices considering the dual of another edge incident with s or with

14



t. It is easy to see that every s � t cut of graph G corresponds to a path (in

general not elementary) from s� to t� of G� n ffs�; t�gg and vice versa. Moreover,

the cardinality of the cut is equal to the length (i.e. the number of edges) of the

path. Therefore � k�card s�t cut is equivalent to �nding a minimum path (now

elementary) from vertex s� to vertex t� with cardinality � k, where the weights

of the dual edges are equal to the weights of the original edges of G. This last

problem is solvable in polynomial time through Ford's label correcting algorithm

(see [4], page 136). So in this case � k�card s�t cut 2 P.

Corollary 2 If G [ ffs; tgg is a planar graph without isthmus for all s; t 2 V

then � k�card cut 2 P.

Proof: The corollary follows from Theorem 4 solving � k�card s�t cut for all

vertex pairs s; t of V .

Remark 5 In planar graphs k�card s�t cut is \equivalent" to k�cardinality

minimum s� t path (with possible repetitions of vertices) and the latter problem

has not yet been studied in the literature, as far as we know. Therefore the

computational complexity of k�card s� t cut in planar graphs is still an open

problem.

Considering the relation between the max cut problem and k�card cut established

in Theorem 1, and the fact that max cut is polynomial for planar graphs, estab-

lished by Theorem 5 of [10] which we report below, it is interesting to consider the

polyhedral structure of both problems for planar graphs.

Theorem 5 Let

PC(G) := fx 2 IRjEj : 0 � xe � 1 8e 2 E

x(F )� x(C n F ) � jF j � 1;

8 circuit C � E and 8F � C; jF j odd g

and let CUT (G) be the cut polytope of G, i.e. the convex hull of all incidence

vectors of cuts of G, then

PC(G) = CUT (G) , G is not contractible to K5,
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where K5 is the complete graph on 5 vertices.

This theorem shows that the max-cut problem is solvable in polynomial time for

the class of graphs not contractible to K5: The separation problem for all inequal-

ities in the concise description of CUT (G) is solvable in polynomial time since it

can be reduced to the computation of n shortest paths as shown in [11]. Since, by

a well-known characterization theorem (Kuratowski's theorem, see Theorem 4.5

of [12]), planar graphs are those graphs which are not contractible to K5 or K3;3,

the previous result holds for planar graphs, too. We would like to adapt this result

for k�card cut.

Let KCUT (G; k) denote the convex hull of all incidence vectors of the k�card cut,

i.e.

KCUT (G; k) := conv

(
x 2 f0; 1gjEj : x is a cut and

X
e2E

xe = k

)
:

Therefore

KCUT (G; k) � conv
n
x 2 f0; 1gjEj : x is a cut

o
\ conv

(
x 2 f0; 1gjEj :

X
e2E

xe = k

)

= CUT (G) \

(
x 2 [0; 1]jEj :

X
e2E

xe = k

)
(4)

If the opposite inclusion held, too, we could conclude

KCUT (G; k) = CUT (G) \

(
x 2 [0; 1]jEj :

X
e2E

xe = k

)

= PC(G) \

(
x 2 [0; 1]jEj :

X
e2E

xe = k

)

and so we also would have a compact description for the k�card cut polytope.

But unfortunately the opposite inclusion does not hold in (4) as the example below

shows.

16



Figure 3. Planar graph G for which

KCUT (G; 3) 6= CUT (G) \
�
x 2 [0; 1]jEj :

P
e2E xe = 3

	
.

For the graph G drawn in Figure 3. KCUT (G; 3) = ; because this graph has only

cuts with cardinality 2 or 4. But CUT (G) \ fx 2 [0; 1]jEj :
P

e2E xe = kg 6= ;

because, for example, ~x = (1; 1
2
; 1
2
; 1
2
; 0; 1

2
) belongs to this set. Indeed, x 2 CUT (G)

because ~x = 1
2
x0 + 1

2
x00 where x0 = (1; 0; 1; 1; 0; 1) and x00 = (1; 1; 0; 0; 0; 0) are

incidence vectors of cuts of G. Moreover,
P

e2E ~xe = 3: Examples of grid graphs

and triangulations, for which the equality does not hold, can be easily constructed,

too.

Are there other graphs for which the two polyhedra coincide? The answer is yes:

trees. Due to the proof of Proposition 7, any subset of edges is a cut, so any subset

of k edges is a k-card cut. Therefore for trees

KCUT (G; k) := conv

(
x 2 f0; 1gjEj :

X
e2E

xe = k

)

=

(
x 2 [0; 1]jEj :

X
e2E

xe = k

)
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= conv
n
x 2 f0; 1gjEj

o
\

(
x 2 [0; 1]jEj :

X
e2E

xe = k

)

=: CUT (G) \

(
x 2 [0; 1]jEj :

X
e2E

xe = k

)

2.7 Summarizing Tables

We summarize the complexity results obtained for k�card cut, � k�card cut and

� k�card cut in the following three tables:

graph class existence sum

general strongly NP � complete strongly NP � complete

complete P strongly NP � complete

complete bipartite P ?

tree P P
grid P ?

planar ? ?

Table 1. Results for k�card cut.

graph class existence sum

general P ?

complete P ?

complete bipartite P ?

tree P P
grid P ?

planar P� P�

� under the condition of Corollary 2

Table 2. Results for � k�card cut.

18



graph class existence sum

general strongly NP � complete strongly NP � complete

complete P ?

complete bipartite P ?

tree P P
grid P ?

planar ? ?

Table 3. Results for � k�card cut.

In these tables the symbol "?" indicates open problems.
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