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1 Introduction

The continuous-time portfolio problem has its origin in the pioneering work of Mer-

ton (1969, 1971). It is concerned with �nding the optimal investment strategy of

an investor. More precisely, the investor looks for an optimal decision on how many

shares of which security she should hold at every time instant between now and a

time horizon T to maximize her expected utility from wealth at the time horizon.

In the classical Merton problem the investor can allocate her money into a riskless

savings account and d di�erent risky stocks. By describing the actions of the in-

vestor via the the portfolio process (i.e. the percentages of wealth invested in the

di�erent securities) Merton was able to reduce the portfolio problem to a control

problem which could be solved by using standard stochastic control methodology.

A drawback of this approach, however, is the assumption of a deterministic interest

rate.1 Our main objective in the current paper is to overcome this restriction. We

assume that the interest rate follows an Ito process and particularly consider the

case of the Ho-Lee model and the Vasicek model for the short rate. Such problems

are treated rarely in the literature.2 Further, our theory will enable us to consider

mixed bond and stock portfolio problems. We give explicit solutions for both the

value functions and the optimal strategies in Section 2.

On the theoretical side, the introduction of stochastic interest rates into the portfo-

lio problem has the consequence that the stochastic di�erential equation describing

the wealth process does not satisfy the usual Lipschitz assumptions needed to apply

standard verifcation theorems. However, due to the special structure of this equa-

tion, the wealth equation, we are able to prove a suitable veri�cation result in the

Appendix. This is possible as some assumptions of the standard veri�cation results

as e.g. given in Fleming/Soner (1993) can be weakened substantially via proving

some special estimates.

2 Two Portfolio Problems

We consider an economy with d + 1 assets which are continuously traded on a

frictionless market. All traders are assumed to be price takers. The uncertainty

is modelled by a probability space (
;F ; P ). On this space an m-dimensional

Brownian motion f(W (t);Ft)gt�0 is de�ned where fFtgt�0 denotes the Brownian

�ltration. One of the assets is a savings account following the di�erential equation

dB(t) = B(t)r(t)dt

with B(0) = 1. Here r denotes the short rate which can be interpreted as the

annualized interest for the in�nitesimal period [t; t+ dt].

In contrast to Merton's classical model3 we assume a short rate modelled by the

SDE

dr(t) = a(t)dt + b dW (t);

t 2 [0; T �], b > 0, with initial data r(0) = r0. As explicit examples we will consider

the Ho-Lee model given by a(t) = ~a(t) + b�(t) and a Vasicek approach with a(t) =

�(t) � �r(t) + b�(t), � > 0, respectively. The risk premium � is assumed to be

1The other main approach to optimal portfolios, the martingal method, plays no role in this

paper. We refer to Korn (1997) for an introduction to it.
2For related problems see Kl�uppelberg/Korn(1998), Canestrelli/Pontini (1998) and S�rensen

(1999).
3See Merton (1969, 1971, 1990), Fleming/Rishel (1975), pp. 160f, DuÆe (1992), pp.145�,

Fleming/Soner (1993), pp. 174�, Korn (1997), pp. 48�.
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deterministic and continuous which implies the progressive measurability of �. This

assumption particularly guarantees that � is bounded on each compact interval.

Furthermore let the initial forward rate curve f�(0; T ), 0 � T � T �, be continuously

di�erentiable which leads to ~a(t) = f�T (0; t) + b2t and �(t) = f�T (0; t) + �f�(0; t) +
b
2

2�
(1� e�2�t).4 The price processes of the remaining d assets which can be stocks

and/or (discount) bonds are assumed to follow Ito processes of the form

dPi(t) = Pi(t)
h
�i(t)dt+ �i(t)dW (t)

i
with Pi(0) = pi > 0 and where �(�) is IRd-valued and �i(�) denotes the i th row of

the d�m-matrix �(�).

We consider an investor who starts with an initial wealth x0 > 0 at time t = 0.

In the beginning this initial wealth is invested in the di�erent assets and she is

allowed to adjust her holdings continuously up to a �xed planning horizon T . Her

investment behaviour is modelled by a portfolio process � = (�1; : : : ; �d) which

is progressively measurable (with respect to fFtgt�0). Here, �i(t), i = 0; : : : ; d,

denotes the percentage of total wealth invested in the i-th asset at time t. Obviously,

the percentage invested in the savings account is given by 1 � �01 where 1 :=

(1; : : : ; 1)0 2 IRd.

If we restrict our considerations to self-�nancing portfolio processes, her wealth

process follows the stochastic di�erential equation (SDE)

dX(t) = X(t)
h�
�(t)0(�(t)� r(t) � 1) + r(t)

�
dt+ �(t)0�(t)dW (t)

i
(1)

with X(0) = x0
5.

The wealth equation can be interpreted as a controlled SDE with the control being

the portfolio process �(�). In this setting the investor chooses a portfolio process

to maximize her utility. We assume that her preferences can be represented by

the utility function U(x) = x , x � 0, 0 <  < 1. Furthermore, the investor

is only allowed to pick out a portfolio process which is admissible in the sense of

De�nition 3.1 and leads to a positive wealth process X�. Now we are in the position

to formulate her optimization problem:6

max
�(�)2A�(0;x0)

E(X�(T ))(2)

with

dX�(t) = X�(t)
h
(�(t)0(�(t) � r(t) � 1) + r(t))dt + �(t)�(t)dW (t)

i
;

X�(0) = x0

and

A�(0; x0) :=
n
�(�) 2 A(0; x0) : X

�(s) � 0 P � f.s. for s 2 [0; T ]
o
:

We emphasize that applying optimal control methods to this problem does not

automatically yield a positive state process. However, Corollary 3.1 and the special

form of the coeÆcients in the wealth equation (1) will indeed guarantee the positivity

of X�(t). Therefore, we obtain A�(0; x0) = A(0; x0).

4See for example Musiela/Rutkowski (1997), pp. 323f.
5See for example Korn (1997), pp. 23f.
6Here A(0; x0) denotes the set of all admissible controls corresponding to the initial condition

(0; x0). See De�nition 3.1 in the appendix.



2 TWO PORTFOLIO PROBLEMS 3

2.1 A bond portfolio problem

We start in considering a portfolio problem where the investor can split up his

wealth in a savings account and a (zero) bond with maturity T1 > T . We assume

that the asset price processes can be represented by the Ito processes

dB(t) = B(t)r(t)dt;

dP (t; T1) = P (t; T1)
h
(r(t) + �(t)�(t)| {z }

=:�(t)

)dt+ �(t)dW (t)
i
;

where W is a one-dimensional Brownian motion. In the Ho-Lee and the Vasi-

cek models the volatility of the bond is given by �(t) = �b(T1 � t) and �(t) =
b

�
(exp(��(T1 � t)) � 1), respectively.7 Let �(t) be the percentage invested in the

bond. This leads to a wealth equation of the form

dX(t) = X(t)
h
(�(t)�(t) + (1� �(t))r(t))dt + �(t)�(t)dW (t)

i
(3)

= X(t)
h
(�(t)�(t)�(t) + r(t))dt + �(t)�(t)dW (t)

i
with initial data X(0) = x0.

As in contrast to the classical Merton problem, we assume a stochastic short rate,

the drift coeÆcient includes the additional stochastic term r(t). Thus, to solve

the portfolio problem (2) by stochastic control methods we have to look at a two-

dimensional state process Y = (X; r). Note that the second component cannot be

controlled via �(�). Using the notation of (16) in the appendix we get8

Y (t) = (X(t); r(t))0;

�(t; x; r; �) = (x(��� + r); a)0;

�(t; x; r; �) = (x��; b)0;

��(t; x; r; �) =

0
@ x2�2�2 bx��

bx�� b2

1
A ;

A�G(t; x; r) = Gt + 0; 5(x2�2�2Gxx + 2x�b�Gxr + b2Grr)

+x(��� + r)Gx + aGr:

Hence, the following Hamilton-Jacobi-Bellman equation (HJB) has to be solved

sup
j�j�Æ

A�G(t; x; r) = 0;

G(T; x; r) = x ;

where Æ > 0 will be speci�ed later.

Note that due to the presence of the product rx in the above setting usual veri�ca-

tion theorems which require Lipschitz conditions are not applicable to our situation

as both the wealth process and the short rate are unbounded processes. We there-

fore give a suitable verifcation result (Corollary 3.2) in the appendix. This result

then allows us to solve HJB with the usual three step procedure. By this, we would

like to emphasize our opinion that the third step, veri�cation of all assumptions

of both Corollary 3.2 and those made to perform the following calculations, is an

essential part of the solution.

7See for example Musiela/Rutkowski (1997), pp. 323�.
8For simplicity we often neglect the functional dependencies with respect to t, x and r.
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We start with the calculation of the optimal bond position �(�).

1st step: Assuming Gxx < 0 we get the following candidate for the optimal bond

position

�� = �
�

�

Gx

xGxx

�
b

�

Gxr

xGxx

:(4)

2nd step: Inserting ��(t; x; r;G) into HJB leads to the PDE

0 = GtGxx � 0; 5�2G2
x � 0; 5b2G2

xr + 0; 5b2GrrGxx(5)

�b�GxGxr + xrGxGxx + aGrGxx

with the terminal condition G(T; x; r) = x . Note that � = (�� r)=�.

The form of this condition recommends the following separation ansatz

G(t; x; r) = f(t; r) � x with f(T; r) = 1 for all r:

This leads to a second-order PDE for f of the form

0 = ( � 1)fft � 0; 5b2f2r � 0; 5�2f2 + 0; 5b2( � 1)ffrr

�b�ffr + r( � 1)f2 + a( � 1)ffr

with terminal condition f(T; r) = 1. Using the ansatz

f(t; r) = g(t) � exp(�(t) � r)

with terminal conditions �(T ) = 0 and g(T ) = 1 and simpli�cation yields

0 = ( � 1) � g0 + ( � 1) ( + �0) � rg(6)

�
�
0; 5�2 + 0; 5b2�2 + b��

�
� g + a( � 1)� � g:

Our ansatz for f will only be meaningful, if we get an ordinary di�erential equation

(ODE) for g which does not include the short rate r.

In the Ho-Lee model the drift a of the short rate is a function of t, whereas in the

Vasicek model it is a function of t and r. Therefore we treat the two interest rate

models separately.

Ho-Lee model: In our Ho-Lee setting PDE (6) has the form

0 = ( � 1) � g0 + ( � 1) ( + �0) � rg(7)

+
�
�0; 5�2 � 0; 5b2�2 � b�� + a( � 1)�

�
| {z }

=:h1(t)

�g:

Since a(t) = f�T (0; t) + b2t + b�(t) and � is assumed to be deterministic and conti-

nuous, h1 is a continuous and deterministic function. Choosing �(t) = (T � t) we

infer from (7) the following �rst-order ODE for g

0 = ( � 1) � g0 + h1(t) � g

with g(T ) = 1. Separation of variables leads to

g(t) = exp
�

1
1�

(H1(t)�H1(T ))
�
;

where H1 is a primitive of h1. Hence we obtain

G(t; x; r) = x � exp
�

1
1�

(H1(t)�H1(T )) + (T � t)r
�
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as a candidate for the value function. Inserting into (4) gives the corresponding

control

��(t) =
1

1� 
�
�(t) + b�(t)

��(t)

=
1

1� 
�
�(t) + b(T � t)

�b(T1 � t)
:

Obviously, ��(�) is continuous, deterministic and therefore bounded.

Vasicek model: With the Vasicek speci�cation of a the PDE (6) has the following

form

0 = ( � 1) � g0 + ( � 1)(�0 � �� + )| {z }
(�)

�rg

+(�( � 1)� � b�� � 0; 5b2�2 � 0; 5�2| {z }
=:h2(t)

) � g:

Our ansatz for f is only meaningful, if � can be calculated so that the factor (�)

becomes zero. As a result we have to solve an inhomogeneous ODE for � which has

the following form

�0(t) = ��(t) � 

with �(T ) = 0 leading to

�(t) = 

�
(1� exp(�(t � T ))):

Choosing � as calculated we again get a �rst-order homogeneous ODE for g

0 = ( � 1) � g0 + h2(t) � g

with g(T ) = 1. Hence

g(t) = exp( 1
1�

(H2(t)�H2(T )));

where H2 is a primitive of h2. Therefore

G(t; x; r) = x � exp
�

1
1�

(H2(t)�H2(T )) +


�
(1� exp(�(t � T )))r

�
:

The corresponding control reads as follows

��(t) =
1

1� 
�
�(t) + b�(t)

�(t)

=
1

1� 
�
�(t) + b � 

�
(1� exp(�(t� T )))

b
�
(exp(��(T1 � t))� 1)

:

Again ��(�) is continuous, deterministic and therefore bounded.

In both cases one can choose Æ in an appropriate way so that the optimal bond

position ful�ls the condition �(�) � Æ. Moreover the respective ��(�) is of the form

��(t) =
1

1� 
�
�(t)

�(t)| {z }
Merton result

�


1� 
� �(t)| {z }

correction term

with �(t) = T�t
T1�t

in the Ho-Lee model and �(t) = 1�e��(T�t)

1�e��(T1�t)
in the Vasicek model.

The �rst term coincides with the classical optimal one in Merton (1969, 1971)
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when the coeÆcients are deterministic. The second term can be interpreted as a

correction term which is positive and monotonously decreasing to zero up to the

terminal date T . Thus, we �rst have a bigger, negative deviation from the classical

result which vanishes at the time horizon. This correction results from the fact that

the volatiltiy of the bond decreases as time goes by and hence becomes less risky.

Moreover the correction term increases with the investor's risk aversion because the

less risky savings account will become more attractive if her risk aversion increases.

3rd step: At �rst we justify our use of Corollary 3.2 although the state process

Y = (X; r)0 is two-dimensional: Note that the short rate process does not include

the control �(�). Therefore one can prove condition (i) and (iii) in De�nition 3.1

independently of a speci�ed control. Consider the SDE

dr(t) = a(t)dt+ b dW (t)(8)

of the short rate r with r(0) = r0. The coeÆcients meet the growth and Lipschitz

conditions of the existence and uniqueness theorem for SDE.9 Hence (8) has a unique

solution. Using a theorem of Krylov (1980, p. 85) we get

E
�

max
0�s�T

jr(s)j�
�
< +1(9)

with � 2 IN . Therefore, independently of the control under consideration, the

conditions (i) and (iii) are ful�led by the second component of the state process Y .

As a result we can treat our problem as if the state process only consists of X . Note

that then the wealth equation is a linear controlled SDE.

We can apply Corollary 3.2 if we are able to prove the following assumptions:

1) ��(�) is progressively measurable,

2) ��(�) meets condition (ii) in de�nition 3.1,

3) ��(�) meets condition (iii) in de�nition 3.1,

4) G is a C1;2-solution of the HJB,

5) condition (27) is met,

Furthermore, the portfolio process has to lead to a positive wealth process, so

6) X�
�

� 0.

Proof of 1): The respective solution ��(�) is continuous and deterministic, hence

progressively measurable.

Proof of 2): Property (ii) of an admissible control is met, because the respective

��(�) is bounded.

Proof of 3): By Corollary 3.1 the wealth equation (3) for ��(�) has the solution

X�(t) = x0 exp

�Z t

0

��(s)�(s)�(s) + r(s) � 0; 5(��(s)�(s))2 ds(10)

+

Z t

0

��(s)�(s) dW (s)

�
:

Note that (9) implies

E

 ��� Z T

0

r(s) ds
���
!
� T � E

�
max
0�s�T

jr(s)j
�
< +1

9See Fleming/Soner (1993, pp. 397f).
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and hence Z T

0

r(s) ds < +1; P � f.s.:

The other assumptions of Corollary 3.1 are obviously met.

With an appropriate constantK > 0 we obtain the following estimate. (Be aware of

the fact that ��(�), �(�) and �(�) are bounded and that juvj � u2+v2 for u; v 2 IR.):

X�(t)k = xk0 � exp

�
k

Z t

0

��(s)�(s)�(s) + r(s) � 0; 5(��(s)�(s))2 ds(11)

+k

Z t

0

��(s)�(s) dW (s)

�

� K � exp

�
k

Z t

0

r(s) ds + k

Z t

0

��(s)�(s) dW (s)

�

� K � exp

�
2k

Z t

0

r(s) ds

�
+K � exp

�
2k

Z t

0

��(s)�(s) dW (s)

�
:

Now consider the integral
R t
0
r(s) ds. With the form of the short rate process, in

the Ho-Lee model we get 10

Z t

0

r(s) ds =

Z t

0

�
r0 +

Z s

0

a(u) du+

Z s

0

b dW (u)

�
ds(12)

= r0t+

Z t

0

Z s

0

a(u) duds+ b

Z t

0

Z s

0

dW (u)ds

= : : :+ b

Z t

0

(t� u) dW (u):

The dots represent a term which is deterministic and bounded on [0; T ]. Using the

variation of constants formula for SDE11 in the Vasicek model we obtain

r(t) = e��t
�
r0 +

Z t

0

e�u
�
�(u) + b�(u)

�
du+

Z t

0

be�u dW (u)

�
:

Hence Z t

0

r(s) ds =

Z t

0

e��s
�
r0 +

Z s

0

e�u
�
�(u) + b�(u)

�
du

�
ds(13)

+ b

Z t

0

Z s

0

e�(u�s) dW (u)ds

= : : :+ b

Z t

0

Z t

u

e�(u�s) dsdW (u):

The dots represent a term which is deterministic and bounded on [0; T ].

In both cases the problem is reduced to �nd an estimate for terms of the form

exp(
R t
0
h(s) dW (s)) with a deterministic and bounded function h, namely

exp

�Z t

0

h(s) dW (s)

�
=

exp

�Z t

0

0; 5h2(s) ds

�
| {z }

=const:

� exp

�
�

Z t

0

0; 5h2(s) ds+

Z t

0

h(s) dW (s)

�
| {z }

=:Z(t)

10See Ikeda/Watanabe (1981, pp. 117�) for the interchange of Lebesgue and Ito integral.
11See Korn (1997), p. 313.
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with

dZ(t) = Z(t)h(t)dW (t);

Z(0) = 1:

Using Krylov (1980, p. 85) we �nd that

E
�
max
0�t�T

Z(t)
�
< +1:

Because of (11) and (12) or (13), respectively, (X�)k can be estimated by processes

of the same form as Z in both models. Therefore property 3) is proved.

Proof of 4): Since the condition Gxx < 0 is met in both models, G is obviously a

C1;2-solution of the HJB.

Proof of 5): It is suÆcent to prove that (27) is met by all bounded admissible bond

positions �(�). Then the respective ��(�) dominates all admissible bond positions.

Let (t0; x0; r0) 2 [0; T ]� IR2
+ := fy 2 IR2 : y > 0g and t0 � t � T . We consider the

models separately.

Ho-Lee model: The candidate for the value function is

G(t; x; r) = x � exp
�

1
1�

(H1(t)�H1(T )) + (T � t)r
�
;

where H1 denotes a deterministic function which is continuously di�erentiable. Let

Ki, i = 1; 2; 3, be appropriate constants. As H1, �, �, � and a are bounded

functions, an application of Ito's formula yields

G(t;X(t); r(t))

= X(t) � exp
�

1
1�

(H1(t)�H1(T )) + (T � t)r(t)
�

= (x0) exp

�


Z t

t0
�(s)�(s)�(s) + r(s) � 0; 5(�(s)�(s))2 ds

+

Z t

t0
�(s)�(s) dW (s)

�

� exp
�

1
1�

(H1(t)�H1(T ))
�
� exp (r(t)(T � t))

� K1 � exp

�


Z t

t0
r(s) ds + 

Z t

t0
�(s)�(s) dW (s)

�
� exp(Tr(t)) � exp(�tr(t))

= K1 � exp

�


Z t

t0
r(s) ds + 

Z t

t0
�(s)�(s) dW (s)

�
� exp

�
T

Z t

t0
dr(s)

�

� exp

�
�

Z t

t0
s dr(s) � 

Z t

t0
r(s) ds

�

= K1 � exp

�


Z t

t0
�(s)�(s) dW (s)

�
� exp

�


Z t

t0
(T � s)(a(s) ds + b dW (s))

�

� K2 � exp

�


Z t

t0
�(s)�(s) + b(T � s) dW (s)

�

� K3 � exp

�


Z t

t0
�(s)�(s) + b(T � s)dW (s)

�0; 52
Z t

t0

�
�(s)�(s) + b(T � s)

�2
ds

�
=: K3 � Z(t);



2 TWO PORTFOLIO PROBLEMS 9

where Z is the unique solution of

dZ(t) = Z(t)
�
(�(t)�(t) + b(T � t))

�
dW (t) mit Z(t0) = 1:

Using Krylov (1980, p. 85) we arrive at

E
�

sup
t2[t0;T ]

jG(t;X(t); r(t))j2
�
� K3 � E

�
sup

t2[t0;T ]

jZ(t)j2
�
<1:

Hence we have just proved (27) in the Ho-Lee model.

Vasicek model: Our candidate for the value function is

G(t; x; r) = x � exp
�

1
1�

(H2(t)�H2(T )) +


�
(1� exp(�(t � T )))r

�
;

where H2 is a continuously di�erentiable and deterministic function. With appro-

priate constants Ki, i = 1; : : : ; 6, we �nd that

G(t;X(t); r(t))

= X(t) � exp
�

1
1�

(H2(t)�H2(T )) +


�
(1� exp(�(t� T )))r(t)

�
� K1 �X(t) � exp

�


�
(1� exp(�(t � T )))r(t)

�
� K2 � exp

�


Z t

t0
�(s)�(s)�(s) + r(s) � 0; 5(�(s)�(s))2 ds

+

Z t

t0
�(s)�(s) dW (s)

�
� exp

�


�
(1� exp(�(t � T ))) � r(t)

�
� K3 � exp

�


Z t

t0
r(s) ds + 

Z t

t0
�(s)�(s) dW (s)

�
� exp

�


�
r(t)

�
� exp

�
� 

�
exp(�(t � T )) � r(t)

�
:

With the de�nition fh(t; r) := exp(�(t�T )) �r an application of Ito's formula yields

fh(t; r(t))

= fh(t0; r0) +

Z t

t0
� exp(�(s � T ))r(s) ds+

Z t

t0
exp(�(s� T )) dr(s)

= fh(t0; r0) +

Z t

t0
exp(�(s� T )) � (�(s) + b�(s)) ds+

Z t

t0
b exp(�(s� T )) dW (s):

Hence, by virtue of the stochastic integral equation of the short rate, we have

G(t;X(t); r(t))

� K4 � exp

�


Z t

t0
r(s) ds+ 

Z t

t0
�(s)�(s) dW (s)

�
� exp

�


�
r(t)

�
� exp

�
� 

�

Z t

t0
b exp(�(s � T )) dW (s)

�

= K4 � exp

�


Z t

t0
r(s) ds+ 

Z t

t0
�(s)�(s) dW (s)

�

� exp

�


�
r0 + 

�

Z t

t0
(�(s) � �r(s) + b�(s)) ds+ 

�

Z t

t0
b dW (s)

�

� exp

�
� 

�

Z t

t0
b exp(�(s � T )) dW (s)

�
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� K5 � exp

�Z t

t0
�(s)�(s) + 

�
b
�
1� exp(�(s � T ))

�
dW (s)

�

� K6 � exp

�Z t

t0
�(s)�(s) + 

�
b
�
1� exp(�(s� T ))

�
dW (s)

�

Z t

t0
0; 5

h
�(s)�(s) + 

�
b
�
1� exp(�(s � T ))

�i2
ds

�
=: K6 � ~Z(t):

Since the process ~Z has the same properties as Z in the Ho-Lee model an analogous

argument leads to (27).

Proof of 6): By virtue of (10), we have X� � 0.

The following theorem summerizes our results.

Theorem 2.1 (Bond portfolio problem) The optimal portfolio processes in the

above bond portfolio problems are given by

��(t) =
1

1� 
�
�(t)

�(t)
�



1� 
� �(t)

with

a) Ho-Lee case: �(t) = T�t
T1�t

,

b) Vasicek case: �(t) = 1�e��(T�t)

1�e��(T1�t)
.

2.2 A mixed stock and bond portfolio problem

In this subsection we assume that the investor can put his money on a savings

account, in a stock or in a bond with maturity T1 > T . The dynamics of these

assets are given by

dB(t) = B(t)r(t)dt;

dS(t) = S(t)
h
�S(t)dt+ �S(t)dWS(t) + �SB(t)dWB(t)

i
;

dP (t) = P (t)
h
(r(t) + �B(t)�B(t)| {z }

=:�B(t)

)dt+ �B(t)dWB(t)
i
;

where (WS ;WB) is a two-dimensional Brownian motion and where, for ease of

notation, we write P (t) instead of P (t; T1). In our model the stock price depends

on two risk factors: The �rst factor WS contains the speci�c risk of the stock, and

the second WB comes from the stochastic interest rate model.

In Merton's portfolio problem we can split up the (deterministic) drift �S of the

stock into a liquidity premium (LP) and an excess return, which should be inter-

preted as risk premium (RP) in this context:12

�S = r|{z}
LP

+�S � r| {z }
RP

:

The drift of the stock S under consideration can also be

�S(t) = r(t) + �S(t)� r(t)| {z }
=:�S(t)

;

12There is no uniform use of the words excess return, risk premium and market price of risk.

Apart from the above interpretation of the drift, throughout the paper we denote � = � � r as

excess return, �
�
as risk premium and �

�2
as market price of risk.



2 TWO PORTFOLIO PROBLEMS 11

where �S denotes the risk premium of the stock

In the following, we assume that the excess return �S(�) of the stock is deterministic

and continuous. This implies that �S(�) is progressively measurable and bounded

on [0; T ]. Furthermore, assume that the coeÆcients �S(�), �SB(�) and �B(�) are

deterministic and continuous. In addition, let �S(�) and �B(�) be bounded away

from zero.

As before we consider both a Ho-Lee and a Vasicek model:

dr(t) = a(t)dt+ bdWB(t)

with a(t) = ~a(t) + b�(t) in the Ho-Lee model and a(t) = �(t)� �r(t) + b�(t) in the

Vasicek model.

Moreover we have �B(t) = �b(T1�t) in the Ho-Lee model and �B(t) =
b
�
(exp(��(T1

� t))� 1) in the Vasicek model.

In this framework the wealth equation (1) has the following form

dX(t) = X(t)
h
(�S(t)�S(t) + �B(t)�B(t) + r(t))dt

+�S(t)�S(t)dWS(t) + (�S(t)�SB(t) + �B(t)�B(t))dWB(t)
i
;

where �B(t) := �B(t)� r(t) und � := (�S ; �B).

Using the notations of (16) in the appendix we have

Y (t) = (X(t); r(t))0;

�(t; x; r; �) = (x(�S�S + �B�B + r); a)0;

�(t; x; r; �) =

0
@ x�S�S x(�S�SB + �B�B)

0 b

1
A ;

��(t; x; r; �) =

0
@ x2(�2S�

2
S + (�S�SB + �B�B)

2) bx(�S�SB + �B�B)

bx(�S�SB + �B�B) b2

1
A ;

A�G(t; x; r) = Gt + 0; 5x2(�2S�
2
S + (�S�SB + �B�B)

2)Gxx + 0; 5b2Grr

+bx(�S�SB + �B�B)Gxr + x(�S�S + �B�B + r)Gx + aGr:

Hence we have to solve the following HJB

sup
j�j�Æ

A�G(t; x; r) = 0;

G(T; x; r) = x :

This will again be done by the 3-step-algorithm.

1st step: Assuming Gxx < 0 we calculate the canditates for the optimal portfolio

positions

��S = � (�S �
�SB
�B

�BS)| {z }
=:�̂S

�
Gx

xGxx

;(14)

��B = �
�
(1 +

�
2
SB

�2
S

)�B �
�SB
�B

�S

�
| {z }

=:�̂B

�
Gx

xGxx

�
b

�B
�
Gxr

xGxx

(15)

with �S := �S=�
2
S , �B := �B=�

2
B and �BS := �B=�

2
S .
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2nd step: Inserting ��S(t; x; r;G) and �
�
B(t; x; r;G) in the HJB yields the PDE

0 = GtGxx + (0; 5�2S �̂
2
S + 0; 5(�SB �̂S + �B �̂B)

2 � �S �̂S � �B �̂B| {z }
=:~�(t)

)G2
x

�0; 5b2G2
xr + 0; 5b2GrrGxx � b�B

�B
GxGxr + xrGxGxx + aGrGxx

with G(T; x; r) = x . This PDE is of the same form as the corresponding PDE

(5) above.13 Note that ~�, in analogy to � in (5), is a continuous and deterministic

function. Therefore in the Ho-Lee model we get

G(t; x; r) = x � exp
�

1
1�

(H3(t)�H3(T )) + (T � t)r
�

and in the Vasicek model

G(t; x; r) = x � exp
�

1
1�

(H4(t)�H4(T )) +


�
(1� exp(�(t � T )))r

�
;

with appropriate continuously di�erentiable functions H3 and H4, respectively. In-

sertion into (14) and (15) yields in both models for the optimal stock and bond

position

��S(t) =
1

1� 
�
�
�S(t)�

�SB(t)

�B(t)
�BS(t)

�
=

1

1� 
� �̂S(t);

��B(t) =
1

1� 
�
��

1 +
�
2
SB

(t)

�2
S
(t)

�
�B(t)�

�SB(t)

�B(t)
�S(t)�  � �(t)

�
=

1

1� 
� (�̂B(t)�  � �(t)) ;

where �(t) = T�t
T1�t

in the Ho-Lee model and �(t) = 1�e��(T�t)

1�e��(T1�t)
in the Vasicek model.

Both positions are continuous and deterministic processes, hence bounded.

3rd step: With the same argument as in subsection 2.1 we can apply corollary 3.2.

Therefore in both models we must check the following assumptions

1) ��(�) is progressively measurable,

2) ��(�) meets condition (ii) in de�nition 3.1,

3) ��(�) meets condition (iii) in de�nition 3.1,

4) G is a C1;2-solution of the HJB,

5) condition (27) is met,

6) X�
�

� 0.

Note that �� := (��S ; �
�
B)

0.

Conditions 1) and 2) are met, because in both models ��(�) is a continuous and

deterministic process. Obviously 4) is ful�led. Condition 6) is met since variation

of constants leads to

X(t) =

x0 exp

�Z t

0

�S(s)�S(s) + �B(s)�B(s) + r(s)

� 0; 5
�
(�S(s)�S(s))

2 + (�S(s)�SB(s) + �B(s)�B(s))
2
�
ds

+

Z t

0

�S(s)�S(s) dWS(s) +

Z t

0

�S(s)�SB(s) + �B(s)�B(s) dWB(s)

�
;

13One will obtain the PDE (5), if �S � 0, �S � 0 and �SB � 0.
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for a admissable control �(�). Furthermore, since the wealth process has the sa-

me properties as in subsection 2.1 we can prove 3) and 5) using the analogous

arguments.

The following theorem summerizes our results.

Theorem 2.2 (Mixed portfolio problem) The optimal portfolio processes in the

above mixed portfolio problem are given by

��S(t) =
1

1� 
�
�
�S(t)�

�SB(t)

�B(t)
�BS(t)| {z }

=:�̂S

�
; (stock)

��B(t) =
1

1� 
�
��

1 +
�
2
SB

(t)

�2
S
(t)

�
�B(t)�

�SB(t)

�B(t)
�S(t)| {z }

=:�̂B

� � �(t)
�

(bond)

with

a) Ho-Lee case: �(t) = T�t
T1�t

,

b) Vasicek case: �(t) = 1�e��(T�t)

1�e��(T1�t)
.

Considering the optimal positions the analogy to the pure bond problem becomes

clear: The variables �̂S and �̂B can be interpreted as modi�ed market prices of risk,

where both are weighted di�erences of �S and �BS or �B and �S , respectively. In

the optimal stock position the market price of risk of the stock is corrected by �BS ,

which stands for the market price of risk of the bond with respect to the stock.

Similarly, the market price of risk of the bond contains a correction of the optimal

bond position by the market price of risk of the stock. Both these corrections are

plausible ones as an increase of the market price of risk of the bond makes stock

investment less attractive and vice versa. Apart from this remark the interpretation

of the bond part as given in Section 2.1 remains valid.

Furthermore, we will get the optimal bond position of subsection 2.1 if we choose

�S � 0 and �SB � 0 in �B(�).

3 Appendix

In this appendix we will present the technical results and details which enabled

us to solve the foregoing portfolio problems by stochastic control methods. Let

therefore be (
;F ; P ) a complete probability space. Assume that on this space

an m-dimensional Brownian motion f(W (t);Ft)gt2[0;1) is de�ned with fFtgt2[0;1)

being the Brownian �ltration. All adapted or progressively measurable processes

are adapted or progressively measurable with respect to the Brownian �ltration.

Let further j � j denote the Euclidean norm or the operator norm, respectively.

As usual we will look at a state process given by a controlled SDE of the form

dY (t) = �(t; Y (t); u(t))dt+�(t; Y (t); u(t))dW (t)(16)

with initial value of Y (t0) = y0 and a d-dimensional control process u(�). Let

[t0; t1] with 0 � t0 < t1 < 1 be the relevant time intervall. A control strategy

u(�) (for short: control) is a progressively measurable process with u(t) 2 U for all

t 2 [t0; t1] where the set U � IRd, d 2 IN , is assumed to be closed. Further let
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Q0 := [t0; t1)� IRn, n 2 IN . The coeÆcient functions

� : �Q0 � U ! IRn;

� : �Q0 � U ! IRn;m;

m 2 IN , are all assumed to be continuous. Further, for all v 2 U let �(�; �; v) and

�(�; �; v) be in C1( �Q0). We then de�ne

De�nition 3.1 (Admissible control) A control f(u(t);Ft)gt2[t0;t1] will be called

admissible
14

if

(i) for all y0 2 IRn
the corresponding controlled SDE (16) with initial condition

Y (t0) = y0 admits a pathwise unique solution fY u(t)gt2[t0;t1],

(ii) for all k 2 IN the integrability condition

E

�Z t1

t0

ju(s)jk ds

�
<1

is satis�ed and

(iii) the corresponding state process Y u
satis�es

Et0;y0

 
sup

t2[t0;t1]

jY u(t)jk

!
<1:

Let A(t0; y0) denote the set of all admissible controls corresponding to the initial

condition (t0; y0) 2 Q.

In the following the above de�nition will prove to be extremely useful when we

have to overcome some technical diÆculties which have their origin in the fact that

the wealth equation does not satisfy the usual Lipschitz conditions needed in the

standard veri�cation theorems of stochastic control.

To ensure existence and uniqueness of the solution of the controlled SDE (16) one

typically requires the following Lipschitz and growth conditions for the coeÆcient

functions which imply that controls with property (ii) are already admissible (i.e.

they also satisfy properties (i) and (iii)).15 With a constant C > 0 these conditions

are:

j�tj+ j�yj � C;(17)

j�tj+ j�yj � C;

j�(s; y; v)j � C(1 + jyj+ jvj);(18)

j�(s; y; v)j � C(1 + jyj+ jvj)

for all s 2 [t0; t1], y 2 IR and v 2 U .

Typically, in our applications the conditions (17) and (18) will not be satis�ed. On

the other hand we only have to deal with linear controlled SDEs. This will imply

that requirement (ii) on an admissible control already ensures requirement (i), too:

14This de�nition is more restrictive than the usual one as e.g. given in Fleming/Rishel (1975, p.

156). However, due to the special form of our control problem all (optimal) controls in this paper

will satisfy the more restrictive requirements of our de�nition.
15See Fleming/Soner (1993), p. 398.
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Corollary 3.1 (Variation of constants) Let (t0; y0) 2 Q and let A
(j)
1 , j = 1; : : : ;

d, A2, B
(i;j)
1 , i = 1; : : :m, j = 1; : : : d, B

(i)
2 , i = 1; : : :m be progressively measurable

real valued processes satisfying the integrability conditions

Z t1

t0

jA2(s)j ds < 1 P -f.s., t � 0,Z t1

t0

� dX
j=1

A
(j)
1 (s)2 +

mX
i=1

B
(i)
2 (s)2

�
ds < 1 P -f.s., t � 0,

Z t1

t0

� mX
i=1

dX
j=1

B
(i;j)
1 (s)4

�
ds < 1 P -f.s., t � 0.

Further, let u(�) be a control with property (ii) of De�nition 3.1. Then the linear

controlled SDE

dY u(t) = Y u(t)
h
(A1(t)

0u(t) +A2(t))dt + (B1(t)u(t) +B2(t))
0dW (t)

i
(19)

admits the Lebesgue
N
P unique solution

Y u(t) = y0 � exp

�Z t1

t0

�
A1(s)

0u(s) +A2(s)� 0; 5jB1(s)u(s) +B2(s)j
2
�
ds

+

Z t1

t0

�
B1(s)u(s) +B2(s)

�0
dW (s)

�
:

If we only consider bounded admissible controls then the following conditions are

suÆcient:

Z t1

t0

� dX
j=1

jA
(j)
1 (s)j+ jA2(s)j

�
ds < 1 P -f.s., t � 0,

Z t1

t0

� mX
i=1

dX
j=1

B
(i;j)
1 (s)2 +

mX
i=1

B
(i)
2 (s)2

�
ds < 1 P -f.s., t � 0.

Proof of Corollary 3.1: The integrability assumptions together with property

(ii) of an admissible control imply the requirements of the variation of constants

formula given in Korn (1997). Applying it implies all assertions of the corollary. 2

Consequently, for our applications it will be enough to verify properties (ii) and

(iii) to obtain admissibility of a control. From now on, controlled SDEs (19) with

coeÆcients satisfying the conditions of Corollary (3.1) will be referred to as linear

controlled SDEs.

We will now formulate a standard verifcation theorem and afterwards derive a

version suitable for our applications by modifying the relevant parts of the proof

of the standard theorem. Therefore, we look at the following setting: Let O � IRn

be an open subset of IRn. In the case of O 6= IRn we additionally assume that its

boundary @O is a compact (n� 1)-dimensional C3-manifold. In analogy to Q0 we

de�ne Q := [t0; t1)�O. Further, let

� := infft 2 [t0; t1] : (t; Y (t)) =2 Qg

denote the exit time of Y from O. Hence, we have

(�; Y (�)) 2 @�Q := ([t0; t1)� @O) [ (ft1g � �O):
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We now consider continuous, real valued functions L and 	 that satisfy the poly-

nomial growth conditions

jL(t; y; v)j � C(1 + jyjk + jvjk);(20)

j	(t; y)j � C(1 + jyjk)(21)

on �Q � U and �Q for suitable constants k 2 IN and C > 0. Here, L and 	 model

the running and the terminal utility resulting from the control and the position of

the controlled process, respectively. It will be our goal to determine an admissible

control u(�) such that for each initial value (t0; y0) the utility functional

J(t0; y0;u) := Et0;y0

�Z �

t0

L(s; Y u(s); u(s)) dt+	(�; Y u(�))

�

will be maximised, i.e. we want to solve max
u2A(t0;y0)

J(t0; y0;u).

Therefore, de�ne the value function

V (t; y) := sup
u2A(t;y)

J(t; y;u); (t; y) 2 Q:

For each function G 2 C1;2(Q) and (t; y) 2 Q, v 2 U , we consider the following

di�erential operator

AvG(t; y) := Gt(t; y) + 0; 5

nX
i;j=1

��ij(t; y; v) �Gyiyj (t; y) +

nX
i=1

�i(t; y; v) �Gyi(t; y)

with �� := ��0. Then, we have:16

Theorem 3.1 (Veri�cation theorem) Let the conditions (17) and (18) on the

coeÆcient functions of the controlled SDE (16) be satis�ed. Further assume condi-

tions (20) and (21). Let G be a function with the following properties:

a) We have:

G 2 C1;2(Q) \ C( �Q);(22)

jG(t; y)j � K(1 + jyjk)(23)

for suitable K > 0 and k 2 IN .

b) G solves the Hamilton-Jacobi-Bellman equation(HJB):

sup
v2U

n
AvG(t; y) + L(t; y; v)

o
= 0; (t; y) 2 Q;(24)

G(t; y) = 	(t; y); (t; y) 2 @�Q:(25)

Then we obtain the following result:

(i) G(t; y) � J(t; y;u) for all (t; y) 2 Q and u(�) 2 A(t; y):

(ii) If for (t; y) 2 Q there exists a control u�(�) 2 A(t; y) with

u�(s) 2 argmax
v2U

�
AvG(s; Y �(s)) + L(s; Y �(s); v)

�
(26)

for all s 2 [t; � ] where Y �
is the solution of the controlled SDE corresponding

to u�(�) then we have

G(t; y) = V (t; y) = J(t; y;u�);

i.e. u�(�) is an optimal control and G coincides with the value function.

16See Fleming/Soner (1993), p. 163.
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Besides conditions (17) and (18) the growth condition (23) is not satis�ed in our

applications, too. Thus, we need to modify the above veri�cation result in a suitable

way:

Corollary 3.2 (to the veri�cation theorem) Consider a linear controlled SDE

with coeÆcients satisfying the assumptions of Corollary 3.1. Assume further that

the functions L and  satisfy the conditons (20) and (21). Finally, let the function

G 2 C1;2(Q) \ C( �Q) be a solution to the Hamilton-Jacobi-Bellman equation (24)

with boundary condition (25). Assume that for all (t; y) 2 Q and all admissible

controls u(�) 2 A(t; y) there exists a � > 1 such that we have

E
�

sup
s2[t;t1]

jG(s; Y (s))j�
�
<1:(27)

Then assertions (i) and (ii) of the ver�cation theorem are valid.

Proof of Corollary 3.2:

Looking at the proof of the ver�cation theorem as given in Fleming/Soner (1993,

pp. 163f) we realize the following:

(i) Conditions (17) and (18) ensure the existence and uniqueness of a solution of

the controlled SDE for controls with property (ii) of De�nition 3.1. We can

then apply the Ito formula to obtain

G(�; Y (�)) �G(t; y)�

Z �

t

Au(s)G(s; Y (s)) ds(28)

=

Z �

t

Gy(s; Y (s)) ��(s; Y (s); u(s)) dW (s)

which corresponds to relation (3.9) in Fleming/Soner (1993).

(ii) The growth condition (18) is used to prove the relation

Et;y

 Z �

t

Gy(s; Y (s)) � �(s; Y (s); u(s)) dW (s)

!
= 0(29)

for bounded O. (This corresponds to EtxM(�) = 0 for bounded O in the

notation of Fleming/Soner (1993))

(iii) The growth condition (23) is used to show the uniform integrability of

fG(�p; Y (�p))gp where �p are stopping times with t � �p � t1 (In notati-

on of Fleming/Soner (1993) this corresponds to the uniform integrability of

fW (�p; x(�p))gp. There, one also �nds the exact de�nition of the stopping

times �p which is irrelevant for our argumentation.)

We now demonstrate that we also have these three properties under the assumptions

of our Corollary:

(i) For admissible controls the linear controlled SDE admits a unique solution which

is explicitly given in Corollary 3.1. Of course, we can apply the Ito formula to such

solutions. Thus, relation (28) remains valid.

(ii) To show property (29) note that the di�usion coeÆcient of the linear controlled

SDE is �(t; y; v) = y(B1(t)v + B2(t)). As in Fleming/Soner (1993) we look at a
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bounded set O and obtain the following estimate for an admissible control u(�)

Z t1

t0

j�(s; Y (s); u(s))j2 ds =

Z t1

t0

jY (s)(B1(s)u(s) +B2(s))j
2 ds

� sup
s2[t;t1]

jY (s)j2
Z t1

t0

(jB1(s)u(s)j+ jB2(s)j)
2 ds

� 2 diam(O)

Z t1

t0

jB1(s)u(s)j
2 + jB2(s)j

2 ds

� 2 diam(O)

Z t1

t0

jB1(s)j
4 + ju(s)j4 + jB2(s)j

2 ds:

Here, we have made multiple use of 2jvwj � v2+w2 for v, w 2 IR. Due to property

(ii) of an admissible control and the integrability conditions of the coeÆcients of

the linear controlled SDE we obtain

Et;y

 Z �

t

jGy(s; Y (s)) � �(s; Y (s); u(s))j
2 ds

!
<1

and thus (29).

(iii) Condition (27) implies uniform integrability of fG(�p; Y (�p))gp. 2
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