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Approximating a set of given points @ in IR" by a linear function is known as
the linear fit problem or the hyperplane location problem. The goal is to find
a hyperplane minimizing the sum of weighted distances to the points in Q, or
minimizing the maximum weighted distance to the points in Q, respectively.
As distance measure any norm is possible, but also gauges and metrics have
recently been discussed ([Sch99, PCO01]). In this paper a restricted version of
the hyperplane location problem — the so called anchored hyperplane location
problem — is analyzed, namely, the hyperplane is additionally forced to pass
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Abstract

The anchored hyperplane location problem is to locate a hyperplane
passing through some given points P C IR™ and minimizing either
the sum of weighted distances (median problem), or the maximum
weighted distance (center problem) to some other points Q@ C IR".

If the distances are measured by a norm, it will be shown that in the
median case there exists an optimal hyperplane that passes through
at least n — k affinely independent points of Q, if k is the maximum
number of affinely independent points of P. In the center case, there
exists an optimal hyperplane which is at maximum distance to at least
n—k+1 affinely independent points of @. Furthermore, if the norm is
a smooth norm, all optimal hyperplanes satisfy these criteria. These
new results generalize known results about unrestricted hyperplane
location problems.

Introduction

through some given points p € P.



Hyperplane location problems appear in several mathematical disciplines,
where they have mainly been studied with the Euclidean and the rectangu-
lar distance. In robust statistics variants of the hyperplane location problem
are known as absolute errors regression, median problems, L; regression, L,
regression, and orthogonal/vertical L;—fit, or L.,—fit problems, respectively,
depending on the type of distance measure and on the objective function
used. Related investigations are going back to the 18th century (see e.g.
[Bos57]). In [RL87], a motivation of these problems is given. In numerical
mathematics, certain approximation problems, for example the approxima-
tion of a given function by a linear function, lead in a natural way to the
same type of problems, see, e.g., [Ric64]. In computational geometry, hyper-
plane location problems are known as linear L; or L., approximation prob-
lems. Here, in particular, the time complexity of the Euclidean variant of the
problem was investigated by several authors, cf. e.g., [KM93, HII*93]. The
two-dimensional version of the problem has been studied also in operations
research, known as the line facility location problem which is a special case of
location problems. Line location problems in the plane were first discussed
by [Wes75], and later by many other authors, e.g., [MN80, MT82, LW86].
Recently, line and hyperplane location problems have also been discussed
for distance measures apart from the Euclidean and the rectangular dis-
tance, namely, for block norms by [Sch96], arbitrary norms by [Sch98, MS98],
smooth norms (see [MS]), and also for gauges (see [PCO1]).

If distances are measured by a norm, the main results for unrestricted hyper-
plane location problems are the following incidence criteria. There always
exists an optimal hyperplane for the median problem that passes through n
affinely independent points of @, and in the center case, there always exists
an optimal hyperplane which is at maximum distance from n + 1 affinely in-
dependent points of Q. This has first been noted for the Euclidean distance,
independently by many authors (see, for example, [Wes75, MN80, LW86,
MN83, KM93, HII*93]) and has later been generalized to block norms and
even to distances derived from arbitrary norms ([Sch98, MS98, Sch99|). A
slightly weaker condition for gauges in the case of the median objective func-
tion has recently been developed by [PCO01]. Furthermore, if and only if the
norm is a smooth norm, all optimal hyperplanes in the median problem pass
through n affinely independent points of Q, and in the center problem all op-
timal hyperplanes are at maximum distance from n 4 1 affinely independent
points of Q ([MS]).



In this paper a new technique is developed to transfer both incidence prop-
erties to restricted hyperplane location problems in the following sense. If
the hyperplane approximating @ is forced to contain k affinely independent
points of a set P then there exists a median hyperplane passing through
at least n — k affinely independent points of Q, and a center hyperplane
which is at maximum distance from n — k + 1 affinely independent points
of @. Sharper results for smooth norms will also be developed. For k£ = 0
this directly yields new proofs for the incidence properties of unrestricted
hyperplane location problems.

2 The Anchored Hyperplane Location Prob-
lems

Let d be a distance derived from a norm, i.e.,
d(z,y) =~y — z) for all z,y € R"

for some norm 7. We consider the following problems (AMH) and (ACH):

Given two finite sets P and Q of points in IR", find a hyperplane H passing
through all points in P and minimizing

(AMH) f(H) = Y w,d(H,q), or

q€eQ
(ACH) g¢(H) = max wyd(H,q), respectively,
q

where w, > 0 for all ¢ € Q are nonnegative weights and d is a distance
measure derived from a norm.

An optimal hyperplane H for problem (AMH) will be called an anchored
median hyperplane, and an anchored center hyperplane is an optimal solution
of problem (ACH).

First, note that the anchored hyperplane location problem only is feasible, if
there exists a hyperplane containing the whole set P. In particular, (AMH)
and (ACH) are feasible if and only if the maximum number of affinely in-
dependet points in P is smaller or equal than n. Let k = dim.g(P) denote
the maximum number of affinely independent points in P. Without loss of
generality, we therefore assume in the following that

k <n.
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Furthermore, note that, if £ + dim,s(Q) < n then there exists a (clearly
optimal) hyperplane containing all points in P and in Q. To avoid this
trivial case, we also assume that

dimas(Q) > n — k.

As mentioned before, both problems (AMH) and (ACH) have been studied
extensively in their unrestricted versions, i.e., with P = 0 (see, e.g., [MS98,
Sch99] and references therein). The restricted version of (AMH) has been
discussed by [MN83] in a planar setting, i.e., n = 2 and P consisting of one
single point. For the Euclidean distance it has been shown, that all optimal
lines for problem (AMH) contain at least one point from the set Q. The
same has been noted in [KM93].

Anchored line problems, also in IR?, have been considered in [Fol95, FSST95],
but with another objective function. Motivated by problems in brain surgery,
it is discussed how to find a line maximizing the closest distance to the given
point set Q.

In the following we will generalize the incidence properties of unrestricted hy-
perplane location problems to the restricted versions of (AMH) and (ACH).
The proofs we are going to present will combine the techniques developed
in [Sch99] and in [PCO1]. They are based on the minimization of quasicon-
cave functions, which contain the sum, or the maximum of piecewise linear
functions. We first turn to the case of median hyperplanes.

3 Anchored Median Hyperplanes

Lemma 1 Let M ={1,2,..., M}, M > n and let h : IR" — IR be a convex
function, and f,, : R" — IR, m € M be affine linear and non-constant
functions. Consider the problem to minimize

flz) = ﬁ S fnl@).

meM

Furthermore, suppose that a minimum of f exists. Then there exists an
optimal solution x* and a subset M* C M with |M*| > n such that

fm(2*) =0 for all m € M™.
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Moreover, if h is strictly convez, all optimal solutions x* satisfy fu(z*) =0
for at least n of the functions f,.

Proof: Since the functions f,, are non-constant, the following sets
H, ={zeR": fu(z)=0},me M

are hyperplanes that partition IR" into polyhedral cells. On each cell C all
the functions | f,,|, m € M are affine linear, and therefore also Y, c 1 | fin (7))
is an affine linear function. Since h is convex, f is a quasiconcave function
on each cell. Minimizing over each of the cells separately, and using that a
finite optimal solution exists, yields a minimum at a cell vertex x*, (see, e.g.
[BSS93]). Since z* is a cell vertex, it lies on the intersection of at least n
hyperplanes H,,. Defining

M ={meM:z" € Hp,}

yields the first result.

For the second part of the lemma, note that an affine linear function divided
by a strictly convex function is a strictly quasiconcave function, meaning
that on each cell C' the objective f is quasiconcave and therefore attains its
minima only at cell vertices. QED

In the follwing we will describe a hyperplane by its normal vector s € IR™\ {0}
and its intercept b € IR, i.e.,

Hp, ={x € R": (s,z) + b= 0}.
We now can state the main result for anchored median hyperplanes.

Theorem 1 Let d be a distance derived from a norm v, and let k < n be
the number of affinely independet points in P. Then there exists an anchored
median hyperplane passing through at least n — k affinely independent points

of Q.

Proof: First note that hyperplanes lying too far away from Q need not be
considered, and since the length of the normal vector s can assumed to be
bounded, we can restrict the problem to a compact feasible set yielding the
existence of a minimum. Furthermore, since s # 0 is required for a hy-
perplane, we conclude that the normal vector s* of the optimal solution to



problem (AMH) has at least one non-zero component. Without loss of gen-
erality assume that this is the first one, i.e, s # 0. Dividing all coefficients
by s} yields an optimal solution with first component of the normal vector
is equal to 1. Without loss of generality we will therefore assume s = 1.
According to [Man99] or, independently, [PC01] the distance between a point
g € IR" and a hyperplane H,; can be calculated by

[(s,q) + b]
70(s)

where 7° denotes the dual (or polar) norm of v, defined by

d(Qa Hs,b) =

7 (z) = max{(z,y) : 7(y) < 1}.

For P = {p1,ps,--.,p} problem (AMH) can now be reformulated as the
following non-linear programming problem in n + 1 variables.

wg|(s,q) +b|
sb’y(qezgq

such that (s,p;)+b = 0 fori=1,2,...,1

8121

Since k is the maximum number of affinely independent points of P we
conclude that the linear dimension

anl(3)(2)-- (1)}

where < 2711 ) € R"™ i =1,2,....,1 = |P|. Consequently, the coefficient

matrix of
(s,pi) +b=0fori=1,2,...,1

has rank k£, meaning that there exist k variables which can be substituted and
eliminated in the objective function. Together with s; = 1 (which is linearly
independent of the equations (s, p;) + b = 0) there remain (n+1) —k —1 =



n — k variables, denoted by ¢ € IR"™*. This leads to the following equivalent
problem in IR™ *.

i _ wg|(s
min f(t) = 2 (5(0) > wgl(s(t), q) + b(t)|

qeQ

with s and ¢ affine linear functions,

s:IR"* — TR" and
b:R*"* > RR.

Since the composition of a convex and an affine linear function still remains
convex, and the functions f,(t) = wy((s(t), ¢) + b(t)) are affine linear we can
apply Lemma 1 in dimension n — k and conclude that there exists an optimal
solution ¢* and a set Q* C Q with |Q*| > n — k such that

(s(t%),q) +0(t") =0
for all ¢ € Q*. Defining s* = s(t*) and b* = b(t*) it follows that for all ¢ € Q*
q € Hs*,b*;

meaning that the optimal hyperplane H* := H,. ;- passes through at least
n — k points in Q. To see that there exists a hyperplane passing through at
least n — k affinely independent points, find some affinely dependent points
in Q*, delete them from Q, and, with the same argumentation, find a new
hyperplane until it passes through n — k affinely independent points. QED

Some remarks should be added.

e Note that the optimal hyperplane may pass through more than n — &
affinely independent points since points in () that lie within the affine
hull of P will automatically be covered.

e The statement

Consider problem (AMH) with a distance derived from a norm, and
with |P| < n. Then there exists an anchored median hyperplane passing
through at least n — |P| affinely independent points of Q.

follows directly from Theorem 1, but only provides a weaker result.



e For P = () a halving property has been shown for locating a median
hyperplane in normed spaces (see [Sch99]), i.e., if QT (H), Q~(H), and
Q°(H) are the points of Q lying below, underneath, and on the hyper-
plane H, respectively, then all median hyperplanes satisfy

Do wg— Y wy

qeQT qgeQ™

< qu.

qeQo

This property does in general not hold true, if |P| > 1, not even for n =
2 and the Euclidean distance, as the following example demonstrates:

Let P = {0}, @ = {(10,1),(11,0), (—10,1)}, and assume equal weights
for the points in Q. Then the optimal anchored line [* passes through
0 and (10,1), with the two remaining points of Q lying on the same
side of [*.

4 Anchored Center Hyperplanes

In this section, too, we first derive a result for minimizing a quasiconcave
function. This time, we deal with a function g, which is given as the maxi-
mum of piecewise linear functions, all divided by the same convex denomi-
nator.

Lemma 2 Let M ={1,2,..., M}, M > n and let h : IR" — IR be a convex
function, and f,, : R" — IR,m € M be affine linear functions. Consider the

problem to minimize
1
g9(z) = hz) B | fm ()]

Furthermore, suppose that a minimum of g exists. Then there exists an
optimal solution x* and a subset M* C M with |M*| > n+ 1 such that

g(z*) = [fm(@)] for allm € M™.

h(x*)

Moreover, if h is strictly convex, all optimal solutions x* satisfy g(z*) =
—‘f,’;};ﬁ;)‘ for at least n + 1 of the indices m € M.

Proof: First suppose that there exists some z € IR" such that f,,(z) = 0 for
all m € M. Then z is the optimal solution and the lemma is trivially true.
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Otherwise, we can assume that max,,en |fn(2)] > 0 for all z € IR". Define
for all m € M two cells given by

Ct = {zeR": fu(z) = i%%“fk(x)‘}’ and

Cn = {z€R": —fn(z) = max|fi(z)[}.
Then each of the Cf,C is either empty or a polyhedral set bounded by
hyperplanes

Hf = {zeR": f.(z) = fe(z)} or
H; = {zeR": f(z) = —fr(2)}

for £ # m. On each cell, maxgen |fi(z)| is affine linear and hence, g is
quasiconcave on each cell. Since a minimum exists, we conclude that there
exists an optimal cell vertex z*, e.g., of the cell C;} (see, e.g. [BSS93]). Due
to the assumption that max,,ca | frm(x)| > 0 for all x € IR", we know that
HfnH; NnCL =0 for all k € M and hence each cell vertex of Cy, is the
intersection of n of the hyperplanes H; ,H, , k # m, with pairwise different
indices k. Consequently, the cardinality of

M ={keM:z* € Hf orx* € H;}U{m}

is greater or equal than n + 1, proving the first part of the lemma.
In case of a strictly convex function h, we get that g is strictly quasiconcave
on each cell C,,, and hence all optimal solutions are attained at cell vertices.

QED

Note that in [Dre82] the following related result for the case of convez func-
tions f,,, m € M has been provided: There exists an optimal solution z* and
a subset M* C M with |M*| < n+ 1 such that z* is the optimal solution
for the reduced problem

min max fm(),

i.e., an optimal solution can be found by looking at all subsets with cardi-
nality smaller or equal than n 4 1 separately.

Now the main result for finding anchored center hyperplanes can be shown.



Theorem 2 Let d be a distance derived from a norm v, and let k < n be
the number of affinely independet points in P. Then there exists an anchored
center hyperplane which is at mazximum distance from at least n — k + 1
affinely independent points of Q.

Proof: The proof works along the lines of the proof to Theorem 1. Assuming
s7 =1 and using
(s, a) + b|

7(s)
for the distance between a point ¢ and a hyperplane H,;,, (ACP) can be
rewritten as

d(CI: Hs,b) =

1
— t b(t
sy el (50,2 + (1)
with s and ¢ affine linear functions, 7°(s(t)) convex, and t € IR *.
Applying Lemma 2 in dimension n — k yields the existence of an optimal
solution ¢* and a set @* C Q with |Q*| > n — k + 1 such that for s* := s(t¥)
and b* := b(t*) we get that

min g(t) =

1 , w
— maxwg |[(s*,¢') + b*| = 1
7o) $e8 el O+ = S0
for all ¢ € Q*. Hence, the optimal hyperplane H* := H,. ;- is at maximum
distance from at least n — k£ 4+ 1 points in Q, and using the same iterative
argument as in the proof of Theorem 1 shows that these points can assumed
to be affinely independent. QED

9(Hs ) = [{s%,q) + b

5 Anchored Hyperplanes and Smooth Norms
A smooth norm 7 is defined as follows. Consider the unit ball of 7, given by
B,={z € R": y(z) < 1}.

The norm + is called a smooth norm, if B, is supported by exactly one
hyperplane for any point € 0B, on its boundary, i.e. the unit ball of vy
contains no vertices. In this case we get the following stronger result.
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Theorem 3 Let d be a distance derived from a smooth norm v, and let k
be the number of affinely independet points in P. Then all anchored median
hyperplanes are passing through at least n — k affinely independent points of
Q, and all anchored center hyperplanes are at maximum distance from at
least n — k + 1 affinely independent points of Q.

Proof: Since < is a smooth norm, the dual norm +° is strictly convex, see
for example [K6t66]. Consequently, we derive the following objective func-
tions (analogously to the proof of Theorem 1), but with a strictly convex
denominator g(s(t)).

i _ 1 wg|(s
min f(t) = T(50) qezg q|(s(t),q) + (1))

for the median problem, and

1
————maxwy|(s(t), q) + b(t
’YO(S(t)) 7cQ Q|< ( ) Q> ()|
for the center problem, respectively. As in the proofs of Theorems 1 and 2
s and t are affine linear functions and ¢ € IR" . Since the composition of
a strictly convex function and an affine linear function still remains strictly

convex we can apply the second part of Lemma 1 and of Lemma 2, respec-
tively, and conclude the result. QED

min g(t) =

6 Conclusion

Theorems 1 and 2 provide the basics for polynomial-time algorithms to solve
anchored hyperplane location problems with median or center objective func-
tion, since an enumeration approach is possible in both cases. If k is the
number of affinely independent points in P we have to check

e all ( n|é|k ) hyperplanes passing through all points in P and through

any (affinely independent) subset of n — k points of Q in the median
case, and
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— 1 . . .
e all ( n—k+ ) hyperplanes which are at maximum distance from

Q|

n — k + 1 (affinely independent) points of Q and contain all points in
P in the center case.

Since evaluating a hyperplane can be done in O(|Q]), this yields the following
complexity results.

Corollary 1 If the distance has been derived from a norm, an anchored me-
dian hyperplane can be found in O(|Q"**1) time, and an anchored center
hyperplane can be found in O(|Q|"* *+2) time, assuming that a norm evalua-
tion can be done in constant time.

In the case that d has been derived from a smooth norm, the same time
complexity is sufficient to determine all optimal anchored hyperplanes.
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