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2 1. INTRODUCTION

1. Introduction. While standard Fourier methods in terms of spherical har-

monics are very successful at picking out frequencies from a spherical signal, they are

utterly incapable of dealing properly with data changing on small spatial scales. This

fact has been well{known for years. To improve the applicability of Fourier analy-

sis, various methods such as `windowed Fourier transform' have been developed on

the sphere to modify the usual Fourier procedure to allow analysis of the frequency

content of a signal at each position (cf. W. Freeden et al. (1998), W. Freeden,

V. Michel (1999)). However, the amount of localization in space and in frequency

is not completely satisfactory in Fourier transform and its windowed variant. For

example, geopotentials refer to a certain combination of frequencies, and the fre-

quencies themselves are spatially changing. This space evolution of the frequencies

is not reected in the Fourier transform in terms of non-space-localizing spherical

harmonics. Even the windowed Fourier transform contains information about fre-

quencies over a certain area of positions instead of showing how the frequencies vary

in space. With spherical wavelets, the amount of localization in space and in fre-

quency is automatically adapted, in that only a narrow space{window is needed to

examine high{frequency content, but a wide space{window is allowed when investigat-

ing low{frequency phenomena. The basic framework of this approach has been pro-

vided by the spherical wavelet theory developed by the Geomathematics Group at the

University of Kaiserslautern during the last years (see http://www.mathematik.uni-

kl.de/�wwwgeo/pub1.html)

When dealing with real geophysically relevant data it should be kept in mind that

each measurement does not really give the value of the observable under consideration

but that { at least to some extend { the data are contaminated with noise. That is,

in order to succesfully improve geomathematical �eld modeling, one main aspect is

to extract the true portion of the observable from the actual signal. In consequence,

a particular emphasis lies on the subject of denoising. This endeavor is precisely the

goal in statistical function estimation. Here, the interest is to `smooth' the noisy data

in order to obtain an estimate of the underlying function. In Euclidean theory of

wavelets signal processors now have new, fast tools that are well{suited for denoising

signals (for a survey the reader is e.g. referred to T.R. Ogden (1997) and the refer-

ences therein).

The objective of this article is to introduce multiscale signal-to-noise threshold-

ing, providing the wavelet oriented basis of denoising spherical data sets. First, we

develop the corresponding theory of denoising spherical functions (cf. W. Freeden

et al. (2000)). With the basic introduction at hand, selective thresholding within

a pyramid scheme is presented. The thresholding scheme is designed to distinguish

between coeÆcients which contribute sign�cantly to the signal, and those which are

negligible. It should be noted that our approach is essentially inuenced by the con-

cept of sparse wavelet representations in Euclidean spaces (cf. J.B. Weaver et al.

(1991), D.L. Donoho (1994) and I.M Johnstone (1995)) and the stochastic model

used in satellite geodesy (see e.g. R. Rummel (1997)). Using a multiscale approach

we are thus able to include detail information of small spatial extend while suppress-

ing the noise in the approximation appropriately. A simple example of denoising

geomagnetic �eld data will be given as an illustration.



3

2. Preliminaries. R3 denotes three{dimensional Euclidean space. For x; y 2
R
3
; x = (x1; x2; x3)

T
; y = (y1; y2; y3)

T the inner product is de�ned as usual by

x � y = x
T
y =

3X
i=1

xiyi

For all elements x 2 R3 , x = (x1; x2; x3)
T , di�erent from the origin, we have

x = r�; r = jxj =
p
x � x =

q
x21 + x22 + x23;

where � = (�1; �2; �3)
T is the uniquely determined directional unit vector of x. The

unit sphere in R
3 is denoted by 
. If the vectors "1; "2; "3 form the canonical or-

thonormal basis in R
3 , the points � 2 
 may be represented in polar coordinates

by

� = t"
3 +

p
1� t2

�
cos'"1 + sin'"2

�
;

t = cos#; # 2 [0; �]; ' 2 [0; 2�) :

3. Spherical Harmonics. The spherical harmonics Yn of degree n are de�ned

as the everywhere on 
 in�nitely di�erentiable eigenfunctions of the Beltrami opera-

tor �� corresponding to the eigenvalues (��)^(n) = �n(n + 1), n = 0; 1; : : :, where

the Beltrami-operator is the angular part of the Laplace-operator � in R
3 . As it

is well{known, the functions Hn : R3 ! R de�ned by Hn(x) = r
n
Yn(�), x = r�,

� 2 
, are homogeneous polynomials in rectangular coordinates which satisfy the

Laplace-equation �xHn(x) = 0, x 2 R
3 . Conversely, every homogeneous harmonic

polynomial of degree n when restricted to 
 is a spherical harmonic of degree n. The

Legendre polynomials Pn : [�1;+1]! [�1;+1] are the only everywhere on [�1;+1] in-
�nitely di�erentiable eigenfunctions of the Legendre-operator (1�t2)(d=dt)2�2t(d=dt),
which satisfy Pn(1) = 1. Apart from a multiplicative constant, the `"3-Legendre

function' Pn("
3�) : 
 ! [�1;+1], � 7! Pn("

3 � �), � 2 
, is the only spherical har-

monic of degree n which is invariant under orthogonal transformations leaving "
3

�xed. The linear space Harmn of all spherical harmonics of degree n is of dimen-

sion dim(Harmn) = 2n+ 1. Thus, there exist 2n+ 1 linearly independent spherical

harmonics Yn;1; : : : ; Yn;2n+1 in Harmn. Throughout the remainder of this paper we

assume this system to be orthonormal in the sense of the L2(
){inner product

(Yn;j ; Ym;k)L2(
) =

Z



Yn;j(�)Ym;k(�) d!(�) = Æn;mÆj;k

(d! denotes the surface element). An outstanding result of the theory of spherical

harmonics is the addition theorem

2n+1X
k=1

Yn;k(�)Yn;k(�) =
2n+ 1

4�
Pn(� � �); (�; �) 2 
�
 :

The close connection between the orthogonal invariance and the addition theorem is

established by the Funk{Hecke formulaZ



H(� � �)Pn(� � �) d!(�) = (H(��); Pn(��))L2(
) = H
^(n)Pn(� � �);
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H 2 L1[�1;+1], �; � 2 
, where the Legendre transform LT : H ! (LT )(H); H 2
L1[�1; 1]; is given by

(LT )(H)(n) = H
^(n) = 2�

+1Z
�1

H(t)Pn(t) dt; n = 0; 1; : : : :

The sequence fH^(n)gn2N0 is called the symbol of H . For more details about

the theory of spherical harmonics the reader is referred, for example, to C. M�uller

(1966) and W. Freeden et al.(1998).

We let

Harm0;:::;m = span
n=0;:::;m

k=1;:::;2n+1

(Yn;k) :

Of course,

Harm0;:::;m =

1M
n=0

Harmn

so that

dim(Harm0;:::;m) =

mX
n=0

(2n+ 1) = (m+ 1)2:

As it is well known, KHarm0;:::;m
: 
�
! R de�ned by

KHarm0;:::;m
(�; �) =

mX
n=0

2n+1X
k=1

Yn;k(�)Yn;k(�) =

mX
n=0

2n+ 1

4�
Pn(� � �)(3.1)

is the reproducing kernel of the space Harm0;:::;m with respect to (�; �)L2(
). Moreover

it is worth mentioning thatZ



KHarm0;:::;m+1
(�; �)Y (�) d!(�)

=

Z



KHarm0;:::;m
(�; �)Y (�) d!(�)(3.2)

= Y (�)

for all � 2 
 and all Y 2 Harm0;:::;m.

In what follows we are mainly interested in results for the Hilbert space L2(
)

equipped with the inner product (�; �)L2(
). Any function of class L2(
) of the form

H� : 
 ! R, � 7! H�(�) = H(� � �), � 2 
, is called a �{zonal function on 
. Zonal

functions are constant on the sets of all � 2 
, with � � � = h, h 2 [�1;+1]. The set
of all �{zonal functions is isomorphic to the set of functions H : [�1;+1]! R. This

gives rise to interpret the space L2[�1;+1] with norm de�ned correspondingly by

kHkL2[�1;+1] =

0@2� +1Z
�1

jH(t)j2 dt

1A1=2

= kH("3�)kL2(
); H 2 L2[�1;+1] :
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as subspace of L2(
).

The spherical Fourier transform H 7! (FT )(H), H 2 L2(
), is given by

((FT )(H)) (n; k) = H
^(n; k) = (H;Yn;k)L2(
); n = 0; 1; : : : ; k = 1; : : : ; 2n+ 1:

FT forms a mapping from L2(
) onto the space l2(N ) of all sequences fWn;kg(n;k)2N
satisfying

X
(n;k)2N

W
2
n;k =

1X
n=0

2n+1X
k=1

W
2
n;k <1;

where we have used the abbreviation

N = f(n; k)jn = 0; 1; : : : ; k = 1; : : : ; 2n+ 1g :

The series

1X
n=0

2n+1X
k=1

F
^(n; k)Yn;k

is called the spherical Fourier expansion of F (with Fourier coeÆcients F
^(n; k),

(n; k) 2 N ). For all F 2 L2(
) we have

lim
N!1

F �
NX
n=0

2n+1X
k=1

F
^(n; k)Yn;k


L2(
)

= 0:

4. Convolutions. A kernel H : 
�
! R is called a square-summable product

kernel if H is of the form

H(�; �) =

1X
n=0

2n+1X
k=1

H
^(n; k)Yn;k(�)Yn;k(�)

such that Z



(H(�; �))
2
d!(�) �

1X
n=0

2n+ 1

4�
sup

k=1;:::;2n+1

�
H
^(n; k)

�2
<1:(4.1)

In the case of rotation invariance of the kernel H , i.e. H
^(n; k) = H

^(n) for n =

0; 1; : : : ; k = 1; : : : ; 2n + 1, the last condition is equivalent to the l2(N )-summability

(cf. W. Freeden et al. 1998), i.e.

1X
n=0

2n+ 1

4�
(H^(n))

2
<1:

Assume that H is a square-summable product kernel and F 2 L2(
). Then the

convolution of H against F is de�ned by

H � F =

Z



H (�; �)F (�) d!(�):

Two important properties of spherical convolutions should be listed: (i) If F 2 L2(
)

and H is a square summable product kernel, then H � F is of class L2(
). (ii) If
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H1; H2 are square-summable product kernels, then the convolution of H1; H2 de�ned

by

(H1 �H2)(� � �) =
Z



H1 (� � �)H2(� � �) d!(�)

is a square-summable product kernel with

(H1 �H2)
^
(n; k) = H

^

1 (n; k) H
^

2 (n; k); (n; k) 2 N :

We usually write H(2) = H �H to indicate the convolution of H with itself. H(2) is

said to be the (second) iterated kernel of H . More general, H(p) = H
(p�1) � H for

p = 2; 3; : : : and H
(1) = H . Obviously,�

H
(p)
�^

(n; k) = (H^(n; k))
p
; (n; k) 2 N ; p 2 N :

5. Multiscale Approximation. Next we consider a strict monotonically de-

creasing sequence f�jgj2Z of real numbers satisfying

lim
j!1

�j = 0

and

lim
j!�1

�j =1

(for example, �j = 2�j , j 2 Z). The sequence f�jgj2Z can be understood as a subdi-

vision of the `scale interval' (0;1) into a countable, strict monotonically decreasing

sequence.

Let f��jgj2Zbe a family of square-summable product kernels satisfying the condition
�^�j (0; 1) = 1 for all j 2 Z. Then, the family fI�jgj2Z of operators I�j , de�ned by

I�j (F ) = ��j � F; F 2 L2(
); is called a singular integral in L2(
). f��jgj2Z is

called kernel of the singular integral. If f��jgj2Z is a kernel of a singular integral

satisfying the conditions:

(i) lim
j!1

�
�^�j (n; k)

�2
= 1 for all (n; k) 2 N ,

(ii)
�
�^�j+1(n; k)

�2
�
�
�^�j (n; k)

�2
for all j 2 Z and (n; k) 2 N ,

(iii) lim
j!�1

�
�^�j (n; k)

�2
= 0 for all (n; k) 2 N ,

then the corresponding singular integral
n
I
(2)
�j

o
j2Z

with

I
(2)
�j

= �(2)
�j
� F; j 2 Z

is called an approximate identity in L2(
). It is known (see e.g. W. Freeden et al.

(1998)) that

lim
j!1

kI(2)�j
(F )� FkL2(
)

= lim
j!1

 
1X
n=0

2n+1X
k=1

(F^(n; k))
2
�
1��^�j (n; k)

�4!1=2

= 0 ;
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provided that
n
I
(2)
�j

o
j2Z

is an approximate identity.

Our results immediately lead us to the following statement:

Lemma 5.1. Assume that f��jgj2Z is a kernel constituting an approximate iden-

tity in L2(
). Then the limit relation

lim
j!1

Z



�(2)
�j
(�; �)F (�)d!(�) � F


L2(
)

= lim
j!1

Z



Z



��j (�; �)F (�)d!(�)��j (�; �)d!(�) � F


L2(
)

= 0

holds for all F 2 L2(
).

For J 2 Z we set

FJ = �(2)
�J
� F =

Z



�(2)
�J
(�; �)F (�) d!(�) :

Consider a kernel f��jgj2Z constituting an approximate identity in L2(
). As-

sume that F is of class L2(
). Then a simple calculation shows us that for all N 2 N
and J 2 Z, Z




�(2)
�J+N

(�; �)F (�) d!(�) =

Z



�(2)
�J
(�; �)F (�) d!(�)

+

J+N�1X
j=J

Z



	(2)
�j
(�; �)F (�) d!(�);(5.1)

where we have introduced the family f	�jgj2Z by the spectral re�nement condition

	^

�j
(n; k) =

��
�^�j+1(n; k)

�2
�
�
�^�j (n; k)

�2�1=2

; (n; k) 2 N :(5.2)

In other words,

	(2)
�j
(�; �) = �(2)

�j+1
(�; �)� �(2)

�j
(�; �);(5.3)

j 2 Z; (�; �) 2 
�
. Hence, letting N tend to in�nity we get the following multiscale

reconstruction formula

F = FJ +

1X
j=J

Z



	(2)
�j
(�; �)F (�) d!(�)(5.4)

for every J 2 Z (in the sense of k � kL2(
)). Moreover, we �nd

Z



�(2)
�J
(�; �)F (�) d!(�) = FJ�N +

J�1X
j=J�N

Z



	(2)
�j
(�; �)F (�) d!(�);

hence, Z



�(2)
�J
(�; �)F (�) d!(�) =

J�1X
j=�1

Z



	(2)
�j
(�; �)F (�) d!(�) :(5.5)
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Combining (5.4) and (5.5) we �nally obtain the following result:

Lemma 5.2. The multiscale representation of F 2 L2(
)

F =

1X
j=�1

Z



	(2)
�j
(�; �)F (�) d!(�);

holds in the sense of k � kL2(
) provided that the so{called `scaling function' f�(2)
�j gj2Z

forms an approximate identity in L2(
) and the 'wavelet' f	(2)
�j gj2Z satis�es the dif-

ference equation (5.3).

By construction, the wavelet theory leads to a partition of unity as follows

1X
j=�1

�
	(2)
�j

�^
(n; k) =

�
�(2)
�J

�^
(n; k) +

1X
j=J

�
	(2)
�j

�^
(n; k) = 1

for all (n; k) 2 N : The class V�j of all functions P 2 L2(
) of the form

P = �(2)
�j
� F; F 2 L2(
);

is called the scale space of level j (with respect to the scaling function f�(2)
�j gj2Z),

whereas the class W�j of all functions Q 2 L2(
) of the representation

Q = 	(2)
�j
� F; F 2 L2(
);

is called the detail space of level j (with respect to the scaling function f�(2)
�j gj2Z). It

is easily seen from (5.1) that

V�j+1 = V�j +W�j(5.6)

for all j 2 Z. But it should be remarked that the sum (5.6) generally is neither direct

nor orthogonal (note that an orthogonal decomposition is given by the Shannon scaling

function). The equation (5.6) can be interpreted in the following way: The set V�j
contains a �ltered (`smoothed') version of a function belonging to L2(
). The lower

the scale, the stronger the intensity of smoothing. By adding `details' contained in the

detail space W�j the space V�j+1 is created, which consists of a �ltered (`smoothed')

version at resolution j + 1 (see W. Freeden et al. (1998) for more details of

spherical theory, W. Freeden (1999) for the application harmonic theory and V.

Michel (1999) for application in gravimetry).

Finally, it is worth mentioning that the scale spaces satisfy the following properties:

(i) V�j � V�j0 � : : : � L2(
); j � j
0

(ii)
1S

j=�1

V�j
k�k

L2(
)

= L2(
).

A collection of subspaces of L2(
) satisfying (i) and (ii) is called a multiresolution

analysis of L2(
).

6. Examples. Singular integrals on the sphere are of basic interest in geomathe-

matical applications. We essentially distinguish two types, namely bandlimited and

non{bandlimited singular integrals.
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6.1. Bandlimited Singular Integrals.

Shannon Singular Integral. The family f��jgj2Z is de�ned by

�^�j (n; k) = �^�j (n) =

�
1 for n 2 [0; ��1

j ); k = 1; : : : ; 2n+ 1

0 for n 2 [��1
j ;1); k = 1; : : : ; 2n+ 1

with a strict monotonically decreasing sequence of integers f�jgj2Z satisfying

lim
j!�1

�j =1 and lim
j!1

�j = 0

(for example: �j = 2�j).

Smoothed Shannon Singular Integral. The family f��jgj2Z is given by

�^�j (n; k) = �^�j (n) =

8<:
1 for n 2 [0; ��1

j ); k = 1; : : : ; 2n+ 1

�j(n) for n 2 [��1
j ; �

�1
j ); k = 1; : : : ; 2n+ 1

0 for n 2 [��1
j ;1); k = 1; : : : ; 2n+ 1:

where f�jgj2Z is de�ned as in the Shannon case and f�jgj2Z is a strict mono-
tonically decreasing sequence of integers satisfying

lim
j!�1

�j =1 ; lim
j!1

�j = 0;

�j > �j ;

and �j is a strict monotonically decreasing and continuous function of class

C[��1
j ; �

�1
j ], j � 0, such that

�j(�
�1
j ) = 1; �j(�

�1
j ) = 0;

for example �j(t) = 2� 2�jt with �j = 2�j�1 and �j = 2�j .

6.2. Non{bandlimited Singular Integrals.

Abel{Poisson Singular Integral. The family f��jgj2Z is given by

�^�j (n; k) = �^�j (n) = e
�n�j ; (n; k) 2 N ; j 2 Z :

Tikhonov Singular Integral. The family f��jgj2Z is given by

�^�j (n; k) =
�
2
n;k

�2n;k + �2j

; (n; k) 2 N ; j 2 Z;(6.1)

where f�n;kg(n;k)2N is a sequence satisfying the following conditions:

(i) �n;k 6= 0 for all (n; k) 2 N ,

(ii) f�n;kg(n;k)2N is l2(N )-summable, i.e.

X
(n;k)2N

�
2
n;k =

1X
n=0

2n+1X
k=1

�
2
n;k <1 :
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7. Spectral Signal{to{Noise Response. Geoscientists mostly think of their

measurements (after possible linearization) as a linear operator on an `input signal'

F producing an `output signal' G

�F = G;(7.1)

where � is an operator mapping the space L2(
) into itself such that

�Yn;k = �^(n; k)Yn;k; (n; k) 2 N ;

where the so{called symbol f�^(n; k)g(n;k)2N is the sequence of the real numbers

�^(n; k). Di�erent linear operators �, of course, are characterized by di�erent se-

quences f�^(n; k)g(n;k)2N . The `amplitude spectrum' fG^(n; k)g(n;k)2N of the re-

sponse of � is described in terms of the amplitude spectrum of functions (signals) by

a simple multiplication by the `transfer' �^(n; k). For a large number of problems in

geophysics and geodesy � is a rotation-invariant operator, i.e. �^(n; k) = �^(n) for

all (n; k) 2 N .

7.1. Noise Model. Thus far only a (deterministic) function model has been

discussed. If a comparison of the `output function' with the actual value were done,

discrepancies would be observed. A mathematical description of these discrepancies

has to follow the laws of probability theory in a stochastic model (see e.g. R.T.

Ogdon (1997)).

Usually the observations are not looked upon as a time series, but rather a function
~G on the sphere 
 (`�' for stochastic). According to this approach we assume that,

we have

~G = G+ ~";

where ~" is the observation noise. Moreover, in our approach motivated by information

in satellite technology, we suppose the covariance to be known

Cov

h
~G(�); ~G(�)

i
= E [~"(�); ~"(�)] = K(�; �); (�; �) 2 
�
;

where the following conditions are imposed on the symbol fK^(n; k)g(n;k)2N of the

kernel function K : 
�
! R:

(C1) K
^(n; k) � 0 for all (n; k) 2 N ,

(C2)
1P
n=0

2n+1
4�

sup
k=1;:::;2n+1

�
K
^(n; k)

�2
<1.

Condition (C2) , indeed, implies in the case of rotation-invariance, i.e.

K
^(n; k) = K

^(n); n = 0; 1; : : : ; k = 1; : : : ; 2n+ 1;

the l(2)(N )-summability of the symbol fK^(n; k)g(n;k)2N , i.e.X
(n;k)2N

K
^(n; k) =

1X
n=0

2n+ 1

4�
(K^(n))2 <1:

7.2. Degree Variances. As any `output function' (output signal) can be ex-

panded into an orthogonal series of surface spherical harmonics

~G =g�F =

1X
n=0

2n+1X
k=1

�^(n; k) ~F^(n; k)Yn;k

=

1X
n=0

2n+1X
k=1

~G^(n; k)Yn;k
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in the sense of k � kL2(
), we get a spectral representation of the form

~G^(n; k) = (g�F )^(n; k) = �^(n; k) ~F^(n; k); (n; k) 2 N :

The signal degree and order variance of ~G =g�F is de�ned by

V arn;k

�g�F� = ��g�F�^ (n; k)�2

=

Z



Z



�g�F� (�)�g�F� (�)Yn;k(�)Yn;k(�)d!(�)d!(�) :

Correspondingly, the signal degree variances of ~G =g�F are given by

V arn

�g�F� = 2n+1X
k=1

V arn;k

�g�F�
=

2n+1X
k=1

��g�F�^ (n; k)�2

=
2n+ 1

4�

Z



Z



�g�F� (�)�g�F� (�)Pn(� � �)d!(�)d!(�);
n = 0; 1; : : :. According to Parseval's identity we clearly have

kg�Fk2
L2(
) =

1X
n=0

V arn

�g�F� = 1X
n=0

2n+1X
k=1

V arn;k

�g�F� :
Physical devices do not transmit spherical harmonics of arbitrarily high frequency

without severe attenuation. The `transfer' �^(n; k) usually tends to zero with increas-

ing n. It follows that the amplitude spectra of the responses (observations) to func-

tions (signals) of �nite L2(
){energy are negligibly small beyond some �nite frequency.

Thus, both because of the frequency limiting nature of the used devices and because

of the nature of the `transmitted signals', the geoscientist is soon led to consider

bandlimited functions. These are the functions ~G 2 L2(
), whose `amplitude spectra'

vanish for all n > N (N 2 N0 , �xed). In other words, V arn( ~G) = 0; for all n > N .

7.3. Degree Error Covariances. The error spectral theory is based on the

degree and order error covariance

Covn;k(K) =

Z



Z



K(�; �)Yn;k(�)Yn;k(�)d!(�)d!(�); (n; k) 2 N ;

and the spectral degree error covariance

Covn(K) =

2n+1X
k=1

Z



Z



K(�; �)Yn;k(�)Yn;k(�)d!(�)d!(�); n 2 N0 :

Obviously,

Covn;k(K) = K
^(n; k) :

In other words, the spectral degree and order error covariance is simply the orthogonal

coeÆcient of the kernel K.
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7.4. Examples of Spectral Error Covariances. To make the preceding con-

siderations more concrete we would like to list two particularly important examples:

(1) Bandlimited white noise. Suppose that for some nK 2 N0

K
^(n; k) = K

^(n) =

(
�2

(nK+1)2
; n � nK ; k = 1; : : : ; 2n+ 1

0 ; n > nK ; k = 1; : : : ; 2n+ 1;

where ~" is assumed to be N(0; �2)-distributed.The kernel reads as follows:

K(�; �) =
�
2

(nK + 1)2

nKX
n=0

2n+ 1

4�
Pn(� � �) :

Note that this sum, apart from a multiplicative constant, may be understood as a

truncated Dirac Æ-functional. It is known (see e.g. N.N. Lebedew (1973)) that for

(�; �) 2 
�


((� � �)� 1)K(�; �) =
�
2

4�(nK + 1)
(PnK+1(� � �)� PnK (� � �)) :

(2) Non{bandlimited colored noise. Assume that K : 
 � 
 ! R is given in such

a way that K^(n; k) = K
^(n) > 0 for an in�nite number of pairs (n; k) 2 N , the

integral
R Æ
�1

K(t)dt is suÆciently small (for some Æ 2 (1 � "; 1) for some " > 0), and

K(�; �) coincides with �
2 for all � 2 
.

Geophysically relevant examples are the following kernels:

(i) K(�; �) = �2

exp(�c)
exp(�c(� � �)); (�; �) 2 
� 
,

where c is to be understood as the inverse spherical correlation length (�rst degree

Gau�{Markov model).

(ii) K(� � �) = �2

(L
(s)
�
J�

)(2)(1)
(L

(s)
�J� )

(2)(� � �); (�; �) 2 
�
,

for some suÆciently large J� 2 N (model of small correlation length). The family of

locally supported singular integrals fL(s)
�j gj2Z� L2 [�1;+1] is given by

�
L
(s)
�j

�^
(n; k) =

�
L
(s)
�j

�^
(n) = 2�

+1Z
�1

L
(s)
�j
(t)Pn(t) dt; (n; k) 2 N ;

where

L
(s)
�j
(t) =

(
0 for �1 � t � 1� �j

1
2�

s+1

�s+1
j

(t� 1 + �j)
s for 1� �j < t � 1:

For the case k = 0 this example is known as the Haar singular integral (more details

about Haar wavelets can be found in W. Freeden, K. Hesse (2000)).

7.5. Spectral Estimation. Now we are in position to compare the signal spec-

trum with that of the noise.

Signal and noise spectrum `intersect' at the so{called degree and order resolution

set Nres (with Nres � N ). We distinguish the following cases:
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(i) signal dominates noise

V arn;k(g�F ) � Covn;k(K); (n; k) 2 Nres;

(ii) noise dominates signal

V arn;k(g�F ) < Covn;k(K); (n; k) 62 Nres :

Filtering is achieved by convolving a square-summable product kernel H with the

`symbol' fH^(n; k)g(n;k)2N againstg�F :
d�F =

Z



H(�; �)g�F (�) d!(�)

(`^' denotes `estimated'). In spectral language this reads

d�F (n; k) = H
^(n; k)g�F (n; k); (n; k) 2 N :(7.2)

Two important types of �ltering are as follows:

(i) Spectral thresholding

d�F =

1X
n=0

2n+1X
k=1

INres
(n; k)H^(n; k)

�g�F�^ (n; k)Yn;k;(7.3)

where IA denotes the indicator function of the set A. This approach represents a

`keep or kill' �ltering, where the signal dominated coeÆcients are �ltered by a square-

summable product kernel, and the noise dominated coeÆcients are set to zero. This

thresholding can be thought of as a non{linear operator on the set of coeÆcients,

resulting in a set of estimated coeÆcients.

As a special �lter we mention the ideal low{pass (Shannon) �lter H of the form

H
^(n; k) = H

^(n) =

�
1 ; (n; k) 2 Nres

0 ; (n; k) 62 Nres;
(7.4)

In that case all 'frequencies' (n; k) 2 Nres are allowed to pass, whereas all other

frequencies are completely eliminated.

(ii) Wiener{Kolmogorov �ltering. Now we choose

d�F =

1X
n=0

2n+1X
k=1

H
^(n)

�g�F�^ (n; k)Yn;k(7.5)

with

H
^(n) =

V arn(g�F )
V arn(g�F ) + Covn(K)

; n 2 N0 :(7.6)

This �lter produces an optimal weighting between signal and noise (provided that

complete independence of signal and noise is assumed). Note the similarity to the

rotation-invariant Tikhonov singular integral in (6.1).
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8. Multiscale Signal{to{Noise Response. Consider a sequence f��jgj2Z of
square-summable product kernels constituting an approximate identity in L2(
).

Then we have veri�ed that an `output signal' ~G 2 L2(
) of an operator � can be

represented in multiscale approximation as follows

~G =

+1X
j=�1

Z



	(2)
�j
(�; �) ~G(�) d!(�);(8.1)

where the equality is understood in k � kL2(
){sense. The identity (8.1) is equivalent

to the identity

lim
N!1

g�F �
0@�g�F�

J0
+

NX
j=J0

Z



	(2)
�j
(�; �)(g�F )(�) d!(�)

1A
L2(
)

= 0

for every J0 2 Z.

8.1. Scale and Position Variances. Denote by L2(Z� 
) the space of func-

tions H : Z�
! R satisfying

1X
j=�1

Z



(H(j; �))
2
d!(�) <1 :

L2(Z�
) is a Hilbert space equipped with the inner product

(H1; H2)L2(Z�
) =

+1X
j=�1

Z



H1(j; �)H2(j; �) d!(�)

corresponding to the norm

kHkL2(Z�
) =

0@ +1X
j=�1

Z



(H(j; �))
2
d!(�)

1A1=2

:

Consider a family of square-summable product kernels f��jgj2Z constituting an ap-

proximate identity in L2(
). From the multiscale formulation of an `output function'
~G =g�F 2 L2(
) we immediately obtain (cd. W. Freeden et al. (2000))�g�F ;g�F�

L2(
)

=

1X
n=0

2n+1X
k=1

��g�F�^ (n; k)�2 +1X
j=�1

��
	�j

�^
(n; k)

�2

=

+1X
j=�1

Z



�Z



�g�F� (�)	�j
(�; �)d!(�)

�2

d!(�)

=

1X
j=�1

Z



Z



�g�F� (�)�g�F� (�)	(2)
�j
(�; �) d!(�) d!(�)

=

+1X
j=�1

Z



�Z



Z



�g�F� (�)�g�F� (�)	�j
(�; �)	�j

(�; �) d!(�) d!(�)

�
d!(�) :



8.2 Noise Model 15

The signal scale and space variance of g�F at position � 2 
 and scale j 2 Z is de�ned

by

V arj;�

�g�F� = Z



Z



�g�F� (�)�g�F� (�)	�j (�; �)	�j (�; �)d!(�)d!(�) :

The signal scale variance of g�F is de�ned by

V arj(g�F ) = Z



V arj;�(g�F )d!(�) :

Obviously, we have

g�F2
L2(
)

=

+1X
j=�1

V arj(g�F )
=

+1X
j=�1

Z



V arj;�

�g�F� d!(�)
=
(V ar�;� �g�F�)1=22

L2(Z�
)
:

Expressed in the spectral language of spherical harmonics we get

V arj

�g�F� = Z



V arj;�

�g�F� d!(�) = 1X
n=0

2n+1X
k=1

�
	^�j (n; k)

�2 ��g�F�^ (n; k)�2 :

With the convention Z = Z� 
 we are formally able to writeg�F2
L2(
)

=
�V ar�;�(g�F )�1=2

L2(Z)
:(8.2)

We mention that the Beppo-Levi Theorem justi�es to interchange integration and

summation. Note that all integrations are understood in the Lebesgue-sense.

8.2. Noise Model. Let K : (�; �) 7! K(�; �), (�; �) 2 
 � 
, satisfy the condi-

tions (C1) and (C2) stated in Section 7.1. The error theory is based on the scale and

space error covariance at � 2 


Covj;�(K) =

Z



Z



K(�; �)	�j (�; �)	�j (�; �)d!(�)d!(�); � 2 
 :

The scale error covariance is de�ned by

Covj(K) =

Z



Covj;�(K)d!(�) :

We obviously have in spectral language

Covj;�(K) =

1X
n=0

2n+1X
k=1

K
^(n; k)

�
	^

�j
(n; k)

�2
:
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It is clear from our stochastic model, i.e. from the special representation of the

covariance as a product kernel, that the scale error covariance cannot be dependent

on the position � 2 
. This is also indicated by the spectral formula

Covj;�(K) =
1

4�

1X
n=0

2n+1X
k=1

Covn(K)
�
	^

�j
(n; k)

�2
:

Our error model is particularly useful for the proper handling of the satellite data in

Earth's gravitational or magnetic potential determination (see W.Freeden (1999)

and the references therein).

8.3. Scale and Space Estimation. Signal and noise scale `intersect' at the so{

called scale and space resolution set Zres with Zres � Z . We distinguish the following

cases:

(i) signal dominates noise

V arj;�

�g�F� � Covj;�(K); (j; �) 2 Zres :

(ii) noise dominates signal

V arj;�

�g�F� < Covj;�(K); (j; �) 62 Zres :

Via the multiscale reconstruction formula the (�ltered) J{level approximation of the

error{a�ected function g�F reads as follows

(g�F )J =

JX
j=�1

Z



	(2)
�j
(�; �)

�g�F� (�)d!(�) :

For J suÆciently large, g�F is well{represented by (g�F )J . In other words, all the

higher{level coeÆcients are regarded as being negligible, i.e. (g�F )J wg�F .
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9. Selective Multiscale Reconstruction. Similar to what is known in taking

Fourier approximation, we are able to take multiscale approximation by replacing the

(unknown) error{free function �F of the representation

(�F )J =

Z



�(2)
�J0

(�; �)(�F )(�)d!(�)

+

J�1X
j=J0

Z



	(2)
�j
(�; �)(�F )(�)d!(�)

by (an estimate from) the error{a�ected function g�F such as

(g�F )J =

Z



�(2)
�J0

(�; �)(g�F )(�)d!(�)
+

J�1X
j=J0

Z



	(2)
�j
(�; �)(g�F )(�)d!(�);

J > J0. Computing the following coeÆcients at position � 2 


VJ0;� =

Z



�(2)
�J0

(�; �)(�F )(�)d!(�)

Wj;� =

Z



	(2)
�j
(�; �)(�F )(�)d!(�); j = J0; : : : ; J � 1;

and

~VJ0;� =

Z



�(2)
�J0

(�; �)(g�F )(�)d!(�)
~Wj;� =

Z



	(2)
�j
(�; �)(g�F )(�)d!(�); j = J0; : : : ; J � 1

will, of course, require adequate methods of numerical integration on the sphere.

9.1. Numerical Integration on the Sphere. Many integration techniques

are known from the literature (for a survey on approximate integration on the sphere

see, for example, W. Freeden et al. (1998) and the references therein). In what

follows we base integration on the approximate formulae associated to known weights

w
Nj

i 2 R and knots �
Nj

i 2 


~VJ0;� w

NJ0X
i=1

w
NJ0

i �(2)
�J0

(�; �
NJ0

i )(g�F )(�NJ0

i );

~Wj;� w

NjX
i=1

w
Nj

i 	(2)
�j
(�; �

Nj

i )(g�F )(�Nj

i ); j = J0; : : : ; J � 1

(`w' always means that the error is assumed to be negligible). An example (cf. W.

Freeden et al. (2000)) is equidistribution (i.e. w
Nj

i = 4�
Nj

; i = 1; : : : ; Nj).

9.2. A Pyramid Scheme. Next we deal with some aspects of scienti�c com-

puting. We are interested in a pyramid scheme for the (approximate) recursive com-

putation of the integrals ~VJ0;�,
~Wj;� for j = J0; : : : ; J � 1.
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What we are going to realize is a tree algorithm (pyramid scheme) with the fol-

lowing ingredients: Starting from a suÆciently large J such that

g�F (�) w �(2)
�J
(�; �) �g�F w NJX

i=1

�(2)
�J
(�; �NJ

i )~aNJ

i ; � 2 
;(9.1)

we want to show that the coeÆcient vectors ~aNj =
�
~a
Nj

1 ; : : : ; ~a
Nj

Nj

�T
2 R

Nj j =

J0; : : : ; J � 1, (being, of course, dependent on the function g�F under consideration)

can be calculated such that the following statements hold true:

(i) The vectors ~aNj , j = J0; : : : ; J � 1, are obtainable by recursion from the

values ~aNJ

i .

(ii) For j = J0; : : : ; J

�(2)
�j
(�; �) �g�F '

NjX
i=1

�(2)
�j
(�; �

Nj

i )~a
Nj

i :

For j = J0; : : : ; J � 1

	(2)
�j
(�; �) �g�F '

NjX
i=1

	(2)
�j
(�; �

Nj

i )~a
Nj

i :

Our considerations are divided into two parts, viz. the initial step concerning the

scale level J and the pyramid step establishing the recursion relation:

The Initial Step. For a suitably large integer J , �
(2)
�J (�; �) �g�F is suÆciently

close to (g�F )(�) for all � 2 
. Formally spoken, the kernel �
(2)
�J replaces the Dirac{

functional Æ as follows:

�(2)
�J
(�; �) �g�F wg�F (�) = �Æ �g�F� (�) = Æ� �g�F ;

where

Æ(�; �) = Æ�(�) =

1X
n=0

2n+1X
k=1

Yn;k(�)Yn;k(�)

and the series has to be understood in distributional sense. The formulae

�(2)
�J
(�; �NJ

i ) �g�F 'g�F (�NJ

i ); i = 1; : : : ; NJ

are the reason why the coeÆcients for the initial step, i.e. ~aNJ = (~aNJ

1 ; : : : ; ~aNJ

NJ
)T 2

R
NJ , are assumed to be simply given in the form

~aNJ

i = w
NJ

i

�g�F���NJ

i

�
; i = 1; : : : ; NJ(9.2)

The Pyramid Step. The essential idea for the development of a pyramid scheme

is the existence of kernel functions �j : 
�
! R such that

�(2)
�j
' �j ��(2)

�j
(9.3)
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and

�j ' �j+1 � �j(9.4)

for j = J0; : : : ; J .

Note that for bandlimited scaling functions the kernels �j , j = J0; : : : ; J , may be

chosen to be the reproducing kernels of the �nite-dimensional scale spaces V�j (cf.

(3.1)), whereas in the non-bandlimited case �j , j = J0; : : : ; J , may be chosen such

that �j = Æ ' �
(2)
�J .

Observing our approximate integration formulae we obtain in connection with relation

(9.3)

�(2)
�j
�g�F ' �(2)

�j
� �j �g�F '

NjX
i=1

�(2)
�j
(�; �Nj

i )~a
Nj

i ;(9.5)

where

~a
Nj

i = w
Nj

i

�
�j �g�F �(�Nj

i ); j = J0; : : : ; J � 1:

Now it follows by use of our approximate integration formulae and the assumption

(9.4) that

~a
Nj

i = w
Nj

i

�
�j �g�F �(�Nj

i )

' w
Nj

i

�
�j � �j+1 �g�F �(�Nj

i )

' w
Nj

i

Nj+1X
l=1

w
Nj+1

l �j(�
Nj

i ; �
Nj+1

l )
�
�j+1 �g�F �(�Nj+1

l )

= w
Nj

i

Nj+1X
l=1

�j(�
Nj

i ; �
Nj+1

l )~a
Nj+1

i :

In other words, the coeÆcients ~a
NJ�1

i can be calculated recursively starting from the

data ~aNJ

i for the initial level J , ~a
NJ�2

i can be deduced recursively from ~a
NJ�1

i , etc.

Moreover, the coeÆcients are independent of the special choice of the kernel (Observe

that (9.5) is equivalent to
�g�F�^(n; k) ' PNj

i=1 ~a
Nj

i Y (�
Nj

i ) for n = 0; 1; : : : ; k =

1; : : : ; 2n+ 1). This �nally leads us to the formulae

�(2)
�j
(�; �) �g�F w NjX

i=1

�(2)
�j
(�; �

Nj

i )~a
Nj

i ; j = J0; : : : ; J;

and

	(2)
�j
(�; �) �g�F w NjX

i=1

	(2)
�j
(�; �

Nj

i )~a
Nj

i ; j = J0; : : : ; J � 1;

with coeÆcients ~a
Nj

i given by (9.2) and (9.5). In the bandlimited case (with �j chosen

as indicated above) the sign " ' " can be replaced by " = " provided that spherical

harmonic exact integration formulae of suitable degree are used (cf. W. Freeden

(1999)).



20 10. SCALE THRESHOLDING

This recursion procedure leads us to the following decomposition scheme:

g�F ! ~aNJ ! ~aNJ�1 ! : : : ! ~aNJ0

# # #
~WJ;�

~WJ�1;�
~WJ0;� :

The coeÆcient vectors ~aNJ0 , ~aNJ0+1 ; : : : allow the following reconstruction scheme ofg�F :
~aNJ0 ~aNJ0+1 ~aNJ0+2

# # #

	
(2)
�J0

�g�F 	
(2)
�J0+1

�g�F 	
(2)
�J0+2

�g�F
& & &

�
(2)
�J0

�g�F ! +! �
(2)
�J0+1

�g�F ! +! �
(2)
�J0+2

�g�F ! +! : : : :

Once again it is worth mentioning that the coeÆcient vectors ~aNj do not depend on the

special choice of the scaling function f�(2)
�j gj2Z in L2(
). Moreover, the coeÆcients

can be used to calculate the wavelet transforms 	�j (�; �) �g�F for j = J0; : : : ; J � 1

and all � 2 
.

10. Scale Thresholding. Since the large `true' coeÆcients are the ones that

should be included in a selective reconstruction, in estimating an unknown function

it is natural to include only coeÆcients larger than some speci�ed threshold value.

In our context a `larger' coeÆcient is taken to mean one that satis�es for j = J0; : : : ; J

and i = 1; : : : ; Nj�
~a
Nj

i

�2
=
�
w
Nj

i

�
�j �g�F� (�Nj

i )
�2

= (w
Nj

i )2
Z



Z



g�F (�)g�F (�) �j(�; �
Nj

i ) �j(�; �
Nj

i ) d!(�) d!(�)

� (w
Nj

i )2
Z



Z



K(�; �) �j(�; �
Nj

i ) �j(�; �
Nj

i ) d!(�) d!(�)

= (k
j
i )

2
:

Remark 10.1. In particular for "bandlimited white noise" of the form

K(�; �) = K(� � �) =
�
2

4�
P0(� � �) =

�
2

4�
;

(�; �) 2 
�
 and w
Nj

i = 4�
Nj

(i.e. equidistributions), we �nd

(k
j
i )

2 =
2
p
�

Nj

�
�
�^j (0; 1)

�2
; j = J0; : : : ; J ; i = 1; : : : ; Nj :

For the given threshold values k
j
i such an estimator can be written in explicit form:

�d�F�
J
=

NJ0X
i=1

I
f(~a

N
J0

i
)2�(k

J0
i

)2g
�(2)
�J0

(�; �NJ0

i )~a
NJ0

i

+

J�1X
j=J0

NjX
i=1

I
f(~a

Nj

i
)2�(k

j

i
)2g

	(2)
�j

�
�; �Nj

i

�
~a
Nj

i :
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In other words, the large coeÆcients (relative to the threshold k
j
i ; i = 1; : : : ; Nj ; j =

J0; : : : ; J � 1) are kept intact and the small coeÆcients are set to zero. Motivated

by our former results the thresholding will be performed on ~VJ0;� and ~Wj;� , j =

J0; : : : ; J�1. The thresholding estimators of the true coeÆcients VJ0;� , Wj;� can thus

be written in the form

V̂J0;� =

NJ0X
i=1

Æ
hard

(k
J0
i

)2

�
(~a

NJ0

i )2
�
�(2)
�J0

�
�; �

NJ0

i

�
~a
NJ0

i ;

Ŵj;� =

NjX
i=1

Æ
hard

(k
j

i
)2

�
(~a

Nj

i )2
�
	(2)
�j

�
�; �

Nj

i

�
~a
Nj

i ;(10.1)

where the function Æ
hard
� is the hard thresholding function

Æ
hard
� (x) =

�
1 if jxj � �

0 otherwise :

The `keep or kill' hard thresholding operation is not the only reasonable way of es-

timating the coeÆcients. Recognizing that each coeÆcient ~Wj;� consists of both a

signal portion and a noise portion, it might be desirable to attempt to isolate the

signal contribution by removing the noisy part. This idea leads to the soft threshold-

ing function (confer the considerations by D.L. Donoho, I.M. Johnstone (1994,

1995))

Æ
soft
� (x) =

�
maxf0; 1� �

jxj
g if x 6= 0

0 if x = 0

which can also be used in the identities (10.1) stated above. When soft thresholding is

applied to a set of empirical coeÆcients, only coeÆcients greater than the threshold (in

absolute value) are included, but their values are `shrunk' toward zero by an amount

equal to the threshold �.

Summarizing all our results we �nally obtain the following thresholding multiscale

estimator

�d�F�
J
=

NJ0X
i=1

Æ
(k
J0
i

)2

�
(~a

NJ0

i )2
�
�(2)
�J0

(�; �NJ0

i )~a
NJ0

i

+

J�1X
j=J0

NjX
i=1

Æ
(k
j

i
)2

�
(~a

Nj

i )2
�
	(2)
�j

�
�; �Nj

i

�
~a
Nj

i :

In doing so (d�F )J �rst is approximated by a thresholded (g�F )J0 , which represents

the smooth components of the data. Then the coeÆcients at higher resolutions are

thresholded, so that the noise is suppressed but the �ne{scale details are included in

the calculation.
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11. Example. In order to illustrate the e�ectiveness of our multiscale denoising

technique we present a simple example using synthetic geomagnetic data. For this

purpose we introduce geomagnetic coordinates X, Y and Z. X denotes the so-called

north-, Y the east- and Z the downward-component. Using spherical polar coordinates

and identifying 0 degree longitude with Greenwich and 0 degree latitude with the

equator we end up with the following correspondence:

X $ "
t
;

Y $ "
'
;

Z $ �"r;

where "
t
; "

� and "
r are the usual unit vectors in spherical polar coordinates (for

explicit representations see e.g. W. Freeden et al. 1998). This means that X,Y

and Z form a local triad with X always pointing towards the geographic northpole, Y

pointing into the geographic east direction and Z always being directed towards the

Earth's body.

From a bandlimited (up to degree and order 12) geomagnetic potential due to

C.J Cain et al. 1984 we calculated the corresponding gradient �eld in geomagnetic

coordinates, i.e. north ("t), east ("') and downward (�"r) components, which served

as unnoised data. We then added some bandlimited white noise with variance � and

bandwidth N of approximately 0.9 and 60, respectively. This resulted in noise of

the order of magnitude 100 [nT] in a �eld of the order of magnitude 104 [nT]. The

noised signal has then been decomposed and reconstructed using Shannon wavelets

up to scale 4. During the reconstruction process only those wavelet coeÆcients con-

taining a predominant amount of the clear signal have been used in accordance to

our considerations in section 8.3. Fig. 11.1 shows the �"r component of the unnoised
data, while Fig. 11.2 shows the absolute values of the added noise.

Figs. 11.3 and 11.4 show the denoised �"r component and the corresponding

absolute error with respect to the unnoised data. Using our multiscale denoising

technique the root-mean-square error of the noised data (w.r.t. the clear data),

(�"rnoised)rms = 1:13 [nT], has been reduced to (�"rdenoised)rms = 0:35 [nT], which

is an improvement of about 60 per cent.

Comparing Figs. 11.2 and 11.4 it can be realized how the rough structure of

the noise has been smoothed out by the denoising process and how the peaks have

been reduced throughout the whole data set. This example obviously shows the

functionality of our approach.
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2 1. INTRODUCTION

1. Introduction. Launching the multifunctional satellite CHAMP (Challenging

Mini-Satellite Payload) on July 15, 2000 commenced the so-called Decade of Geopo-

tentials, an era of enhanced and improved research in gravitational and geomagnetic

�eld modelling. Only with satellites it is possible to cover the entire earth densely

with measurements of uniform quality. In the research �eld of earth's gravitation the

concept of high{low satellite{to{satellite tracking (hi{lo SST) realized by CHAMP

seems to be capable of attaining strongly improved spatial re�nement and accuracy.

As far as the magnetic �eld is concerned, CHAMP is expected to provide global vector

data of highest precision hopefully leading to unpredecented accuracy models of the

main and crustal magnetic �eld and the space{ and time{variability of these compo-

nents.

While standard Fourier techniques for geopotential �eld determination { usually

in terms of gradient �elds of scalar spherical harmonics { are useful tools for modelling

global trends, they are utterly incapable of dealing with geopotential data varying on

small spatial scales. This, as well as the inherent vectorial character of gravitational

and geomagnetic �eld approximation strongly point at using new, innovative mathe-

matically and physically realistic approximation methods in order to ensure enhanced

�eld models from the upcoming high quality satellite data.

When dealing with actual observational data it should be kept in mind that each

measurement does not really give the value of the observable under consideration

but that { at least to some extend { the data are contaminated with noise. In or-

der to successfully improve geophysically relevant �eld modelling, one main aspect is

to denoise the data, i.e. to extract the true portion of the observable from the ac-

tual signal. In the case of hi{lo SST di�erent approaches to noisy measurements by

specifying a certain variance{covariance model as usual in physical geodesy are vi-

able. In the case of geomagnetism, denoising of vectorial functions means that the

noise should be handled di�erently in each vectorial component. This is due to the

con�guration of the magnetic instruments on the one hand and the methods of at-

titude determination on the other hand. Considering the (nearly spherical) orbit of

the CHAMP satellite, for example, one expects higher noise levels in the tangential

components than in the spherically radial component.

The objective of this article is to introduce spectral as well as multiscale signal-to-

noise thresholding, providing the vector spherical harmonic and wavelet oriented basis

of denoising spherical vector �elds such as the gravitational �eld (cf. W. Freeden

et al. (1999)) as well as geomagnetic �eld (cf. M. Bayer et al. (2000)). First, we

introduce the corresponding theory of spectral and multiscale approximation. Seen

from mathematical point of view spherical vector wavelets have to reect the (vec-

torial) isotropy (i.e. rotational invariance of vector �elds) of geophysically relevant

(pseudo)di�erential operators representing the observables of gravitational and geo-

magnetic data. Thus, vector spherical harmonics have to be used in an appropriate

framework of orthogonal expansions, while the spherical wavelets have to be generated

by a concept of multiresolution analysis using rotation invariant scaling functions, i.e.

radial basis functions. A �rst proposal towards the idea of isotropic multiscale vector

�eld modelling was already made by W. Freeden et al. (1998) based on a tensorial

concept by use of tensor radial basis functions. Later on, in restriction to the bilinear

theory, M. Bayer et al. (1998) were able to distinguish a decomposition and recon-
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struction step which o�ers non{tensorial (i.e. scalar{vector) alternatives of vectorial

wavelet approximation. It will be shown in this article that both approaches (i.e. the

linear tensor{vector as well as the bilinear scalar{vector variant) can be used to denoise

error{a�ected data. Altogether, spherical vector wavelets provide a tool of automat-

ically adapting space and frequency localization in a multiresolution framework (i.e.

zoom{in procedure) for spherical vector �eld reconstruction and decomposition. The

signal{to{noise thresholding scheme is designed to distinguish between coeÆcients

which contribute signi�cantly to the signal, and those which are negligible.

It should be noted that our thresholding approaches are inuenced by the concept

of sparse wavelet representations in Euclidean spaces (cf. J.B. Weaver et al. (1991),

D.L. Donoho, I.M Johnstone (1994, 1995), R.T. Ogden (1997)) and the stochas-

tic variance{covariance model used for satellite data in physical geodesy (see e.g. R.

Rummel (1997) and the references therein). By virtue of the multiscale approach we

are thus able to include detail information of small spatial extend while suppressing

the noise in suitable approximation.

The paper is organized as follows: Chapter 2 gives basic material on spectral

expansion of vector �elds by means of vector spherical harmonics. Two variants are

distinguishable, viz. tensor-vector and scalar-vector representation. Chapter 3 deals

with the introduction of vector and tensor radial basis functions. Scaling functions

and vector wavelets are outlined as the constituting ingredients of multiscale ap-

proximation of vector �elds in Chapter 4 and Chapter 5, respectively. Examples of

bandlimited and non-bandlimited type can be found in Chapter 6. Signal-to-noise

thresholding in its spectral formulation in terms of vector spherical harmonics is dis-

cussed in Chapter 7. In accordance with our vector spherical approach two variants

of spectral denoising are describable, namely the tensor based and vector based for-

mulation. Finally Chapter 8 explains selective multiscale reconstruction of spherical

vector �elds. The paper ends with an example of multiscale denoising in geomagnetic

�eld determination.



4 2. PRELIMINARIES

2. Preliminaries. We begin by introducing some basic notation that will be

used throughout the paper.

2.1. Notation. Let us use x; y; : : : to represent the elements of Euclidean space

R
3 . For all x 2 R3 , x = (x1; x2; x3)

T , di�erent from the origin, we have

x = r�; r = jxj =
q
x21 + x22 + x23;(2.1)

where � = (�1; �2; �3)
T is the uniquely determined directional unit vector of x 2 R

3 .

The unit sphere in R3 will be denoted by 
. If the vectors "1; "2; "3 form the canonical

orthonormal basis in R3 , we may represent the points � 2 
 in polar coordinates by

� = t"
3 +

p
1� t2

�
cos'"1 + sin'"2

�
;

�1 � t � 1; 0 � ' < 2�; t = cos � :
(2.2)

Inner, vector, and dyadic (tensor) product of two vectors x; y 2 R3 , respectively, are
de�ned by

x � y = x
T
y =

3X
i=1

xiyi;(2.3)

x ^ y = (x2y3 � x3y2; x3y1 � x1y3; x1y2 � x2y1)
T
;(2.4)

x
 y = xy
T =

0@ x1y1 x1y2 x1y3

x2y1 x2y2 x2y3

x3y1 x3y2 x3y3

1A :(2.5)

As usual (cf. e.g. Gurtin (1972)), a second order tensor f 2 R3�3 is understood

to be a linear mapping that assigns to each x 2 R3 a vector y 2 R3 . The (cartesian)
components Fij of f are de�nd by

Fij = "
i � (f"j) = ("i)T (f"j);(2.6)

so that y = fx is equivalent to

y � "i =
3X

j=1

Fij(x � "j) :(2.7)

We write fT for the transpose of f ; it is the unique tensor satisfying (fy) �x = y � (fTx)
for all x; y 2 R3 . Moreover, we write tr(f) for the trace and det(f) for the determinant

of f .

The dyadic (tensor) product x 
 y of two elements x; y 2 R
3 (cf. (2.5)) is the

tensor that assigns to each u 2 R3 the vector (y � u)x. More explicitly,

(x
 y)u = (y � u)x(2.8)

for every u 2 R3 .
The inner product f � g of two second order tensors f ;g 2 R3�3 is de�ned by

f � g = tr(fTg) =

3X
i;j=1

FijGij ;(2.9)
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while

jf j = (f � f)1=2(2.10)

is called the norm of f .

Given any tensor f and any pair x, y 2 R3 we have

x � (fy) = f � (x
 y) :(2.11)

Furthermore, (x
 y)f = x
 fT y. Moreover, for x; y; w; z 2 R3 , we have

(x 
 y)(w 
 z) = (y � w)(x 
 z) :(2.12)

It is easy to see that

("i 
 "
j) � ("k 
 "

l) = ÆikÆjl;(2.13)

so that the nine tensors "i 
 "
j are orthonormal (Æik denotes the Kronecker symbol).

Moreover, it follows that

3X
i;j=1

�
Fij"

i 
 "
j
�
x =

3X
i;j=1

Fij(x � "j)"i = fx(2.14)

and thus f 2 R3�3 with

f =

3X
i;j=1

Fij"
i 
 "

j
:(2.15)

In particular, the identity tensor i is given by i =
P3

i=1 "
i
 "

i. Moreover it is easy to

see that

tr(x
 y) = x � y; x; y 2 R3 ;(2.16)

and

f � (gh) = (gT f) � h = (fhT ) � g; f ;g;h 2 R3�3 :(2.17)

Next we come to some operators, which are of particular importance in the vector

spherical context. In terms of the polar coordinates (2.2) the gradient r in R3 reads

rx = �
@

@r
+
1

r
r�
� ;(2.18)

where r� is the surface gradient of the unit sphere 
 � R
3 . Moreover, the Laplace

operator � = r � r in R3 has the representation

�x =

�
@

@r

�2

+
2

r

@

@r
+

1

r2
��;(2.19)

where �� = r� � r� is the Beltrami operator of the unit sphere 
 (for explicit repre-

sentations in terms of polar coordinates see e.g. W. Freeden et al. 1998).

Throughout this paper scalar valued (resp. vector valued, tensor valued) functions

are denoted by capital (resp. small, small bold) letters.
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A function F : 
! R (resp. f : 
! R
3 ) possessing k continuous derivatives on

the unit sphere 
 is said to be of class C(k)(
) (resp. c(k)(
)). C(0)(
) (resp. c(0)(
))
is the class of real continuous scalar{valued (resp. vector{valued) functions on 
.

For F 2 C
(1)(
) we introduce the surface curl gradient L� by

L
�
�F (�) = � ^r�

�F (�); � 2 
;(2.20)

while r�
� �f(�), � 2 
, and L�� �f(�), � 2 
, respectively, denote the surface divergence

and surface curl of the vector �eld f at � 2 
.

It is worth mentioning that the operators r�
; L

�
;�� will be always used in

coordinate{free representation throughout this paper (thereby avoiding any singu-

larity at the poles). Nevertheless, for the convenience of the reader, we give a list of

their expressions in local coordinates (2.2):

r�
� =

1p
1� t2

�
� sin' "

1 + cos' "
2
� @

@'
;(2.21)

+
p
1� t2

�
�t cos' "

1 � t sin' "
2 +

p
1� t2"

3
�
@

@t
;

L
�
� =

p
1� t2

�
sin' "

1 � cos' "
2
� @

@t
(2.22)

+
1p

1� t2

�
�t cos' "

1 � t sin' "
2 +

p
1� t2 "

3
�
@

@t
;

��
� =

@

@t
(1� t

2)
@

@t
+

1

1� t2

�
@

@'

�2

:(2.23)

The operators o(i) : C(1)(
)! c(
), i = 1; 2; 3, de�ned by

o
(1)

� F (�) = �F (�); � 2 
;(2.24)

o
(2)

� F (�) = r�
�F (�); � 2 
;(2.25)

o
(3)

� F (�) = L
�
�F (�); � 2 
;(2.26)

are of particular importance for our considerations. Therefore we discuss some of

their properties in more detail. For all � 2 
 we have

o
(i)
� F (�) � o(j)� F (�) = 0(2.27)

whenever j 6= i, i; j 2 f1; 2; 3g. Moreover, if G 2 C
(1)[�1;+1] and (�; �) 2 
�
 it is

not hard to see that

o
(2)

� G(� � �) = G
0(� � �)(� � (� � �)�);(2.28)

o
(3)

� G(� � �) = G
0(� � �)(� ^ �) :(2.29)

Furthermore, Green's identities show us that

F (�) =
1

4�

Z



F (�)d!(�)(2.30)

�
Z



�
o
(i)
� G(��; �; �)

�
�
�
o
(i)
� F (�)

�
d!(�)



2.2 Vector Spherical Harmonics 7

holds for all � 2 
, i 2 f2; 3g and F 2 C
(1)(
), where G(��; �; �) is the Green function

with respect to the Beltrami operator �� (cf. W. Freeden (1980))

G (��; �; �) =
1

4�
ln(1� � � �) +

1

4�
�

1

4�
ln 2; �1 � � � � < 1 :(2.31)

The integral equations (cf. W. Freeden et al. (1998))Z



f(�) � r�
�F (�) d!(�) = �

Z



F (�)r�
� � f(�) d!(�);(2.32) Z




f(�) � L��F (�) d!(�) = �
Z



F (�)L�� � f(�) d!(�)(2.33)

lead us to operators O(i) : c(1)(
) ! C
(0)(
), i = 1; 2; 3, which are adjoint to o

(i).

More explicitly, for f 2 c
(1)(
) and F 2 C

(1)(
), we haveZ



o
(i)

� F (�) � f(�) d!(�) =
Z



F (�) O
(i)

� f(�) d!(�); i = 1; 2; 3;(2.34)

where

O
(1)

� f(�) = � � f(�); � 2 
;(2.35)

O
(2)

� f(�) = �r�
� � f(�); � 2 
;(2.36)

O
(3)

� f(�) = �L�� � f(�); � 2 
 :(2.37)

It can be easily seen that

O
(i)
� o

(j)
� F (�) = 0; i 6= j; i; j 2 f1; 2; 3g(2.38)

and

O
(i)
o
(i)
F (�) =

�
F (�) ; i = 1

���
�F (�) ; i = 2; 3

(2.39)

provided that F 2 C
(2)(
). For more details the reader is referred to W. Freeden

et al. (1998).

2.2. Vector Spherical Harmonics. Any function f : 
 ! R
3 is called a

spherical vector �eld. By l
2(
) we denote the space of (Lebesgue) square{integrable

vector �elds on 
, i.e.

l
2(
) =

�
f : 
! R

3
��� Z




f(�) � f(�) d!(�) <1
�

:(2.40)

l
2(
) is a Hilbert space equipped with the inner product

(f; g)l2 =

�Z



f(�) � g(�) d!(�)
�1=2

:(2.41)

c
(k)(
) denotes the space of vector �elds with k{times continuously di�erentiable

components on 
.



8 2. PRELIMINARIES

For a given vector �eld f : 
! R
3

fnor : � 7! fnor(�) = (� � f(�)) �; � 2 
(2.42)

is called the normal part of f , while

ftan : � 7! ftan(�) = f(�)� fnor(�); � 2 
(2.43)

is called the tangential part of f . A vector �eld f is called tangential (resp. normal),

if f(�) = ftan(�) (resp. f(�) = fnor(�)) for all � 2 
.

The study of vector �elds on the sphere can be greatly simpli�ed by the Helmholtz

decomposition theorem for continuously di�erentiable vector �elds f : 
! R
3

f(�) = fnor(�) + ftan(�); � 2 
 :(2.44)

To be more precise, any continuously di�erentiable vector �eld on the unit sphere


 � R
3 (i.e.: f 2 c

(1)(
)) may be represented by a decomposition in terms of scalar

functions F (i) 2 C
(2)(
), i = 1; 2; 3, such that

fnor(�) = o
(1)

� F
(1)(�); � 2 
(2.45)

ftan(�) = o
(2)

� F
(2)(�) + o

(3)

� F
(3)(�); � 2 
;(2.46)

where

F
(1)(�) = � � f(�) ; � 2 
;(2.47)

F
(2)(�) = �

Z



G(��; �; �) O(2)
� f(�) d!(�); � 2 
;(2.48)

F
(3)(�) = �

Z



G(��; �; �) O(3)
� f(�) d!(�); � 2 
 :(2.49)

These representations of spherical vector �elds lay the groundwork for the main sub-

ject of this note. The explicit representations of the tangential as well as the normal

�eld, in fact, are essential for the constructive approximation of spherical vector �elds.

2.3. Spectral Approximation. First we describe (equivalent) ways of expand-

ing a vector �eld in terms of vector spherical harmonics.

2.3.1. Tensor-Vector Representation. The orthogonal (Fourier) expansion

of the functions F
(i), i 2 f1; 2; 3g, in terms of an L2(
)-orthonormal system

fYn;kg n=0;1;:::

k=1;:::;2n+1
of scalar spherical harmonics Yn;k

F
(i) =

1X
n=0

2n+1X
k=1

(F (i))^(n; k)Yn;k; i = 1; 2; 3;(2.50)

with orthogonal coeÆcients

(F (i))^(n; k) = (F (i)
; Yn;k)L2(
) =

Z



F
(i)(�)Yn;k(�) d!(�)(2.51)

leads to an orthogonal expansion of the vector �eld f in terms of vector spherical

harmonics fy(i)n;kg of type i given by

y
(i)
n;k = (�(i)n )�1=2o(i)Yn;k ; n = 0i; 0i + 1; : : : ; k = 1; : : : ; 2n+ 1(2.52)
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(01 = 0; 0i = 1; i = 2; 3, and �
(1)
n = 1; �

(i)
n = n(n + 1); i = 2; 3) of the following

form:

f = f
(1) + f

(2) + f
(3)
;(2.53)

where

f
(i) =

1X
n=0i

2n+1X
k=1

(f (i))^(n; k) y
(i)
n;k; i = 1; 2; 3;(2.54)

where (f (i))^(n; k) are the orthogonal coeÆcients in terms of vector spherical har-

monics

(f (i))^(n; k) = (f; y
(i)
n;k)l2(
) =

Z



f(�) � y(i)n;k(�) d!(�):(2.55)

Then any f 2 l
(2)(
) may be represented in the form

f =

3X
i=1

1X
n=0i

2n+1X
k=1

(f (i))^(n; k)y
(i)
n;k(2.56)

where the equality is understoood in the sense of k�kl2(
). Using the addition theorem
for vector spherical harmonics (seeW. Freeden, T. Gervens (1991)) the vectorial

expansion (2.53), (2.54) may be rewritten in the form

f =

3X
i=1

1X
n=0i

2n+ 1

4�

Z



p(i;i)n (�; �)f (i)(�)d!(�);(2.57)

where the i-th Legendre tensor function p
(i;i)
n : 
�
! R

3 
 R3 reads as follows:

2n+1X
k=1

y
(i)
n;k(�)
 y

(i)
n;k(�)(2.58)

=
2n+ 1

4�
p(i;i)n (�; �) = (�(i)n )�1

2n+ 1

4�
o
(i)
� o

(i)
� Pn(� � �)

with

p(1;1)n (�; �) = Pn(� � �)� 
 �;(2.59)

p(2;2)n (�; �) =
1

n(n+ 1)
(P 00

n (� � �)(� � (� � �)�)
 (� � (� � �)�)(2.60)

+P 0
n(� � �)(i� � 
 � � (� � (� � �)�)
 �)) ;(2.61)

p(3;3)n (�; �) =
1

n(n+ 1)
(P 00

n (� � �)� ^ � 
 � ^ �(2.62)

+P 0
n(� � �)((� � �)(i� � 
 �)� (� � (� � �)�) 
 �))(2.63)

for all (�; �) 2 
�
. Pn is the scalar Legendre polynomial of degree n given via the

addition theorem by

Pn(� � �) =
4�

2n+ 1

2n+1X
k=1

Yn;k(�)Yn;k(�); (�; �) 2 
� 
;(2.64)
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for any scalar L2(
)-orthonormal system fYn;kgk=1;:::;2n+1. Once again observe that

r�
�Pn(� � �) = P

0
n(� � �)(� � (� � �)�);(2.65)

L
�
�Pn(� � �) = P

0
n(� � �)(� ^ �)(2.66)

for all (�; �) 2 
2 and n = 1; 2; : : :.

Using an orthogonal expansion in terms of vector spherical harmonics as described

above, we have three orthogonal vector �elds y
(i)
n;k that depend on one scalar polyno-

mial, namely the scalar spherical harmonic Yn;k such that the vectorial system fy(i)n;kg
is able to generate both the normal �eld (i = 1) and the tangential �elds (i = 2; 3)

on the sphere. In doing so, the Hilbert space l
2(
) of square{integrable vector

�elds admits a geophysically motivated orthogonal decomposition into three orthog-

onal subspaces l2
(i)(
); the �rst subspace l

2
(1)
(
) only consists of square-integrable

normal �elds, while the second subspace l2
(2)
(
) and third subspace l2

(3)
(
) consist of

tangential vector �elds that are curl-free and divergence-free, respectively:

l
2(
) = l

2
nor(
)� l

2
tan(
);(2.67)

with

l
2
nor(
) = l

2
(1)(
); l

2
tan(
) = l

2
(2)(
)� l

2
(3)(
):(2.68)

2.4. Scalar-Vector Representation. Tensor representations as proposed in

Section 2.3.1 are diÆcult to handle in numerical computations. In what follows, there-

fore, we give an alternative approach of expanding vector �elds in terms of spherical

harmonics. Its key idea is based on the fact that the vectorial expansion (2.53), (2.54)

may be written by use of the adjoint operators in the form

f(�) =

3X
i=1

1X
n=0i

2n+ 1

4�

�
�
(i)
n

��1 Z



o
(i)

� Pn(� � �) O(i)
� f

(i)(�) d!(�); � 2 
;(2.69)

or equivalently

f(�) =

3X
i=1

1X
n=0i

2n+ 1

4�

�
�
(i)
n

��1=2 Z



p
(i)
n (�; �) O(i)

� f
(i)(�) d!(�); � 2 
;(2.70)

where the i-th Legendre vector p
(i)
n : 
�
! R

3 is given by

2n+1X
k=1

y
(i)

n;k(�)Yn;k(�)(2.71)

= p
(i)
n (�; �) =

�
�
(i)
n

��1=2
o
(i)
� Pn(� � �); (�; �) 2 
2

:

The Legendre vector functions written out read as follows:

p
(1)
n (�; �) = �Pn(� � �); n = 0; 1; : : : ;

p
(2)
n (�; �) =

1p
n(n+ 1)

(� � (� � �) �)P 0
n(� � �); n = 1; 2; : : : ;

p
(3)
n (�; �) =

1p
n(n+ 1)

(� ^ �)P 0
n(� � �); n = 1; 2; : : :

for (�; �) 2 
2.
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3. Vector and Tensor Radial Basis Functions. The relations between the

di�erent types of Legendre functions are as follows:

p
(i)
n (�; �) = (�(i)n )�1=2O(i)

� p(i;i)n (�; �);

p(i;i)n (�; �) = (�(i)n )�1=2o(i)� p
(i)
n (�; �);

Pn(� � �) = (�(i)n )�1=2O
(i)
� p

(i)
n (�; �)

for (�; �) 2 
�
 and n = 0i; 0i + 1; : : :. These identities lead us to the de�nition of

tensor and vector radial basis functions.

We begin with the introduction of tensor radial basis functions (cf. W. Freeden

et al. (1998), S. Beth (2000)).

Definition 3.1. Any function k(i) : 
�
! R
3 
 R3 , i 2 f1; 2; 3g, of the form

k(i)(�; �) =

1X
n=0i

2n+ 1

4�
(k(i))^(n)p(i;i)n (�; �); (�; �) 2 
�
;

is called (square{summable) tensor radial basis function of type i if its symbol�
(k(i))^(n)

	
n=0i;0i+1;:::

� R satis�es the condition:

1X
n=0i

2n+ 1

4�

�
(k(i))^(n)

�2
<1 :

k =
P3

i=1 k
(i) with k(i) (square{summable) tensor radial basis functions of type i is

called (square{summable) tensor radial basis function.

A key property of a tensor radial basis function k is its invariance under orthogonal

transformations t, i.e.,

k(t�; t�) = tk(�; �)tT ; (�; �) 2 
�
 :

This property falls back upon the Legendre tensors

p(i;i)n (t�; t�) = tp(i;i)n (�; �)tT ; (�; �) 2 
�
 :

If a vector �eld f : 
! R
3 is invariant under orthogonal transformations, i.e.

f(t�) = tf(�); � 2 
(3.1)

for all orthogonal t which leave � 2 
 �xed, then the same applies for a vector �eld

g : 
! R
3 given by

g(�) =

Z



k(�; �)f(�) d!(�) =

3X
i=1

Z



k(i)(�; �)f(�) d!(�) :

Therefore, the de�nition of convolutions on the set of tensor radial basis functions

makes sense.

Definition 3.2. Let k(i);h(i) be (square{summable) tensor radial basis functions

of type i. Suppose that f is of class l2(
). Then k(i) � f de�ned by�
k(i) � f

�
(�) =

Z



k(i)(�; �)f(�) d!(�); � 2 
;



12 3. VECTOR AND TENSOR RADIAL BASIS FUNCTIONS

is called the convolution of k(i) against f . Furthermore, h(i) � k(i) de�ned by

(h(i) � k(i))(�; �) =
Z



h(i)(�; �)k(i)(�; �) d!(�); (�; �) 2 
� 
;

is said to be the ` �' convolution of h(i) against k(i). We let h � k =
P3

i=1 h
(i) � k(i).

Obviously, we have

k(i) � f =

1X
n=0i

(k(i))^(n)

2n+1X
k=1

(f (i))^(n; k)y
(i)
n;k

and

h(i) � k(i) =
1X

n=0i

2n+ 1

4�
(h(i))^(n)(k(i))^(n)p(i;i)n :

In particular, any f 2 l
2(
) can be expressed as follows:

f =

3X
i=1

1X
n=0i

2n+ 1

4�
p(i;i)n � f :

Next we come to the discussion of vector radial basis functions, which will be

based on vector Legendre functions (cf. M. Bayer et al. (1998), S. Beth (2000)).

Definition 3.3. Any function k
(i) : 
�
! R

3 , i 2 f1; 2; 3g, de�ned by

k
(i)(�; �) =

1X
n=0i

2n+ 1

4�
(k(i))^(n)p(i)n (�; �)

is called (square{summable) vector radial basis function of type i if its symbol

f(k(i))^(n)gn=0i;0i+1;::: � R satis�es the condition:

1X
n=0i

2n+ 1

4�

�
(k(i))^(n)

�2
<1 :

k =
P3

i=1 k
(i) with k

(i) (square{summable) vector radial basis functions of type i is

called (square{summable) vector radial basis function.

According to the occurence of scalar as well as vector spherical harmonics in the

series expansion of vector radial basis functions two di�erent types of convolutions

are de�nable for vector radial basis functions.

Definition 3.4. Let h(i); k(i) be vector radial basis functions of type i, i 2
f1; 2; 3g. Suppose that f is of class l2(
). Then k

(i) � f , i 2 f1; 2; 3g, de�ned by

k
(i) � f =

Z



k
(i)(�; �) � f(�) d!(�)

is called the convolution of k(i) against f .

Moreover, assume that F is of class L2(
). Then k
(i)

? F , i 2 f1; 2; 3g, given by

k
(i)

? F =

Z



k
(i)(�; �)F (�) d!(�)
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is called the convolution of k(i) against F . Furthermore, by de�nition, we let

h ? k � f =

3X
i=1

h
(i)

? k
(i) � f

Looking at the types of functions involved in the aforementioned convolutions

it becomes obvious which parts interact: `�' denotes a scalar product, whereas `?'

represents a scalar-vector multiplication.

The following theorem, yields within the framework of convolution integrals, an

alternative in decomposing a tensor radial basis function either by tensor radial basis

functions or by vector radial basis functions (cf. M. Bayer et al. (1998), S. Beth

(2000)).

Theorem 3.5. Let f be of class l2(
). Assume that h; k are (square{summable)

vector radial basis functions. Moreover, suppose that h;k are (square{summable)

tensor radial basis functions with

(h(i))^(n) = (h(i))^(n);(3.2)

(k(i))^(n) = (k(i))^(n);(3.3)

for all n = 0i; 0i + 1; : : : and i 2 f1; 2; 3g. Then

h � k � f = h ? k � f :

Proof. The completeness of the vector spherical harmonics (cf. W. Freeden et

al. (1998)) enables us to verify that

h � k � f

=

3X
i=1

1X
n=0i

(h(i))^(n)(k(i))^(n)

2n+1X
k=1

(f (i))^(n; k)y
(i)

n;k

=

3X
i=1

1X
n=0i

(h(i))^(n)(k(i))^(n)

2n+1X
k=1

(f (i))^(n; k)y
(i)
n;k

= h ? k � f :

This is the desired result.

In other words, our considerations have shown that the di�erent types of bilinear

convolutions lead to equivalent results. The tensorial concept of convolutions as intro-

duced above enabledW. Freeden, T. Gervens (1991), W. Freeden et al. (1998)

to derive a variational theory of vector spherical spline approximation. Furthermore,

the scalar spherical wavelet theory (seeW. Freeden et al. (1998) and the references

therein) admits a canonical generalization to the vector nomenclature. Vector radial

basis functions have been discussed by M. Bayer et al. (1998), M. Bayer (2000)

and S. Beth (2000). The vector radial basis functions show the advantage that their

convolutions against scalar or vector �elds are easier calculable. However, it should be

mentioned that they have the disadvantage that they can be handled only in bilinear

expression, whereas tensor radial basis functions can be used canonically in a linear

as well as bilinear (wavelet) concept (cf. W. Freeden et al. (1998), S. Beth(2000)).

Theorem 3.5 gives rise to introduce the following de�nition.
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Definition 3.6. Let h(i), k(i), i 2 f1; 2; 3g, be (square{summable) vector radial

basis functions of type i. Then h
(i)

? k
(i) de�ned by

(h(i) ? k(i))(�; �) =

Z



h
(i)(�; �) 
 k

(i)(�; �) d!(�)

is said to be the ` ?'{convolution of h(i) against k(i). We let h ? k =
P3

i=1 h
(i)

? k
(i).

Clearly, for i = 1; 2; 3, we �nd

h
(i)

? k
(i) =

1X
n=0i

2n+ 1

4�
(h(i))^(n)(k(i))^(n)p(i;i)n = h(i) � k(i)(3.4)

provided that (3.2), (3.3) hold true.

Finally it is worth mentioning the following lemma.

Lemma 3.7. Let k be a (square{summable) tensor radial basis function such that

1X
n=0i

2n+ 1

4�
(n+ 1=2)2 0i

�
(k(i))^(n)

�2
<1

for i = 1; 2; 3. Then O
(i)
� k(�; �) 2 l

2
(i)(
), � 2 
, and "

q � O(i)
� k(�; �) 2 L2(
), � 2 
,

with i; q 2 f1; 2; 3g.
The proof follows easily from the de�nition of the O

(i){symbols in connection

with the properties of (square{summable) tensor radial basis functions.
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4. Scaling Functions. Let (�
(i)
0 )^(n) : [0;1) ! R, i = 1; 2; 3, be three func-

tions satisfying the following conditions:

(i) (�
(i)
0 )^(n) is monotonically decreasing,

(ii) (�
(i)
0 )^(n) is piecewise continuous in (0;1) and continuous at 0,

(iii) (�
(i)
0 )^(0) = 1,

(iv)
P1

n=0i
2n+1
4�

j(�(i)
0 )^(n)j2 <1.

Then the vector function (�0)
^(n) =

�
(�

(1)
0 )^(n); (�

(2)
0 )^(n); (�

(2)
0 )^(n)

�T
is called

the generator of the scale discrete scaling function �0 de�ned by

�0(�; �) =

3X
i=1

1X
n=0i

2n+1X
l=1

(�
(i)
0 )^(n) y

(i)
n;l(�)
 y

(i)
n;l(�); (�; �) 2 
2

:(4.1)

Correspondingly the scale discrete scaling function of type i reads as follows:

�
(i)
0 (�; �) =

1X
n=0i

2n+1X
l=1

(�
(i)
0 )^(n) y

(i)
n;l(�)
 y

(i)
n;l(�); i = 1; 2; 3; (�; �) 2 
2

;

i.e.: (�
(i)
0 )^(n) = (�

(i)
0 )^(n), n = 0i; 0i + 1; : : : and i 2 f1; 2; 3g.

We introduce the scale discrete dilation operator Dj by

Dj(�
(i)
0 )^(x) = (�

(i)
j )^(x) = (�

(i)
0 )^(2�jx); i = 1; 2; 3; j 2 Z:(4.2)

We let

Dj(�0)
^(x) = (�j)

^(x) =
�
(�

(1)
j )^(x); (�

(2)
j )^(x); (�

(3)
j )^(x)

�T
; j 2 Z:(4.3)

One important fact is that, by virtue of condition (iv), the dilates (�
(i)
j )^(n), i =

1; 2; 3, satisfy

1X
n=0i

2n+ 1

4�
j(�(i)

j )^(n)j2 <1(4.4)

for every j 2 Z, provided that the vector function (�0)
^(n) has this property (cf. W.

Freeden, M. Schreiner (1997)). The de�nition of the dilated scaling function is

straightforward by letting

Dj�0(�; �) = �j(�; �) =

3X
i=1

1X
n=0i

2n+1X
l=1

(�
(i)
j )^(n)y

(i)
n;l(�)
 y

(i)
n;l(�); (�; �) 2 
2

; j 2 Z:

We now come to the formulation of the vectorial approximate identity which is

the central result in multiscale approximation.

Theorem 4.1. Suppose that f is of class l
2(
). Let �0 be a scale discrete

scaling function generated by (�0)
^(n) (as described above). Then

lim
J!1

k�(i)
J ��(i)

J � f � f
(i)kl2(
) = 0; i = 1; 2; 3;(4.5)

and

lim
J!1

k�J ��J � f � fkl2(
) = 0:(4.6)
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Proof. For i 2 f1; 2; 3g and J 2 N0 we have in the notation introduced before

lim
J!1


3X

i=1

�
(i)
J ��(i)

J � f � f


2

l2(
)

(4.7)

= lim
J!1

Z



�����
3X

i=1

1X
n=0i

2n+1X
l=1

�
(�

(i)
J )^(n))2 � 1

�
(f (i))^(n; l)y

(i)
n;l(�)

�����
2

d!(�):

According to our de�nition (�
(i)
J )^(0) = 1 and (�

(i)
J )^(n) is monotonically decreasing.

In conclusion, ((�
(i)
J )^(n))2 � 1 is smaller than one, and it is allowed to interchange

sum and limit. But this yields the desired approximate identity.

Consider the operators p
(i)
j : l2(
) ! l

2
(i)(
); i = 1; 2; 3, and pj : l

2(
) ! l
2(
)

de�ned by

p
(i)
j = �

(i)
j ��(i)

j � f; j 2 Z; i 2 f1; 2; 3g(4.8)

and

pj = �j ��j � f; j 2 Z;(4.9)

respectively. The corresponding scale spaces s
(i)
j , sj are de�ned by

s
(i)
j = fp(i)j (f)jf 2 l

2(
)g; i 2 f1; 2; 3g(4.10)

and

sj = fpj(f)jf 2 l
2(
)g;(4.11)

respectively. This leads to a vector multiresolution analysis in the following sense:

s
(i)
0 � : : : � s

(i)
l � s

(i)
l+1 � : : : � l

2
(i)(
); i = 1; 2; 3;

s0 � : : : � sl � sl+1 � : : : � l
2(
) :

A space corresponding to some resolution contains all the information about the space

at lower resolution. Furthermore, we have

1[
j=0

s
(i)
j

k�k
l2(
)

= l
2
(i)(
); i = 1; 2; 3;(4.12)

and

1[
j=0

sj

k�k
l2(
)

= l
2(
);(4.13)

i.e., as the resolution increases the approximation of the vector �eld converges to

the original vector �eld and as the resolution decreases the approximated vector �eld

contains less and less information. Correspondingly, the uncertainty principle (cf.

F.J. Narcowich, J.D. Ward (1996) W. Freeden (1999), S. Beth (2000)) tells

us that the space localization of the scaling function increases with increasing scale
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parameter j, while the frequency (momentum) localization of the scaling function

decreases with increasing j.

Given the structure of a multiresolution analysis, the representation of a vector

�eld in s
(i)
j is given by p

(i)
j (f). The multiresolution analysis framework is certainly

not unique. Several multiresolution frameworks can be constructed depending upon

the choice of the triple (�0)
^(n) =

�
(�

(1)
0 )^(n); (�

(2)
0 )^(n); (�

(3)
0 )^(n)

�T
.

Finally it should be noted that

p
(i)
j (f) = �

(i)
j ?�

(i)
j � f = �

(i)
j ��(i)

j � f(4.14)

provided that

�
(i)
j (�; �) =

1X
n=0i

2n+ 1

4�
(�

(i)
j )^(n)p(i)n (�; �); (�; �) 2 
2(4.15)

for every j 2 Z. Thus it is clear from our construction that the scale spaces sl

introduced above are exactly the same like in the case of vector wavelets (cf. W.

Freeden et al. (1998)) based on tensorial kernel representations. This observation

is a keystone for eÆcient multiresolution techniques in vectorial theory on the sphere.

Theorem 4.1 can be rewritten as follows.

Corollary 4.2. Suppose that f is of class l2(
). Then

lim
J!1

k�(i)
J ?�

(i)
J � f � f

(i)kl2(
) = 0; i = 1; 2; 3;(4.16)

and

lim
J!1

k�J ? �J � f � fkl2(
) = 0 :(4.17)
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5. Vector Wavelets. Next we introduce scale discrete wavelets. Since most of

the material is known from the scalar case (confer the approach due toW. Freeden,

M. Schreiner (1997)) our treatment will be brief.

Let �0 as de�ned by (4.1) be a scale discrete scaling function generated by

(�0)
^(n) = ((�

(1)
0 )^(n); (�

(2)
0 )^(n), (�

(3)
0 )^(n))T . Let (	

(i)
0 )^(n) : [0;1) ! R; i =

1; 2; 3, be three functions satisfying the following conditions:

(i) (	
(i)
0 )^(n) are piecewise continuous in [0;1),

(ii)
1P

n=0i

2n+1
4�

j(	(i)
0 )^(n)j2 <1,

(iii) ((	
(i)
0 )^(x))2 =

�
(�

(i)
0 )^(x

2
)
�2
�
�
(�

(i)
0 )^(x)

�2
; x 2 [0;1).

Then (	0)
^(n) = ((	

(1)
0 )^(n); (	

(2)
0 )^(n); (	

(3)
0 )^(n))T de�nes the so-called scale

discrete mother wavelet 	0 which is given by

	0(�; �) =

3X
i=1

1X
n=0i

2n+1X
l=1

(	
(i)
0 )^(n)y

(i)

n;l(�)
 y
(i)

n;l(�); (�; �) 2 
2
:(5.1)

For j 2 Z the dilation operator Dj can be applied in the same way as before:

Dj(	0)
^(x) = (	j)

^(x) = (	0)
^(2�jx) for x 2 [0;1). In other words,

Dj	0(�; �) =	j(�; �) =

3X
i=1

1X
n=0i

2n+1X
l=1

(	
(i)
j )^(n)y

(i)
n;l(�)
 y

(i)
n;l(�); �; � 2 
 :

The wavelets 	
(i)
j of type i are de�ned as in the case of the scaling function. Scale

discrete wavelets at all scales j and positions � as introduced above can be displayed

as rotated and dilated versions of the mother wavelets:

	j(�; �) = 	j;�(�) = (R�Dj	0)(�; �); (�; �) 2 
2
:(5.2)

R� is the �-rotation operator de�ned by R�	0(�; �) =	0(�; �); � 2 
.

For a vector �eld f 2 l
2(
) we now introduce the spherical vector wavelet trans-

form of type i and the spherical vector wavelet transform, respectively, as follows:

(WT )
	
(i)

0

(f)(j; �) = (	
(i)
j � f)(�) =

Z



	
(i)
j (�; �)f(�) d!(�) ; j 2 Z; i = 1; 2; 3;

(WT )	0
(f)(j; �) = (	j � f)(�) =

Z



	j(�; �)f(�) d!(�) ; j 2 Z;

� 2 
. Theorem 5.1 now tells us that any �eld f can be reconstructed by its wavelet

transform.

Theorem 5.1. (Reconstruction Formula). Let �0 be a scale discrete scaling

function and let 	0; be the corresponding mother wavelet. Then,

f
(i) = �

(i)
0 ��(i)

0 � f +
1X
l=0

	
(i)
l �	(i)

l � f; i = 1; 2; 3;(5.3)

and

f = �0 ��0 � f +
1X
l=0

	l �	l � f(5.4)
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holds for all vector �elds f 2 l
2(
) in k � kl2(
)-sense.

Proof. It is not diÆcult to see that

3X
i=1

1X
n=0i

2n+1X
k=1

((�
(i)
0 )^(n))2(f (i))^(n; k)y

(i)
n;k

+

J�1X
l=0

3X
i=1

1X
n=0i

2n+1X
k=1

��
(�

(i)
0 )^(2�l�1n)

�2
�
�
(�

(i)
0 )^(2�ln)

�2�
(f (i))^(n; k)y

(i)
n;k

=

3X
i=1

1X
n=0i

2n+1X
k=1

((�
(i)
J )^(n))2(f (i))^(n; k)y

(i)
n;k

= �J ��J � f

holds for all positive integers J . Letting J tend to in�nity we obtain the required

result in connection with Theorem 4.1.

As a particular result of the previous proof the following identity becomes obvious

which illustrates the relation between Theorem 4.1 and Theorem 5.1:

�J ��J � f = �0 ��0 � f +
J�1X
l=0

	l �	l � f:(5.5)

The formula (5.5) can be reformulated in the following way

�J ��J � f +
MX
l=J

	l �	l � f = �M+1 ��M+1 � f(5.6)

(M > J). The scaling function at scale M + 1 can be replaced by a scaling function

at a smaller scale J together with the wavelets at all "intermediate" scales. This gives

rise to introduce operators r
(i)
j ; rj de�ned by

r
(i)
j (f) = 	

(i)
j �	(i)

j � f (i); j 2 Z; i 2 f1; 2; 3g;(5.7)

and

rj(f) = 	j �	j � f; j 2 Z;(5.8)

f 2 l
2(
), respectively. The operators rj can be interpreted as bandpass �lters.

The detail space dj is then the image of l2(
) under the operator rj :

dj = frj(f) j f 2 l
2(
)g:(5.9)

Analogously, we understand the spaces d
(i)
j :

d
(i)
j = fr(i)j (f) j f 2 l

2
(i)(
)g:(5.10)

The operators pj ; p
(i)
j ; rj ; r

(i)
j on the one hand and the spaces sj ; s

(i)
j ; dj ; d

(i)
j on the

other hand allow the following relations:

� p
(i)
j = p

(i)
j�1 + r

(i)
j�1; pj = pj�1 + rj�1
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� p
(i)
j = p

(i)
0 +

j�1P
l=0

r
(i)

l ; i = 1; 2; 3; pj = p0 +
j�1P
l=0

rl

� s
(i)
j = s

(i)
j�1 + d

(i)
j�1; i = 1; 2; 3, sj = sj�1 + dj�1,

� s
(i)
j = s

(i)
0 +

j�1P
l=0

d
(i)
l ; i = 1; 2; 3; sj = s0 +

j�1P
l=0

dl.

Remember that pj(f) is understood as a smoothing of f at scale j. In order to improve

this smoothing we have to add more and more "details" rj(f), each of which may be

understood as di�erence of two smoothings.

It should be mentioned that

(p
(i)
j (f))^(n; l) = (f (i))^(n; l)(�

(i)
j )^(n)(�

(i)
j )^(n);

(r
(i)
j (f))^(n; l) = (f (i))^(n; l)(	

(i)
j )^(n)(	

(i)
j )^(n):

These formulas give wavelet representation an interpretation in terms of Fourier ana-

lysis by explaining how the frequency spectrum of a vector �eld f
(i) 2 s

(i)
j is divided

up between the spaces s
(i)
j�1 and d

(i)
j�1, which enhances our understanding of what is

meant by "smoothing" and "detail".

From Theorem 3.5 it is clear that r
(i)
j (f), i = 1; 2; 3, can be represented equiva-

lently in bilinear 'scalar{vector` nomenclature by

r
(i)
j (f) = 	

(i)
j ?	

(i)
j � f;(5.11)

where

	
(i)
j (�; �) =

1X
n=0i

2n+ 1

4�
(	

(i)
j )^(n)p(i)n (�; �):(5.12)

This �nally leads us to the following corollary of Theorem 5.1

Corollary 5.2. Le f be of class l2(
). Then

f
(i) = �

(i)
0 ?�

(i)
0 � f +

1X
l=0

	
(i)
l ?	

(i)
l � f; i 2 f1; 2; 3g;(5.13)

and

f = �0 ? �0 � f +
1X
l=0

	l ?	l � f :(5.14)
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6. Examples. Two types of wavelets may be distinguished with respect to their

frequency band, viz. non-bandlimited and bandlimited wavelets.

6.1. Non-bandlimited Wavelets. All non-bandlimited wavelets share the

property that their generators (	
(i)
0 )^(n) : [0;1) ! R, i = 1; 2; 3, have a global

support, i.e. supp (	
(i)
0 )^(n) = [0;1). Since there are only a few conditions for a

function (�
(i)
0 )^(n) : [0;1)! R to be a generator of a scaling function, many choices

are at our disposal.

As particularly important examples of globally supported generators (�
(i)
0 )^(n) :

[0;1) ! R, i = 1; 2; 3, we mention (cf. W. Freeden, U. Windheuser (1996,

1997)):

(i) rational wavelets: (�
(i)
0 )^(x) = (1� x)�s, x 2 [0;1), s > 1,

(ii) exponential wavelets: (�
(i)
0 )^(x) = e

�h(x), x 2 [0;1), where h : [0;1) ! R

is assumed to satisfy the conditions:

� h 2 C
(1)[0;1)

� h(0) = 0, h(x) > 0 for x > 0

� h(x) < h(x0) whenever 0 < x < x
0,

�
P1

n=0
2n+1
4�

e
�h(n)

<1.
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Fig. 6.1. Generator of Abel-Poisson scaling function (left) and wavelet (right) for j = 2; 3

A proper choice is, for example, the Abel{Poisson wavelet with h(x) = x, x 2
[0;1) (see Figure 6.1 for the corresponding generators) or the Gauss{Weierstrass

wavelet with h(x) = x(x + 1), x 2 [0;1).

In all these cases the detail spaces generally are not of �nite dimension. Never-

theless, as we have seen before, a multiresolution analysis is still valid.

6.2. Bandlimited Wavelets. If all (�
(i)
0 )^(n) : [0;1) ! R, i = 1; 2; 3, are

chosen to be compactly supported, then the scale spaces and consequently the detail

spaces have �nite dimensions. Moreover, for the purpose of reconstruction, the wavelet

transform (WT )
	
(i)

0

(f)(j; �) has to be known for exact evaluation only on a �nite set

of points on the sphere 
. This should be discussed in more detail.

We start with the simplest choice for a compactly supported generator.

6.2.1. Shannon Wavelet. We choose the scaling function as follows:

(�
(i)
0 )^(x) =

�
1; x 2 [0; 1)

0; else
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i = 1; 2; 3. The dilates and the wavelet generators are immediately at hand by

(�
(i)
j )^(x) =

�
1; x 2 [0; 2j)

0; else;

(	
(i)
j )^(x) =

�
1; x 2 [2j ; 2j+1)

0; else:
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Fig. 6.2. Shannon wavelet of type i=2 for j=3,4
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Fig. 6.3. Generator of Shannon scaling function (left) and wavelet (right) for j = 2; 3

The reconstruction via the corresponding wavelets 	j yields

	j �	j � f =

3X
i=1

2j+1�1X
n=2j

2n+1X
l=1

(f (i))^(n; l)y
(i)
n;l;

i.e. we get a "piece" out of the Fourier expansion of f in terms of vector spherical

harmonics. Within this "piece", all Fourier coeÆcients are fully reconstructed and are

not a�ected by weights. Note that the vectorial kernels can be expressed as a vectorial

part times a scalar sum. What we have plotted in Figure 6.2 is the absolute value of

the vectorial part times the scalar sum, resulting in the 'dip' that can be observed.

The dip is due to the fact, that for type 2 and 3 vectorial wavelets the vectorial part

results in the zero vector when the argument � tends towards �.
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6.2.2. CP-Wavelet. The Shannon wavelet shows serious oscillations (cf. Figure

6.2). This phenomenon is usually not very helpful for computational purposes. If one

is willing to give up the orthogonality of the detail spaces dj , the number of oscillations

can be reduced drastically by a modi�cation of the generator (�0)
^(n). A good choice

(as we know from numerical experiences) is the c(ubic) p(olynomial)-wavelet, briey

called CP-wavelet.

(�
(i)
0 )^(x) =

�
(1� x)2(1 + 2x) ; x 2 [0; 1)

0 ; x 2 [1;1);

i = 1; 2; 3, which is constructed in such a way that

(�
(i)
0 )^(1) = ((�

(i)
0 )^(x))0(1) = ((�

(i)
0 )^(x))0(0) = 0:

For the CP-wavelet and its generator see Figures 6.4, 6.5. Of course, a great number of

other choices of (�
(i)
0 )^(n), i = 1; 2; 3, can be used (cf. W. Freeden, M. Schreiner

(1997), S. Beth (2000)). We omit these considerations.
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Fig. 6.4. CP wavelet of type i=3 for j=3,4
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Fig. 6.5. Generator of CP scaling function (left) and wavelet (right) for j = 2; 3
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7. Spectral Approximation. Let us think of an 'output signal' g as produced

by a linear operator � applied to an 'input signal' f

�g = f;

where � is an operator mapping l2(
) into itself such that

�y
(i)
n;k =

�
�(i)

�^
(n; k) y

(i)
n;k

for i = 1; 2; 3; n = 0i; 0i + 1; : : : ; k = 1; : : : ; 2n + 1 (with the so-called symboln�
�(i)

�^
(n; k)

o
n2N0

, i = 1; 2; 3, being sequences of real numbers).

7.1. Signal{to{Noise Response. In practise, an error-a�ected 'output signal'

is observed

~g = g + ~";

where ~" is the observation noise. In analogy to the scalar case (cf. W. Freeden et

al. (2000)) and in accordance with the approach used in physical geodesy (see e.g.

R. Rummel (1997)) we assume that

Cov[~g(�); ~g(�)] = E[~"(�); ~"(�)] = k(�; �); (�; �) 2 
�
;

is known, where k(�; �) : 
�
! R
3�3 is explicitly given by the product kernel

k(�; �) =

3X
i=1

1X
n=0i

2n+1X
k=1

(k(i))^(n; k)(�(i)n )�1o
(i)
� o

(i)
� Yn;k(�)Yn;k(�)

=

3X
i=1

1X
n=0i

2n+1X
k=1

(k(i))^(n; k)y
(i)
n;k(�)
 y

(i)
n;k(�); (�; �) 2 
2

;

and the symbol
�
(k(i))^(n; k)

	
n2N

, i = 1; 2; 3, satisfying the conditions:

(C1) (k(i))^(n; k) � 0 for n = 0i; 0i + 1; : : : ; i 2 f1; 2; 3g ;

(C2)

1X
n=0i

2n+1X
k=1

�
k(i)
�^

(n; k) sup
�2


�
y
(i)
n;k(�)

�2
<1 :

7.1.1. Degree Variances. Any 'output function' (output signal) can be ex-

panded into an orthogonal series in terms of vector spherical harmonics:

~g = f�f =
3P

i=1

1P
n=0i

2n+1P
k=1

�
�(i)

�^
(n; k)( ~f (i))^(n; k)y

(i)
n;k

=
3P

i=1

1P
n=0i

2n+1P
k=1

(~g(i))^(n; k)y
(i)
n;k;

where the equality has to be understood in the sense of k�kl2(
) :
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The signal degree and order variances of type i are de�ned by

V ar
(i)

n;k(
f�f) = ��(f�f)(i)�^ (n; k)�2

=

Z



Z



(f�f)(�) � �y(i)n;k(�) 
 y
(i)
n;k(�)

�
(f�f)(�) d!(�) d!(�)

=

Z



Z



�
y
(i)

n;k(�) 
 y
(i)

n;k(�)
�
�
�
(f�f)(�)
 (f�f)(�)� d!(�) d!(�):

Accordingly the signal degree variances of type i are given by

V ar
(i)
n (f�f) = 2n+1X

k=1

V ar
(i)
n;k(

f�f)
=

2n+1X
k=1

��
(f�f)(i)�^ (n; k)�2

=
2n+ 1

4�

Z



Z



(f�f)(�) � p(i;i)n (�; �)(f�f )(�) d!(�) d!(�);
while the signal degree variances read as follows:

V arn(f�f) = 3X
i=1

V ar
(i)
n (f�f):

Obviously, by virtue of Parseval's identity, we obtainf�f
l2(
)

=

3X
i=1

1X
n=0i

2n+1X
k=1

V ar
(i)
n;k(

f�f):
7.1.2. Degree Error Covariances. In analogy to the scalar case, the spectral

error theory is based on the degree and order error covariance of type i given by

Cov
(i)
n;k(k)

=

Z



Z



�
y
(i)
n;k(�)
 y

(i)
n;k(�)

�
� k(�; �) d!(�) d!(�)

=

3X
l=1

1X
p=0i

2p+1X
q=1

(k(l))^(p; q)

Z



Z



�
y
(i)
n;k(�) � y

(l)
p;q(�)

��
y
(i)
n;k(�) � y

(l)
p;q(�)

�
d!(�) d!(�)

= (k(i))^(n; k):

Moreover, we have

Cov
(i)
n (k) =

2n+1X
k=1

Cov
(i)

n;k(k) =

2n+1X
k=1

(k(i))^(n; k)(7.1)

and

Covn(k) =

3X
i=1

2n+1X
k=1

(k(i))^(n; k)

for n = 0i; 0i + 1; : : : .
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7.1.3. Spectral Estimation. The signal-to-noise relation is determined by the

degree and order resolution set N (i)
res of type i:

1. signal dominates noise

V ar
(i)
n;k(

f�f) � Cov
(i)
n;k(k); (n; k) 2 N (i)

res :

2. noise dominates signal

V ar
(i)

n;k(
f�f) < Cov

(i)

n;k(k); (n; k) =2 N (i)
res ;

for n = 0i; 1; 2 : : : ; k = 1 : : : 2n+ 1.

7.2. Tensor (Radial Basis) Multiscale Approximation. Let �0 be a scale

discrete scaling functions, and let 	0 be the corresponding mother wavelet.

Under this assumption it is easily seen that ~g can be represented in vectorial

multiscale approximation as follows

~g = f�f =

1X
j=�1

	j �	j � (f�f) ;(7.2)

where this equality is understood in the k�kl2(
)-sense. This result is equivalent to the
fact that

lim
N!1

f�f �
0@(f�f)J0 + NX

j=J0

	j �	j � (f�f)
1A

l2(
)

= 0(7.3)

for every J0 2 Z:

7.2.1. Tensor Based Scale and Position Variances. Denote by l
(2)(Z� 
)

the space of �elds h : Z�
! R
3 satisfying the inequality

1X
j=�1

Z



�
h(j; �) � h(j; �)

�
d!(�) <1:(7.4)

The space l(2)(Z�
) is a Hilbert space equipped with the inner product

(h1; h2)l(2)(Z�
) =

1X
j=�1

Z



�
h1(j; �) � h2(j; �)

�
d!(�)(7.5)

corresponding to the norm

khkl(2)(Z�
) =

0@ 1X
j=�1

Z



��h(j; �)��2d!(�)
1A1=2

:(7.6)

The multiscale approximation of an 'output �eld' ~g = f�f 2 l
2(
) immediately

leads us to �f�f; f�f�
l2(
)
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=

3X
i=1

1X
n=0i

2n+1X
k=1

��
(f�f)(i)�^ (n; k)�2 1X

j=�1

��
	
(i)
j

�^
(n)

�2

=

3X
i=1

1X
j=�1

Z



����Z



	
(i)
j (�; �) (f�f)(�)d!(�)����2 d!(�)

=

3X
i=1

1X
j=�1

Z



�Z



Z



�
	

(i)
j (�; �)	

(i)
j (�; �)

�
�

�
�
(f�f)(�) 
 (f�f)(�)� d!(�) d!(�)

�
d!(�)

=

3X
i=1

1X
j=�1

Z



(f�f)(�) � �	(i)
j �	(i)

j � f�f� (�) d!(�)
=

3X
i=1

+1X
j=�1

Z



f�f(�) � r(i)j (f)(�) d!(�) :

Consequently, the tensor based signal scale and space variance at position � 2 
; scale

j 2 Z and type i 2 f1; 2; 3g is de�ned by

TV ar
(i)
j;�

�f�f� = ����Z



	
(i)
j (�; �)

�f�f� (�) d!(�)����2
=

Z



	
(i)
j (�; �)

�f�f� (�) d!(�) � Z



	
(i)
j (�; �)

�f�f� (�) d!(�)
=

Z



Z



	
(i)
j (�; �)

�f�f� (�) �	(i)
j (�; �)

�f�f� (�) d!(�) d!(�)
=

Z



Z



�
	

(i)
j (�; �)	

(i)
j (�; �)

�
�
��f�f� (�)
 �f�f� (�)� d!(�) d!(�);

while

TV arj;�(f�f) = 3X
i=1

TV ar
(i)
j;�(

f�f):
The tensor based signal scale variance of type i is de�ned by

TV ar
(i)
j (f�f) = Z




TV ar
(i)
j;�(

f�f) d!(�);

and the tensor based signal scale variance is given by

TV arj(f�f) = 3X
i=1

TV ar
(i)
j (f�f):

In conclusion, the identity

f�f2
l2(
)

=

1X
j=�1

TV arj(f�f)
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=

1X
j=�1

Z



TV arj;�(f�f) d!(�)

=
TV ar�;�(f�f)2

l2(Z�
)

holds true. In spectral language we have

TV ar
(i)
j;�(

f�f) = 1X
n=0i

2n+1X
k=1

��
	
(i)
j

�^
(n)

�2��
(f�f)(i)�^ (n; k)�2 �

y
(i)

n;k(�)
�2

(7.7)

and

TV ar
(i)
j (f�f) = 1X

n=0i

2n+1X
k=1

��
	
(i)
j

�^
(n; k)

�2
 ��f�f�(i)�^ (n; k)!2

:(7.8)

7.2.2. Noise Model. Let k : (�; �) 7! k(�; �); (�; �) 2 
 � 
; satisfy the

conditions (C1) and (C2). The (tensor) multiscale error theory is based on the tensor

based scale and space error covariance at position � 2 
; scale j, and type i :

TCov
(i)
j;�(k) =

Z



Z



�
	

(i)
j (�; �)	

(i)
j (�; �)

�
� k(�; �) d!(�) d!(�):(7.9)

Furthermore,

TCovj;�(k) =

3X
i=1

TCov
(i)
j;�(k):(7.10)

The tensor based scale error covariance of type i is de�ned by

TCov
(i)
j (k) =

Z



TCov
(i)
j;�(k) d!(�);(7.11)

whereas

TCovj(k) =

3X
i=1

TCov
(i)
j (k):(7.12)

Obviously, we have

TCov
(i)
j;�(k) =

1X
n=0i

2n+1X
k=1

(k(i))^(n; k)
�
(	

(i)
j )^(n)

�2 �
y
(i)
n;k(�)

�2
;(7.13)

TCov
(i)
j (k) =

1X
n=0i

2n+1X
k=1

(k(i))^(n; k)
�
(	

(i)
j )^(n)

�2
(7.14)

and

TCovj(k) =

3X
i=1

1X
n=0i

2n+1X
k=1

(k(i))^(n; k)

��
	
(i)
j

�^
(n)

�2

:(7.15)

Note that the multiscale noise model is able to specify pointwise dependent error

covariances (which is not possible in spectral theory by means of vector spherical

harmonics).
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7.2.3. Tensor Based Scale and Space Estimation. Signal and noise scale

'intersect' at the so-called tensor based scale and space resolution set T Z(i)
res(�) of type

i at position �. We distinguish the following cases:

1. signal dominates noise

TV ar
(i)
j;�(

f�f) � TCov
(i)
j;�(k); (j; �) 2 T Z(i)

res(�):

2. noise dominates signal

TV ar
(i)
j;�(

f�f) < TCov
(i)
j;�(k); (j; �) =2 T Z(i)

res(�):

7.3. Vector (Radial Basis) Multiscale Approximation. Let �0 again be

a vectorial scale discrete scaling function, and let 	0 be the corresponding vectorial

mother wavelet. Then we know from our multiscale approach that

~g = f�f =

3X
i=1

+1X
j=�1

	
(i)
j ?	

(i)
j � (f�f)(7.16)

(in the k � kl2(
){sense).

7.3.1. Vector Based Signal Scale and Space Variances. The multiscale

approximation of an 'output �eld' ~g = f�f 2 l
2(
) now leads us to�f�f; f�f�

l2(
)

=

3X
i=1

1X
n=0i

2n+1X
k=1

 ��f�f�(i)�^ (n; k)!2 +1X
j=�1

��
	
(i)
j

�^
(n)

�4

=

3X
i=1

+1X
j=�1

Z



����Z



(	
(i)
j )(2)(�; �) � (f�f)(�) d!(�)����2 d!(�) :

This gives rise to introduce the vector based signal scale and space variance at position

� 2 
, scale j 2 Z and type i 2 f1; 2; 3g by

V V ar
(i)
j;�(

f�f) = ����Z



	
(i)
j (�; �) � (f�f)(�) d!(�)����2

=

Z



Z



�
	
(i)
j (�; �) � (f�f)(�)� �	(i)

j (�; �) � (f�f)(�)� d!(�) d!(�)

=

Z



Z



�
	
(i)
j (�; �)
	

(i)
j (�; �)

�
�
�
(f�f)(�) 
 (f�f)(�)� d!(�) d!(�) :

The vector based signal scale variance of type i is given by

V V ar
(i)
j (f�f) = Z




V V ar
(i)
j;�(

f�f)d!(�);(7.17)

while the vector based signal scale variance reads as follows

V V arj(f�f) = 3X
i=1

V V ar
(i)
j (f�f) :(7.18)
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Obviously, V V ar
(i)
j;�(

f�f) can be represented in terms of scalar spherical harmonics as

follows:

V V ar
(i)
j;�(

f�f) = 1X
n=0i

2n+1X
k=1

��
	
(i)
j

�^
(n)

���f�f�(i)�^ (n; k)�Yn;k(�)�2 :(7.19)

Hence it follows that

TV ar
(i)
j (f�f) = V V ar

(i)
j (f�f); i = 1; 2; 3;(7.20)

and

TV arj(f�f) = V V arj(f�f) :(7.21)

In conclusion,

kf�f (i)kl2(
) = kTV ar(i):; :(f�f)kl2(Z�
) = kV V ar(i):; :(f�f)kl2(Z�
) :(7.22)

7.3.2. Noise Mode. Let k : (�; �) 7! k(�; �), (�; �) 2 
�
, satisfy the condition
(C1) and (C2). The (vector) multiscale error theory is based on the vector based scale

and space error covariance at position � 2 
, scale j, and type i:

V Cor
(i)
j;�(k) =

Z



Z



�
	
(i)
j (�; �)
	

(i)
j (�; �)

�
� k(�; �) d!(�) d!(�) :(7.23)

Furthermore,

V Covj;�(k) =

3X
i=1

V Cov
(i)
j;�(k) :(7.24)

The vector based scale error covariance of type i is de�ned by

V Cov
(i)
j (k) =

Z



V Cov
(i)
j;�(k) d!(�) :(7.25)

It is not hard to verify that

V Cov
(i)
j;�(k)

=

1X
n=0i

2n+1X
k=1

(k(i))^(n)

Z



Z



�
	
(i)
j (�; �) 
	

(i)
j (�; �)

�
�
�
y
(i)
n;k(�) 
 y

(i)
n;k(�)

�
d!(�) d!(�)

=

1X
n=0i

2n+1X
k=1

(k(i))^(n)

Z



	
(i)
j (�; �) � y(i)n;k(�) d!(�)

Z



	
(i)
j (�; �) � y(i)n;k(�) d!(�)

=

1X
n=0i

2n+1X
k=1

(k(i))^(n)

��
	
(i)
j

�^
(n)

�2

(Yn;k(�))
2
:

This shows us that

TCov
(i)
j (k) = V Cov

(i)
j (k); i = 1; 2; 3;(7.26)

and

TCovj(k) = V Covj(k) :(7.27)
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7.3.3. Vector Scale and Space Estimation. Signal and noise scale 'intersect'

at the so{called vector based scale and resolution set VZ(i)
res(�) of type i at position �.

We distinguish the following case:

1. signal dominates noise

V V ar
(i)
j;�(

f�f) � V Cov
(i)
j;�(k); (j; �) 2 VZ(i)

res(�) :(7.28)

2. noise dominates signal

V V ar
(i)
j;�(

f�f) < V Cov
(i)
j;�(k); (j; �) 2 VZ(i)

res(�) :(7.29)
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8. Selective Multiscale Reconstruction. The vector variant of the multi-

scale approximation can be formulated by replacing the (unknown) error{free �eld

(�f)(i); i 2 f1; 2; 3g, being approximated by

(�f)
(i)
J = �

(i)
J0

?�
(i)
J0
� (�f) +

J�1X
j=J0

	
(i)
j ?	

(i)
j � (�f)(8.1)

by the error{a�ected �eld (f�f)(i), i 2 f1; 2; 3g, such as

(f�f)(i)J = �
(i)
J0

?�
(i)
J0
� (f�f) + J�1X

j=J0

	
(i)
j ?	

(i)
j � (f�f);(8.2)

J > J0. The coeÆcients at position � 2 


~p
(i)
J0
(f�f)(�) = Z




�
(i)
J0
(�; �)

Z



�
(i)
J0
(�; �) � (f�f)(�) d!(�) d!(�);

~r
(i)
j (f�f)(�) = Z




	
(i)
j (�; �)

Z



	
(i)
j (�; �) � (f�f)(�) d!(�) d!(�);

j = J0; : : : ; J � 1, have to be calculated by approximate integration in combination

with the denoising procedure mentioned in Section 7.3.

We base our considerations on the approximate integration formulae with weights

v
Nj

s , w
Lj

l 2 R and knots �
Nj

s ; �
Lj

l 2 
, s = 1; : : : ; Nj ; l = 1; : : : ; Lj , of the form:

~p
(i)
J0
(f)(�) '

NJ0X
s=1

(v(i))
NJ0
s �

(i)
J0
(�; �

NJ0
s )(~a(i))

NJ0
s ;

~r
(i)
j (f)(�) '

NjX
s=1

(v(i))Nj

s 	
(i)
j (�; �Nj

s )(~b(i))Nj

s ; j = J0; : : : ; J � 1;

where

(~a(i))
NJ0
s '

LJ0X
l=1

(w(i))
LJ0

l �
(i)
J0
(�
LJ0

l ; �
NJ0
s ) � (f�f)(�LJ0

l );

(~b(i))Nj

s '
LjX
l=1

(w(i))
Lj

l 	
(i)
j (�

Lj

l ; �
Nj

s ) � (f�f)(�Lj

l ) :

The sign `'' always means that the error is assumed to be negligible. A simple example

is equidistribution (i.e. (v(i))
Nj

s = 4�
Nj

; s = 1; : : : ; Nj ; (w
(i))

Lj

l = 4�
Lj

, l = 1; : : : ; Lj).

Since the large `true' coeÆcients are the ones that should be included in a selective

reconstruction for estimating an unknown �eld, it is quite natural to include only

coeÆcients (~a(i))
NJ0
s ; (~b(i))NJ

s larger than some speci�ed threshold value.

In our context a 'larger' coeÆcient is taken to be one that satis�es the estimates��
~a(i)
�NJ0

s

�2

=

����Z



�
(i)
J0
(�; �

NJ0
s ) � (f�f)(�) d!(�)����2

=

Z



Z



�
�
(i)
J0
(�; �

NJ0
s )
�

(i)
J0
(�; �

NJ0
s )

�
�
�
(f�f)(�) 
 (f�f)(�)� d!(�) d!(�)
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'
LJ0X
p=1

LJ0X
q=1

(w(i))
LJ0
p (w(i))

LJ0
q

�
�
(i)
J0

�
�
LJ0
p ; �

NJ0
s

�

�

(i)
J0

�
�
LJ0
q ; �

NJ0
s

��
�
�f�f)(�LJ0

p )
 (f�f)(�LJ0
q )

�
�

LJ0X
p=1

LJ0X
q=1

(w(i))
LJ0
p (w(i))

LJ0
q

�
�
(i)
J0

�
�
LJ0
p ; �

NJ0
s

�

�

(i)
J0

�
�
LJ0
q ; �

NJ0
s

��
� k(�LJ0

p ; �
LJ0
q )

'
Z



Z



�
(i)
J0
(�; �

NJ0
s )
�

(i)
J0
(�; �

NJ0
s ) � k(�; �) d!(�) d!(�)

= �
�
(i)

J0

(�
NJ0
s )

and��
~b(i)
�Nj

s

�2

=

����Z



	
(i)
j (�; �Nj

s ) � (f�f)(�) d!(�)����2
=

Z



Z



�
	
(i)
j (�; �Nj

s )
	
(i)
j (�; �Nj

s )
�
�
�
(f�f)(�) 
 (f�f)(�)� d!(�) d!(�)

'
LjX
p=1

LjX
q=1

(w(i))Lj

p (w(i))Lj

q

�
	
(i)
j

�
�
Lj

p ; �
Nj

s

�

	

(i)
j

�
�
Lj

q ; �
Nj

s

��
�
�
(f�f)(�Lj

p )
 (f�f)(�Lj

q )
�

�
LjX
p=1

LjX
q=1

(w(i))Lj

p (w(i))Lj

q

�
	
(i)
j

�
�
Lj

p ; �
Nj

s

�

	

(i)
j

�
�
Lj

q ; �
Nj

s

��
� k(�Lj

p ; �
Lj

q )

'
Z



Z



	
(i)
j (�; �Nj

s )
	
(i)
j (�; �Nj

s ) � k(�; �) d!(�) d!(�)

= �
	
(i)

j

(�Nj

s ) :

For the threshold values �
�
(i)

J0

(�
NJ0
s ), s = 1; : : : ; NJ0 ; �	(i)

j

, j = 1; : : : ; Nj , i 2 f1; 2; 3g,
such an estimator can be written in the form

(c�f)(i)J (�) =

NJ0X
s=1

I
f((~a(i))

N
J0

s )2��
�
(i)
J0

(�
N
J0

s )g
(v(i))

NJ0
s �

(i)
J0
(�; �

NJ0
s )(~a(i))

NJ0
s

+

J�1X
j=J0

NjX
s=1

I
f((b(i))

Nj

s )2��
	
(i)
j

(�
Nj

s )g
(v(i))Nj

s 	
(i)
j (�; �Nj

s )(~b(i))Nj

s ;

where IA denotes the indicator function of the set A ('^' denotes 'estimated'). In

other words, the large coeÆcients relative to the threshold values are kept intact,

and the small coeÆcients are set to zero. The thresholding estimators of the true

coeÆcients p
(i)
J0
(f)(�), r

(i)
j (f)(�) can thus be written in the form

p̂
(i)
J0
(f)(�) =

NJ0X
s=1

Æ
hard

�
�
(i)
J0

(�
N
J0

s )

 ��
~a(i)
�NJ0

s

�2
!
(v(i))

NJ0
s �

(i)
J0
(�; �

NJ0
s )(~a(i))

NJ0
s ;

r̂
(i)
j (f)(�) =

NjX
s=1

Æ
hard

�
�
(i)
j

(�
Nj

s )

 ��
~b(i)
�Nj

s

�2
!
(v(i))Nj

s 	
(i)
j (�; �Nj

s )(~b(i))Nj

s ;
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where the function Æ
hard
� is the hard thresholding function

Æ
hard
� (x) =

�
1 ; jxj � �

0 ; jxj < �
:(8.3)

The 'keep or kill' hard thresholding operation is not the only reasonable way to es-

timate the coeÆcients. Recognizing that the coeÆcients ~p
(i)
J0
(f)(�), ~r

(i)
j (f)(�) consist

of both a signal portion and a noise portion, it might be desirable to attempt to iso-

late the signal contribution by removing the noisy part. This idea leads to the soft

thresholding function (cf. D.L. Donoho, I.M. Johnstone (1994, 1995))

Æ
soft
� (x) =

�
maxf0; 1� �

jxj
g ; x 6= 0

0 ; x = 0;

which can also be used in the above identities. When soft thresholding is applied to

a set of empirical coeÆcients, only coeÆcients greater than the threshold (in absolute

value) are included, but their values are 'shrunk' toward zero by an amount equal to

the threshold �.

Summarizing our results we �nally obtain the following thresholding multiscale

estimator

(c�f)(i)J (�) =

NJ0X
s=1

Æ
�
�
(i)
J0

(�
N
J0

s )

 ��
~a(i)
�NJ0

s

�2
!
(v(i))

NJ0
s �

(i)
J0
(�; �

NJ0
s )(~a(i))

NJ0
s

+

J�1X
j=J0

NjX
s=1

Æ
�
	
(i)
j

(�
Nj

s )

 ��
~b(i)
�Nj

s

�2
!
(v(i))Nj

s 	
(i)
j (�; �Nj

s )(~b(i))Nj

s :

In doing so (c�f)J �rst is approximated by a thresholded (c�f)J0 which represents the

denoised smooth components of the data. Then the coeÆcients at higher resolutions

are thresholded so that the noise is suppressed but the �ne{scale details are included

in the calculation.
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9. Numerical Example. In order to illustrate the the e�ectiveness of our mul-

tiscale denoising technique we present an example using synthetic geomagnetic data.

For this purpose we introduce the usual moving local triad on the unit sphere, i.e.

"
r
; "

' and "
t which, using spherical polar coordinates (see (2.2)), can be expressed in

terms of the cartesian basis as follows:

"
r('; t) =

p
(1� t2)

�
cos(')"1 + sin(')"2

�
+ t"

3
;

"
'('; t) = �sin(')"1 + cos(')"2;

"
t('; t) = �t

�
cos(')"1 + sin(')"2

�
+
p
1� t2"

3
:

Remark 9.1. Note that identifying 0 degree longitude with Greenwich and 0 degree

latitude with the equator one can identify this local triad with the so-called geomagnetic

coordinates fX,Y,Zg (see Backus, G. et al. (1996)) via X = �"t; Y = "
' and

Z = �"r. This means that X is always directed towards the geographic northpole, Y

is always pointing into the geographic east direction while Z is always directed radially

downward onto the Earth's body.

9.1. Input Data. To generate an unnoised vectorial data set, we use a band-

limited geomagnetic potential due to C.J. Cain et al. (1984) and calculate the

corresponding gradient �eld in geomagnetic coordinates �"t, "' and �"r. This vector
�eld also serves as a reference �eld for testing the quality of the denoised data. In a

second step we add some so-called bandlimited white noise of variance � and bandlimit

nK of approximately 2.9 and 60, respectively, to each of the three �eld components,

i.e. �"t, "' and �"r. Note that bandlimited white noise is characterized by the

following symbol of the covariance kernel function:

k^(n; k) =

(
�2

(nK+1)2
; n � nK ; k = 1; : : : ; 2n+ 1

0 ; n > nK ; k = 1; : : : ; 2n+ 1:

This procedure resulted in noise of the order of magnitude 100 [nT] in �eld components

of the order of magnitude 104 [nT] (see Figure 9.1 for a plot of the noise).

9.2. Results. In what follows we restrict ourselves to the radial component

(�"r) and one of the tangential components ("'), the results for the �"t component
are similar and will therefore be omitted.

In order to denoise the vector �eld we have decomposed and reconstructed the

noised input data using spherical vectorial Shannon wavelets of type i = 1; 2 up to

scale 3. Note that, since the input data is a gradient �eld, we need not use type

3 vector wavelets. During the reconstruction process only those wavelet coeÆcients

containing a predominant amount of the clear signal have been used in accordance to

our considerations in Section 7.3.3, i.e. we have used hard thresholding denoising.

In Figure 9.2 we show the unnoised and the noised �"r component, while Figure
9.3 shows the corresponding values of the "' component of the input data.

The reconstructed and denoised�"r and "' components as well as the correspond-
ing errors (w.r.t. the unnoised data) can be seen in Figures 9.4 and 9.5, respectively.

Using our vectorial multiscale denoising technique, the root-mean-square error of

the noised �"r component (w.r.t. the unnoised data) (�"rnoised)rms = 4:9 [nT] has

been reduced to (�"rdenoised)rms = 0:6 [nT], which is an improvement of about 87 per

cent. In the "' component we have (�"
'
noised)rms = 4:9 [nT] and (�"rdenoised)rms =
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0:5 [nT] which is an improvement of about 89 per cent. As can be expected, comparing

Figures 9.1 and 9.5 we see how the comparatively rough structure of the noise has

been smoothed out by the denoising procedure. This example obviously demonstrates

the functionality and eÆciency of our multiscale approach.

For illustrational purposes we furthermore present Figures 9.6 (scale j = 1), 9.7

(scale j = 2) and 9.8 (scale j = 3) which give an impression of what happens on the

di�erent scales during the denoising process. The plots on the left hand side show the

di�erence between the undenoised and the denoised partial wavelet reconstruction of

the noised data. The right hand sides give an illustration of the di�erence between

the denoised partial reconstruction of the noised data and a partial reconstruction of

an unnoised data set. On the left of Figure 9.6 one can hardly see any structure and

the order of magnitude of the plotted di�erence is 10�6. This is understandable if

one takes into account that the noise is very small compared to the vector �eld at

scale j = 1. Nevertheless we can see an error in the reconstruction (right hand side of

Figure 9.6) which, though small in magnitude, has a large spatial structure. This large

spatial extend reects the typical size of spatial features at this scale. The di�erence

between the denoised and the undenoised partial reconstruction at scale j = 2 is of the

order 10�3 and can be seen on the left of Figure 9.7. This increasing di�erence shows

that the noise plays a more important role at scale j = 2 than at scale j = 1 since the

noise at this scale becomes comparable with the vector �eld. Of course, this results

in an increased - but still small - error of the denoised reconstruction with respect

to the corresponding unnoised data (Figure 9.7, right). Again the spatial extend of

the visible features is correspondent to the typical lenghtscales at scale j = 2. Going

up to scale j = 3 we obtain similar e�ects, i.e. an increasing di�erence between the

denoised and the undenoised partial reconstruction (order of magnitude 100, Figure

9.8, left) and a larger error with respect to the unnoised data (Figre 9.8, right). Again

the reason is the noise which, at this scale, is of the same order of magnitude like the

vector �eld.

Last but not least we need to mention that for physical reasons it is clear that in

the case of real satellite data we cannont assume the input data to be a pure gradient

�eld. This means that type 3 vector wavelets need to be used in the denoising process,

too. However, this will not be of any diÆculty since various vector wavelet modelling

of all types (i = 1; 2; 3) have been already succesfully applied to geomagnetic satellite

data e.g. by Maier, T. (1999) and Bayer, M. et al. (2000). As far as the noise

is concerned the use of 'bandlimited white noise' is a good and widespread tool for

testing the e�ectiveness and eÆciency of the numerical procedures. More realistic

noise models need to be tested as soon as they are available for recent satellite missions

like Oersted or CHAMP, for example.
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Fig. 9.1. Absolute value of noise [nT]

Fig. 9.2. Unnoised (left) and noised (right) �"r component in 10000 [nT]

Fig. 9.3. Unnoised (left) and noised (right) "' component in 10000 [nT]
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Fig. 9.4. Denoised �"r component (left) and "' component (right) in 10000 [nT]

Fig. 9.5. Error of denoised �"r (left) and "' (right) component w.r.t. unnoised data [nT]

Fig. 9.6. di�erence (left, 10�6 [nT]) and error plot (right, [nT]), scale j = 1
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Fig. 9.7. di�erence (left, 10�3 [nT]) and error plot (right, [nT]), scale j = 2

Fig. 9.8. di�erence (left, 100 [nT]) and error plot (right, [nT]), scale j = 3
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