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Abstract

Evacuation problems can be modeled as 
ow problems in dynamic

networks. A dynamic network is de�ned by a directed graph G =

(N;A) with sources, sinks and non-negative integral travel times and

capacities for every arc (i; j) 2 A. The earliest arrival 
ow problem

is to send a maximum amount of dynamic 
ow reaching the sink not

only for the given time horizon T , but also for any time T
0

< T .

This problem mimics the evacuation problem of public buildings where

occupancies may not known. For the buildings where the number of

occupancies is known and concentrated only in one source, the quickest


ow model is used to �nd the minimum egress time. We propose in

this paper a solution procedure for evacuation problems with a single

source of the building where the occupancy number is either known or

unknown. The possibility that the 
ow capacity may change due to

the increasing of smoke density or �re obstructions can be mirrored in

our model. The solution procedure looks iteratively for the shortest

conditional augmenting path (SCAP) from source to sink and compute

the time intervals in which 
ow reaches the sink via this path.

1 Introduction

In the macro approach, evacuation problems can be modeled as 
ow prob-

lems on the network. Since the time is a decisive parameter in evacuation
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problems, dynamic network 
ow models are more suitable than the static

ones (see e.g. [4], [5], [6], [9], [10]). A dynamic network is de�ned by a

directed graph G = (N;A) where N is the set of nodes and A � N � N

is the set of arcs which have non-negative 
ow capacities and non-negative

integral travel times as their attributes (see for instance [1], [2]). In the

network presentation of a building, nodes may represent rooms, lobbies or

intersection points. While arcs can be used to model corridors, hallways, or

stairways. Some locations in the building that house a signi�cant number

of evacuees are considered to be source nodes. The building exits or safe

locations that might be considered as the �nal destination of the evacuees'

movement, are considered as sink nodes. The supply of source nodes equals

to the estimation of the number of evacuees in the corresponding locations.

Dynamic network 
ow models have been applied to solve evacuation prob-

lems under some assumptions or objectives di�erent from ours in this paper,

e.g. constant travel time and capacity ([3], [4], [9], [10], [16]) , 
ow dependent

exit capacities ([5], [6]), or time dependent vectors of arc costs as part of a

multicriteria dynamic shortest path problem ([13], [14]). Our results relate

to evacuation problems with a single source where we consider two di�er-

ent building environments, namely: buildings where the number of evacuees

is diÆcult to estimate (public buildings e.g. shopping mals, theaters) and

ones with known number of evacuees (e.g. oÆce or residential buildings). In

public buildings, we are interested to �nd the maximum number of evacuees

which can be sent out within a time T . To handle this problem we work

with a so-called Earliest Arrival Flow (EAF) model. EAF is the problem of

maximizing 
ows reaching the sink not only for the alloted time T , but also

for any smaller time horizon (see e.g. [7], [10], [11], [15]).

The main contribution of this paper is to incorporate the changing of

arc capacities over time, e.g. due to smoke or �re, into this EAF problem.

We assume that evacuees may wait only in the source node. The solution

procedure is applied to solve the evacuation problem with known occupancy

number and with objective to minimize the evacuation time with respect to

the egress time. The latter problem is known as the quickest 
ow problem

(see [3], [7], [11]).

In the next section we will formally introduce the continuous time dy-

namic network formulation of EAF (CTEAF). In Section 3 and 4, we will

introduce the idea of conditional augmenting path and detail procedure to

�nd this path. Since the solution of EAF also solves maximum dynamic net-

work 
ow problem which has dual relation with dynamic cut, Section 5 will

discuss about continuous time dynamic cut and detail procedure to obtain

the minimum dynamic cut from the CTEAF's solution. To show how the

procedure work, in Section 6 we present the illustrative example in detail.
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The last section, Section 7, contains some interrelations between CTEAF

and the quickest 
ow problem which is used to �nd the minimum egress time

of evacuation problem with known occupancies.

2 Problem De�nition

Given the network G = (N;A) where node s and d is the source and the

sink node, respectively. We denote by n and m the cardinality of N and

A, respectively. With each arc (i; j) 2 A we associate a nonnegative inte-

ger number �ij which gives the time to traverse the arc, and a nonnegative

bounded measurable function bij on [0; T ] with �nite breakpoints which gives

its 
ow capacity. T , the time horizon of interest is determined a priori. It

is assumed that no node except the source has storage capacity, i.e. no 
ow

may wait in any node but the source node. The value xij(t) de�nes the non-

negative rate of 
ow leaving node i at time t, consequently arriving at node

j at time t + �ij. The continuous-time EAF problem is thus formulated as

follows.

(CTEAF) max VT 0 (x) =

Z T
0

0

X
i2N

[xid(� � �id)� xdi(�)]d�;

T
0

2 [0; T ] (1)X
(j;i)2A

xji(t� �ji)�
X

(i;j)2A

xij(t) = 0; t 2 (0; T ]; i 2 N � fs; dg; (2)

0 � xij(t) � bij(t); 8(i; j) 2 A; t 2 [0; T ]: (3)

This problem is solvable since the feasible set is compact and nonempty in

Lm
1
[0; T ].

3 Conditional Augmenting Path

A solution procedure for this problem is a dynamic version of the well-known

shortest augmenting path algorithm of maximum static network 
ows (see,

for instance [1]). In the classical maximum 
ow problem we look for a shortest

path from s to d (s� d path) in the residual network. Such a path is known

as the shortest augmenting path. In the case of the dynamic version we have

to consider the availability of the shortest augmenting path over time.

Instead of working with dynamic network directly for �nding the shortest

augmenting path, we keep working with static network but with additional

attribute Sij (besides capacity and travel time) on each arc (i; j) 2 N � N .
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The admissible time Sij for arc (i; j) 2 N � N is de�ned as the set of

time intervals when the arc can cary residual by increasing or decreasing

the current 
ow as follows.

De�nition 3.1

Sij :=

�
ft : bij(t)� xij(t) > 0g ; if (i; j) 2 A

ft+ �ji : xji(t) > 0g ; if (j; i) 2 A
(4)

The �rst alternative represents the set of times when it is possible to increase


ow from i to j, while the second one represents the set of times when it is

possible to decrease 
ow from j to i by sending back some 
ows from i to j.

Since the 
ow augmentation on arc (i; j) is possible only when Sij 6= ;,

the residual network is conditioned by the set Sij. Therefore we de�ne the

residual network as follows.

De�nition 3.2 Residual network with respect to the feasible dynamic 
ow x

is de�ned as Gx := (N;A+
x [A

�

x ) with arc set A+
x := f(i; j) : (i; j) 2 A; Sij 6=

;g and A�

x := f(i; j) : (j; i) 2 A; Sij 6= ;g. The residual travel times are

�xij :=

�
�ij ; (i; j) 2 A+

x

��ji ; (i; j) 2 A�

x

(5)

Figure 1 shows the residual network with residual travel times.

1

0 5

4

2 3

1
0

1
3

0

1
3

1

travel time

-3

-1

-1

0
-1

-3

Figure 1: Residual Network Gx

Since the arc capacity is not constant over time, we can send additional


ow from the source to the sink along path P only when we sure that this


ow can reach the sink. This condition means that the residual capacity
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of each arc (i; j) 2 P at the time when the 
ow reaches this arc must be

positive. Suppose P = fs = v1; v2; : : : ; vk = dg is a s� d path in the residual

network Gx. Let �
vl+1
vl (P ) be the label measuring the distance of vl to d along

P with respect to travel time �vlvl+1 . Then

Svl+1
vl

(P ) := ft+ �vl+1vl
(P ) : t 2 Svl;vl+1g \ [0; T ]

is the set of arival times of 
ows at d within the time T that leave vl at time

t 2 Svlvl+1 and move along P , under the assumption that increasing the 
ow

is always possible. Increasing 
ow along path P is possible only when the

arrival time at the next nodes vl+q; q = 1; : : : ; k � l � 1 of 
ows which leave

vl at time t 2 Svl;vl+1; 8l = 1; : : : ; k � 2 is also in Svl+q ;vl+q+1. We de�ne

recursively for l = 1; : : : ; k � 1

S�vl+1vl
(P ) := Svl+1

vl
(P ) \ S�vl+2vl+1

(P )

with S
�vk+1
vk (P ) = [0; T ]. S

�vl+1
vl (P ) represents the set of arrival times at the

sink node when 
ows from node vl reach d with considering the availability

of the next arcs along P in the residual network. Figure 2 illustrates the

transfer from Svlvl+1 to S
�vl+1
vl (P ).
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Figure 2: Determination of S
�vl+1
vl (P ) from Svlvl+1(P )

De�nition 3.3 Node j is said to be i-reachable if there is a �nite path of

nodes and arcs connecting node i to node j through which a feasible increase

in 
ow (from i to j) can be made.
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We say that the sink is vl-reachable via path P in Gx when S
�vl+1
vl (P ) 6= ;.

Hence, increasing 
ow from the source to the sink along path P is possible

only when S�v2v1
(P ) 6= ;. This condition de�nes the so-called conditional 
ow

augmenting path.

De�nition 3.4 Path P is a conditional (
ow) augmenting path (CAP) in

Gx if

SP := S�v2v1
(P ) 6= ;

We de�ne the set of forward arcs and the set of backward arcs of P as

P+ := P \ A+
x and P� := P \ A�

x , respectively.

De�nition 3.5 The set of departure times SP
ij of 
ows on arc (i; j) sent

along P for which the arrival time at d is in SP , is de�ned as

SP
ij := ft� �

j
i (P ) : t 2 SPg (6)

The residual capacity of each arc of P thus can be formulated as follows.

bxij(t) :=

�
bij(t)� xij(t) ; if (i; j) 2 P+

xji(t� �ji) ; if (i; j) 2 P� ; t 2 SP
ij (7)

These residual capacities must be translated forward from their own domain

SP
ij to the common domain SP in order to �nd the minimum residual capacity

which de�nes the maximum increment along P . The forward translation b
0x
ij

of bxij for all (i; j) 2 P can be obtained as follows.

b
0x
ij (t) := bxij(t� �

j
i (P )) ; t 2 SP ; 8(i; j) 2 P (8)

Next we compute the maximum increment functions �+P , �
�

P , and �P on

SP as the following.

�+P (t) := min fb
0x
ij (t) : (i; j) 2 P+

g; t 2 SP

��P (t) := min fb
0x
ij (t) : (i; j) 2 P�

g; t 2 SP

�P (t) := min f�+P (t); �
�

P (t)g; t 2 SP (9)

The increment functions are translated back to SP
ij in order to accomodate

the increment on each (i; j) 2 P

�ij(t) :=

�
�P (t + �

j
i (P )) ; if t 2 SP

ij

0 ; otherwise
; t 2 [0; T ] (10)

The new 
ows for each time t 2 [0; T ] thus can be obtained as follows.

xij(t) :=

8<
:

xij(t) + �ij(t) ; if (i; j) 2 P+ [ f(d; s)g

xij(t)� �ji(t + �ij) ; if (j; i) 2 P�

xij(t) ; otherwise

; t 2 [0; T ] (11)
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4 Finding the Shortest Conditional Augment-

ing Path

In order to �nd the available path from any node i 2 N to d, we work with the

network GR
x := (N;AR

x ). In GR
x , the arc set A

R
x is obtained by reversing the

direction of all arcs in Ax. By working with reverse network, it means that we

start moving from the sink to the source for �nding the SCAP. We keep arc

connecting node i to node j as long as Sij 6= ;. The residual network is not

purely static since the arc (i; j) 2 Ax is passable only at time t 2 Sij � [0; T ].

During the process of �nding the shortest conditional augmenting path,

we may encounter the shortest path that reach node j 6= s at time t0 62

Sjk; 8(j; k) 2 AR
x , i.e. this shortest path can reach node j but can not

reach s. Therefore, we can not update the large distance with the smaller

one when �nding the shortest conditional augmenting path, as in the label

correcting algorithm for the static network. The following example shows

this phenomenon.

Example 4.1

Consider the reverse network of Gx shown in Figure 1. The admissible time

for each arc is de�ned as follows.

S40 =]5; 8] ; S51 =]0; 2] ; S04 =]1; 6] ; S43 =]2; 3][]6; 7] ; S31 =]2; 3][]6; 7] ;

S15 =]3; 8] ; S01 =]3; 6] ; S45 =]5; 8] ; others are [0; 8].

In the beginning we label the distance of node 4 with 3 units that corresponds

to the path P = (4; 5). Later on we �nd that there is a shorter path from

node 4 to the sink, that is the path P
0

= (4; 3; 1; 5) with distance equal to 2

units. Now, Consider any 0� 5 path P
00

in GR
x . Since Si

0(P
00

) \ S�51 (P
0

) =

Si
0(P

00

) \ ]1; 3] = ;; 8(i; 0) 2 AR
x , there is no CAP from source 0 to sink 5

contains path P
0

. On the other hand, if we keep the longer distance of node

4, i.e. keep the path P instead of P
0

, then we can continue this path to reach

the source, that is via path (0; 1; 2; 4; 5) with total distance 7 units. Hence,

updating P with P
0

will give the wrong result.

In the case of time dependent capacities, we update the large distance of

node j from node i via path P , �ij(P ), with the new distance from node iÆ

via path P Æ only when �ij(P ) � �i
Æ

j (P
Æ) and S�ij (P ) � S�i

Æ

j (P Æ) as explained

by Lemma 4.1.

Lemma 4.1 Suppose there are two paths from j to d, Pjd and P Æ

jd with

(j; i) 2 Pjd and arc (j; iÆ) 2 P Æ

jd. Let �ij(Pjd) and �i
Æ

j (P
Æ

jd) be the distance

of j to d on path Pjd and P Æ

jd, respectively, with S�ij (Pjd) and S�i
Æ

j (P Æ

jd) the

corresponding arrival times at d. Moreover, assumes that �ij(Pjd) � �i
Æ

j (P
Æ

jd)
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and S�ij (Pjd) � S�i
Æ

j (P Æ

jd). If there is a s � d conditional augmenting path

P := Psj [ Pjd, then there is also a path P Æ = Psj [ P Æ

jd with shorter time

distance than that of path P .

Proof:

Since P is a s � d CAP, SP 6= ;. By de�nition, SP � S
j

l (Psj) \ S�ij (Pjd)

for any l 2 N with (l; j) 2 Psj. Since S�ij (Pjd) � S�i
Æ

j (P Æ

jd), we obtain

SP � S
j

l (Psj)\S
�iÆ

j (P Æ

jd). Therefore, we may compose an s� d path P Æ with

SP Æ � SP from path P as described in the lemma. Since �ij(Pjd) > �i
Æ

j (P
Æ

jd)

then the time distance of P Æ is shorter than that of P . �

The SCAP procedure maintains a set of distance labels � and the time

set S� which are updated iteratively. The distance label �ij is either 1 and

S�ij = ;, indicating that we have yet to discover an augmenting path from

the node j to the sink node, or it is equal to the length of some augmenting

path from the node j to the sink with S�ij 6= ;. For each node j, we maintain

a list of predecessor indices Zj which records some node prior to node j via

some augmenting paths. We write the q-th predecessor of node j via the

q-th j � d conditional augmenting path P with (j; i) 2 P , during iteration p

as Z
p
j (q) = (i; q0) where q0 is the predecessor index of node i in the previous

iteration. Moreover we denote by S
�p;q
j and �

p;q
j the set S�ij (P ) and �ij(P ),

respectively. At termination, the predecessor indices allow us to trace the

SCAP.

Corollary 4.1 Consider iteration p + 1 of the algorithm and any (i; j) 2

AR
x . Suppose that 9 q0 2 f1; : : : ; j Z

p
i jg with B := ft + �

p;q0

i + �xij : t 2

Sijg \ [0; T ] \ S
�p;q0

i 6= ;. If 9 q 2 f1; : : : ; j Z
p
j jg with �

p;q
j � �

p;q0

i + �xij
and S

�p;q
j � B then we get a shorter CAP by updating the value of �

p;q
j with

�
p;q0

i + �xij, i.e. �
p+1;q
j = �

p;q0

i + �xij.

Proposition 4.1 If the capacity function is piecewise constant and changes

only in the integer time units, then for any iteration p of the SCAP algorithm,

j Z
p
j j� 3T; 8j 2 N .

Proof :

From Lemma 4.1, for any j 2 N and for any iteration p, j Z
p+1
j j=j Z

p
j j

only when there exists q �j Z
p
j j such that �

p;q
j > �

p;q0

i +�xij and S
�p;q
j � B or

�
p;q
j � �

p;q0

i + �xij and S
�p;q
j � B, with B as the de�ned in the Corollary 4.1.

The �rst condition updates the q-th element of Z
p
j but does not increase its

cardinality. The latter does not give any e�ect to Z
p
j . Therefore there are 3

possibilities for increasing j Z
p
j j.
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(a) �
p;q
j < �

p;q0

i + �xij and S
�p;q
j 6� B; 8q �j Z

p
j j. Since the travel times

are integer and not larger than T , the distance value � is bounded

above by T and bounded below by �T . Therefore, there are at most

2T possibilities of �
p;q0

i + �xij to be greater than �
p;q
j . On the other

hand, suppose S
�p;q
j and B consist of single interval [a1; a2] and [b1; b2],

respectively. S
�p;q
j � B occurs when a1 � b1 and a2 � b2, i.e., S

�p;q
j 6� B

occurs when a1 > b1 or a2 < b2. Since S
�p;q
j and B must be contained

in [0; T ] and moreover, the boundary values of S
�p;q
j and B are also

integers, there are maximum T possibilities values of b1 and b2 such

that a1 > b1 or a2 < b2. Therefore under condition �
p;q
j < �

p;q0

i +

�xij and S
�p;q
j 6� B; 8q �j Z

p
j j, j Z

p
j j must be not larger than T .

(b) �
p;q
j > �

p;q0

i +�xij and S
�p;q
j 6� B; 8q �j Z

p
j j. Using similar proof of (a),

j Z
p
j j must be not larger than T due to this condition.

(c) S
�p;q
j 6� B and S

�p;q
j 6� B; 8q �j Z

p
j j. In this case, there are 2 possible

structures, S
�p;q
j \B = ; or S

�p;q
j \B 6= ;. Suppose S

�p;q
j and B consist of

a single interval [a1; a2] and [b1; b2], respectively. S
�p;q
j \ B = ; occurs

when a2 < b1 or a1 > b2. Since S
�p;q
j and B must be contained in

[0; T ] and the boundary values of S
�p;q
j and B are also integers, there

are maximum T possibilities values of b1 and b2 such that a2 < b1 or

a1 > b2. The latter condition is possible only when a1 < b1 < a2 < b2
which gives maximum T possibilities values of b1 and b2.

Since those 3 possibilities are disjoint, j Z
p
j j� 3T �

The iterative processes of SCAP procedure stops when they satisfy the

following optimality condition.

Theorem 4.1 (SCAP Optimality Condition) Suppose Pjd is the condi-

tional augmenting path from any node j to the sink d. The distance label

�lj(Pjd); (j; l) 2 Pjd represents the SCAP distance if and only if for any

conditional augmenting path Pid with (i; j) 2 AR
x , they satisfy the SCAP

conditions

�lj(Pjd) � �ki (Pid) + �xij; (i; k) 2 Pid

or

S�ij (P
0

jd) = ;; 8P
0

jd with (j; i) 2 P
0

jd

Proof :

")" : Suppose 9 (i; j) 2 AR
x with �lj(Pjd) > �ki (Pid) + �xij. If S�ij (P

0

jd) 6= ;

then it contradicts the asumption of �lj(Pjd).

"(" : Follows obviously from the de�nition of SCAP. �
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Lemma 4.2 If the capacity function is piecewise constant and changes only

in the integer time units, then the SCAP algorithm has the worst-case com-

putational complexity O(nT ).

Proof :

Due to Lemma 4.1, we update �
p;q
j for any p and any q �j Z

p
j j only when

�
p;q
j � �

p;q0

i +�xij and S
�p;q
j � B. The value of �

p;q
j is bounded from above and

from below by T and �T , respectively. Since each update of �
p;q
j decreases

it by at least 1 unit, the algorithm updates any label �
p;q
j at most 2T times

without considering the requirement S
�p;q
j � B. Suppose S

�p;q
j and B consist

of a single interval [a1; a2] and [b1; b2], respectively. Condition S
�p;q
j � B

ocurs when a1 > b1 and a2 < b2 which have at most T possibilities, i.e.

condition S
�p;q
j � B is ful�lled at most T times. Hence, we update �

p;q
j under

condition S
�p;q
j � B by at most T times. Since in each iteration we may either

increase the cardinality of Z
p
j or update the q-element of Z

p
j , with n the total

number of nodes, the SCAP algorithm does at most 4nT assignments, i.e.,

the algorithm converges in O(nT ) time in the worst case. �

We see that the solution procedure consists of two main parts as shown in

Figure 3. The �rst part is to �nd the shortest conditional augmenting path

Start

Initialization

SCAP

P, PS

PS = MFI

Update x and GR
x

Stop

EAF

no

yes

Figure 3: EAF Algorithm

P and its availability time SP . The second one is to �nd the maximum 
ow

increment (MFI) along P and to update the current 
ows. These two parts

are repeated until no conditional augmenting path is available. At this point

the current 
ow solves the EAF due to the following lemmas.
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Lemma 4.3 If SP 6= ; then there is feasible 
ow with value strictly greater

than that of the current 
ow.

Proof :

Suppose fxij j (i; j) 2 Ag is the current feasible 
ow and there is a s�d path

P with SP 6= ;. Since SP := S�v2s=v1
(P ) and S�v2s (P ) � S

�vl+1
vl (P ); 8(vl; vl+1) 2

P , we have S
�;vl+1
vl (P ) 6= ;. This condition implies Svl;vl+1(P ) 6= ; and more-

over �P (t) > 0; t 2 SP . Hence xds is not optimal. �

Lemma 4.4 If SP = ; then the current 
ow solves EAF.

Proof :

Suppose x does not solve maximum dynamic 
ow for some T 0 < T . Then

there is a s � d path P with SP � [0; T 0] which is not empty, contradicting

the assumption of SP . �

SCAP algorithm generates conditional augmenting path with the shortest

distance but it may not reach the sink at the earliest time, because there

may be exist shortest CAP with active arcs latter than other arcs (i.e. the

lower boundary of the corresponding admissible time is greater than the other

arcs). Therefore, the result may violate FIFO (First-In First-Out) rule. EAF

is obtained only when the algorithm satisfying condition in lemma 4.4.

5 Finding the Minimum Cut

Similar to the discrete time dynamic cut, the continuous time dynamic cut

is de�ned as follows.

De�nition 5.1 ([17]) Let us denote ai(t) the continuous function of the

holdover capacity at node i at time t. A continuous time s� d dynamic cut

is a set-valued function

CT : [0; T ]! 2N

that satis�es for every t 2 [0; T ], the source s 2 CT (t) and the sink d 62 CT (t)

with property that

Ai = ft : i 2 CT (t)g \ ft : ai(t) > 0g\ ]0; T ] is open ; 8i 2 N � fs; dg

The de�nition that ai(t) = 0; 8i 2 N � fs; dg; t 2 [0; T ] in our model does

not violate the de�nition of the cut since the empty set is an open set.

At any instant of time t, any node i will either be in the source side of

the cut, i.e. it is a member of CT (t) , or in the sink side of the cut, i.e. it is

11



a member of CT (t). We have �i as the set of times t 2 [0; T ] when i is in the

source side of the cut, i.e.

�i := ft : i 2 CT (t); t 2 [0; T ]g

and we have �ij as the set of times t 2 [0; T ] when i is in the source side of

the cut and j is in the sink side of the cut, i.e.

�ij := ft : t 2 [0; T � �ij]; i 2 CT (t); j 62 CT (t+ �ij)g (12)

As in the classical cut, the value bT (CT ) of the cut CT is determined by the

capacities of arcs which cross the cut, namely

bT (CT ) =
X

(i;j)2A

Z
�ij

bij(t)dt (13)

with assumption that ai(t) = 0; 8i 2 N�fs; dg and t 2 [0; T ]. The following

lemma describes the interrelation between the value of maximum dynamic


ow and the value of dynamic cut.

Lemma 5.1 Let us denote by CT the set of dynamic cut CT . For any feasible


ow x and any dynamic cut CT 2 CT ,

VT (x) � bT (CT )

Proof :

VT (x) =

Z T

0

X
j2N

�
xjd(t� �jd)� xdj(t)

�
dt

Since
P

(j;i)2A xji(t��ji)�
P

(i;j)2A xij(t) = 0; 8i 2 N �fs; dg by constraint

(2), we can modify VT (x) to be

VT (x) =

Z T

0

X
j2N

�
xjd(t� �jd)� xdj(t)

�
dt+

Z T

0

X
i2N�fs;dg

X
j2N

�
xji(t� �ji)� xij(t)

�
dt

=

Z T

0

X
i2N

X
j2N

�
xji(t� �ji)� xij(t)

�
dt�

Z T

0

X
j2N

�
xjs(t� �js)� xsj(t)

�
dt

Since �s = [0; T ], we can write

VT (x) =

Z T

0

X
i2N

X
j2N

�
xji(t� �ji)� xij(t)

�
dt�

Z
�s

X
j2N

�
xjs(t� �js)� xsj(t)

�
dt (14)

12



The transformation t
0

= t � �ji is applied to the �rst term on the right-

hand side of Equation (14) followed by disregarding the negative domain of

integration to yieldZ T

0

xji(t� �ji)dt =

Z T��ji

0

xji(t
0

)dt
0

=

Z T

0

xji(t
0

)dt
0

�

Z T

T��ji

xji(t
0

)dt
0

and impliesZ T

0

X
i2N

X
j2N

�
xji(t� �ji)� xij(t)

�
dt =

X
i2N

X
j2N

�Z T

0

xji(t
0

)dt
0

�

Z T

T��ji

xji(t
0

)dt
0

�

Z T

0

xij(t)dt

�

= �
X
i2N

X
j2N

Z T

T��ji

xji(t
0

)dt
0

We obtain

VT (x) =

Z
�s

X
j2N

�
xsj(t)� xjs(t� �js)

�
dt�

X
i2N

X
j2N

Z T

T��ji

xji(t)dt

Since �d = ; by the de�nition of the cut, we haveZ
�d

X
j2N

�
xdj(t)� xjd(t� �jd)

�
dt = 0 (15)

and by constraint (2), we have

X
i2N�fs;dg

Z
�i

X
j2N

�
xij(t)� xji(t� �ji)

�
dt = 0 (16)

By adding (15) and (16) to VT (x), we obtain

VT (x) =
X
i2N

Z
�i

X
j2N

�
xij(t)� xji(t� �ji)

�
dt�

X
i2N

X
j2N

Z T

T��ij

xij(t)dt

(17)

Transform t
0

= t��ji of the second term on the right-hand side of Equation

(17) to yield Z
�i

xji(t� �ji)dt =

Z
�
0

i

xji(t
0

)dt
0

13



with �
0

i = ft
0

: t
0

2 [0; T � �ji]; i 2 CT (t
0

+ �ji)g

De�ne

Q1ij = ft : t 2 [0; T � �ij]; i 2 CT (t); j 2 CT (t+ �ij)g

Q2ij = ft : t 2 [0; T � �ji]; i 2 CT (t+ �ji); j 2 CT (t)g

Q3ij = ft : t 2 [0; T � �ji]; i 2 CT (t+ �ji); j 2 CT (t)g

Using these de�nitions, we obtain

X
i2N

Z
�i

X
j2N

�
xij(t)

�
d(t) =

X
i2N

X
j2N

Z
�ij

xij(t)d(t) +
X
i2N

X
j2N

Z
Q1ij

xij(t)d(t) +

X
i2N

X
j2N

Z
�i\[T��ij ;T ]

xij(t)d(t)

andX
i2N

Z
�i

X
j2N

�
xji(t� �ji)

�
d(t) =

X
i2N

Z
�
0

i

X
j2N

�
xji(t

0

)
�
d(t

0

)

=
X
i2N

X
j2N

Z
Q2ij

xji(t)d(t) +
X
i2N

X
j2N

Z
Q3ij

xji(t)d(t)

Since X
i2N

X
j2N

Z
Q1ij

xij(t)d(t) =
X
i2N

X
j2N

Z
Q3ij

xji(t)d(t)

Equation (17) is reduced to

VT (x) =
X
i2N

X
j2N

�Z
�ij

xij(t)d(t)�

Z
Q2ij

xji(t)d(t) +

Z
�i\[T��ij ;T ]

xij(t)d(t)�

Z T

T��ij

xij(t)dt

�

=
X
i2N

X
j2N

�Z
�ij

xij(t)d(t)�

Z
Q2ij

xji(t)d(t)�

Z
[T��ij ;T ]��i

xij(t)dt

�

Since 0 � x � b, we obtain

VT (x) �
X
i2N

X
j2N

Z
�ij

xij(t)d(t)

�
X
i2N

X
j2N

Z
�ij

bij(t)d(t) = bT (CT ) �

The following lemma will be used to �nd the minimum dynamic cut.
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Lemma 5.2 ([17]) Let fxij(t) : (i; j) 2 A; t 2 [0; T ]g be a set of fea-

sible 
ows for maximum dynamic 
ow problem and suppose that the sink

node is not s-reachable for any t 2 [0; T ]. De�ne a cut CT by CT (t) =

fi : i is s-reachable at time tg for t 2 [0; T ]. If the value of the 
ow is

VT (x) and the value of the cut CT is bT (CT ) then VT (x) = bT (CT ).

The termination of the EAF algorithm occurs when the sink node d in

the residual network is not s-reachable at any time, i.e. for any conditional

augmenting s � d path P , SP = ;. Since for any node i 2 N , S
�p;q
i de�nes

the set of arrival times at the sink when 
ows from node i reach d, we can

use this set to de�ne the minimum dynamic cut. When SP = ;, we de�ne

S
�p;q
i (T

0

); T
0

� T the set of arrival times at the sink when d is i-reachable

but node i is not s-reachable within T
0

, i.e.

S
�p;q
i (T

0

) = S
�p;q
i \ [0; T

0

] (18)

Furthermore, we de�ne Ri(T
0

) as the possible departure times of 
ows from

node i 6= s to the sink node when the sink is i-reachable but not s-reachable

within T
0

� T .

Ri(T
0

) = [
jZij

q=1ft� �
p;q
i : t 2 S

�p;q
i (T

0

)g (19)

Hence, Ri(T
0

) de�nes the set of times when node i is in the sink-side of the

s � d dynamic cut within time horizon T
0

. We de�ne also the set of times

when node i is s-reachable but it is not able to reach the sink node d as the

following.

Ri(T
0

) = [0; T
0

]�Ri(T
0

)

By using Ri(T
0

) and Ri(T
0

), we can formulate CT
0 (t) and �ij(T

0

) the as

follows.

CT
0 (t) = fi : t 2 Ri(T

0

)g (20)

�ij(T
0

) = f t : t 2 Ri(T
0

); t+ �ij 62 Rj(T
0

); t + �ij � T
0

g (21)

The complete algorithm is described in detail as follows.
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Algorithm 5.1 : Soving CTEAF

Initialization

Determine the distance � of the shortest path from from s to d.

If � > T , then the algorithm terminate with xij = 0; 8(i; j) 2 A.

Set all 
ows xij = 0; 8(i; j) 2 A.

SCAP procedure : work with GR

Step 0 Set p = 1 ; ki = 1; 8i 2 N ; S
0;1
d

= [0; T ] ; �
1;1
d

= 0

Set �
1;1
i :=

�
�di ; (d; i) 2 AR

x

1 ; otherwise
, i 2 N � fdg

Set S
1;1
i = ft + �

1;1
i : t 2 Sidg \ [0; T ] ;

S
�1;1
i = S

1;1
i \ S

0;1
d

; Z1i = f(d; 1)g; 8i 2 N

Step 1 De�ne kj :=j Z
p
j j and set �

p+1;q
j := �

p;q
j ; q = 1; : : : ; kj ;

8j 2 N ; kj := kj ;8j 2 N

For l = 1 to j AR
x j do

If al = (i; j) 2 AR
x then

For q0 = 1; : : : ; ki do

B := ft + �
p;q0

i + �ij : t 2 Sijg \ [0; T ] \ S
�p;q0

i
If B 6= ; then

If 9q 2 f1; : : : ; kjg : �
p;q
j � �

p;q0

i + �ij AND S
�p;q
j � B then

Set �
p+1;q
j = �

p;q
i + �ij ; S

�p+1;q
j = B ; Z

p+1
j (q) = (i; q0)

Else

�
p+1;kj+1

j := �
p;q0

j + �ij ; S
�p+1;kj+1

j := B ;

Z
p+1
j (kj + 1) = (i; q0) ; kj := kj + 1

kj := kj ;8j 2 N

Step 2 For all i 2 N do

If 9q; q0 2 f1; : : : ; kig : �
p+1;q
i � �

p+1;q0

i AND S
�p+1;q
i � S

�p+1;q0

i then

Reduce Z
p+1
i by deleting Z

p+1
i (q) also S

�p+1;q
i and �

p+1;q
i , accordingly

Step 3 If �
p;q
i = �

p+1;q
i 8q = 1; : : : ; ki ; 8i 2 N then

If f�
p;q
s : S

�p;q
s 6= ;g 6= ; then

�s := min1�q�ksf�
p;q
s : S

�p;q
s 6= ;g

Find SCAP by using backtracking procedure on Z
p
i with SP := S

�p;q�
s with

q� := argmin1�q�ks
f�

p;q
s : S

�p;q
s 6= ;g

Run maximum 
ow increment procedure.

Else

No conditional augmenting path from source node to sink node.

Determine for all i 2 N : Ri := [
jZij

q=1ft� �
p;q
i : t 2 S

�p;q
i g

Run minimum cut procedure.

Else Set p := p+1 and go to Step 1.

Maximum Flow Increment procedure : work with G

Calculate SPij ; 8(i; j) 2 P using Eq. (6).

Calculate maximum incerement 
ows and get new 
ows using Eq. (7) - (11).

Revise Sij using(4) and return to SCAP procedure.

Minimum Cut procedure

De�ne Ri(T
0

) := [0; T
0

]� Ri(T
0

); 8i 2 N; T
0

� T .

Determine C
T
0 (t) according to Eq. (20) and �ij(T

0

) according to Eq. (12).

Calculate value of the minimal cut C(T
0

) as in Eq. (13).

6 Illustrative Example

In this section, an example is worked out in detail. The purpose of this

section is to clarify the notation and steps of the algorithm. Figure 4 shows

the network structure with 6 nodes and 9 arcs of a simple building. Node 0
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is the source and node 5 is the safety area. The travel time and arc capacity

are attached as attributes on each arc. The �re starts burning room 0 near

the exit doors to room 3 in such a way that decreasing the capacity of the

arc connecting room 0 and room 3 linearly over time. Finally after 6 time

units, arc (0; 3) becomes impassable. Capacities of arc (2; 5) and (1; 4) also

decrease linearly over time. Arc (0; 2) is some kind of emergency exit which

can be used only after �ve time units from the beginning. The question is

how many people can be sent out to the safety within every time T
0

� T = 12

units.

0 2

3

4

5

1

0 52

3

1 4

1

1

1

2
3

1

4

1

1

)6,10( ≤− tt

)12,12( ≤− tt

)8,220( ≤− tt

(10, t > 5)

(7)
(5)

(10)
(10)

(15)

travel time

arc capacity

Figure 4: Static network for Example

Table 6 shows the detail calculation of SCAP procedure on iteration 1

with each row show the results after the Step 2.

This procedure results P = f0; 2; 5g as the shortest conditional augment-

ing path with total travel time is 2 time units and SP =]7; 12]. The corre-

sponding distances for node 0 and 2 are 2 and 1. Using Eq. (6), we obtain

the interval time when these 
ows leave node 0 (or entering arc (0; 2)) and

node 2 (or entering arc (2,5)) as follows.

SP
02 =]5; 10] ; S

P
25 =]6; 11]

The residual capacity of each arc (i; j) 2 P within SP
ij is

bx02(t) = 10; t 2]5; 10] ; bx25(t) = 12� t; t 2]6; 11]

The forward translation of these residual capacities give

b
0x
12(t) = 10; t 2]7; 12] ; b

0x
26(t) = 13� t; t 2]7; 12]

Thus the maximum augmented function along P is obtained as follows.

�P = 13� t; t 2]7; 12]

The backward translation of �P to each arc (i; j) 2 P is obtained as follows.

�02(t) = 11� t; t 2]5; 10] ; �25(t) = 12� t; t 2]6; 11]

Hence, the new dynamic 
ow distribution is
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p Labels node 0 node 1 node 2 node 3 node 4 node 5

1 �
p;q

i
1 1 1 1 2 0

S
�p;q

i
; ; ]1,12] ; ]2,12] ]0,12]

Z
p

i
f(5,1)g f(5,1)g f(5,1)g f(5,1)g f(5,1)g f(5,1)g

2 �
p;q

i
2 2 1 2 2 0

S
�p;q

i
]7,12] ]2,12] ]1,12] ]2,12] ]2,12] ]0,12]

Z
p

i
f(2,1)g f(2,1)g f(5,1)g f(2,1)g f(5,1)g f(5,1)g

3 �
p;q

i
2 ; 6; 3 2 1 2 2 0

S
�p;q

i
]7,12] ; ]6,12] ; ]3,9] ]2,12] ]1,12] ]2,12] ]2,12] ]0,12]

Z
p

i
f(2,1), (1,1), (3,1)g f(2,1)g f(5,1)g f(2,1)g f(5,1)g f(5,1)g

4 �
p;q

i
2 ; 6; 3 2 1 2 2 0

S
�p;q

i
]7,12] ; ]6,12] ; ]3,9] ]2,12] ]1,12] ]2,12] ]2,12] ]0,12]

Z
p

i
f(2,1), (1,1), (3,1)g f(2,1)g f(5,1)g f(2,1)g f(5,1)g f(5,1)g

Table 1: Detail Steps of SCAP Labeling Algorithm of Iteration 1

x02(t) = 11� t; t 2]5; 10] ; x25(t) = 12� t; t 2]6; 11]

and the total 
ow x50(t) = 13� t; t 2]7; 12]

The new residual capacity of each arc is bx02(t) =

8<
:

t� 1 ; t 2]5; 10]

10 ; t 2]10; 12]

0 ; otherwise

;

bx25(t) =

�
12� t ; t 2]0; 6][]11; 12]

0 ; otherwise

and keep constant for the other residual capacities. Add negative arcs (2; 0) and (5; 2)

with travel time �x20 = ��02 and �x52 = ��25 and the residual capacities

bx20(t) =

�
12� t ; t 2]6; 11]

0 ; otherwise
; bx52(t) =

�
13� t ; t 2]7; 12]

0 ; otherwise
Figure 5 shows the new residual network. The new admissible time is

0 52

3

1 4

Figure 5: Residual Network GR
x = (N;AR

x ) after Iteration 1

S02 =]5; 12] ; S20 =]6; 11]

S25 =]0; 6][]11; 12] ; S52 =]7; 12]

Figure 6 shows the residual network after iteration 5 and table 6 shows
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the calculation of SCAP procedure for iteration 6.

0 52

3

1 4

Figure 6: Residual Network GR
x = (N;AR

x ) after Iteration 5

p Labels node 0 node 1 node 2 node 3 node 4 node 5

1 �
p;q

i
1 1 1 1 2 0

S
�p;q

i
; ; ]1,3] ; ]2; 11] ]0,12]

Z
p

i
f(5,1)g f(5,1)g f(5,1)g f(5,1)g f(5,1)g f(5,1)g

2 �
p;q

i
1 3 ; 2 1 ; 5 2 2 0

S
�p;q

i
; ]3,9.5] ; ]2,3] ]1,3] ; ]5,11] ]2,3] ]2,11] ]0,12]

Z
p

i
f(5,1)g f(4,1), (2,1) g f(5,1), (4,1)g f(2,1)g f(5,1)g f(5,1)g

3 �
p;q

i
1 3 ; 2 ; 6 1; 5 2 ; 6 2 0

S
�p;q

i
; ]3,9.5] ; ]2,3] ; ]7,11] ]1,3] ; ]5,11] ]2,3] ; ]6,11] ]2,11] ]0,12]

Z
p

i
f(5,1)g f(4,1), (2,1), (2,2)g f(5,1), (4,1)g f(2,1), (2,2)g f(5,1)g f(5,1)g

4 �
p;q

i
1 3 ; 2 ; 6 1; 5 2 ; 6 2 0

S
�p;q

i
; ]3,9.5] ; ]2,3] ; ]7,11] ]1,3] ; ]5,11] ]2,3] ; ]6, 11] ]2,11] ]0,12]

Z
p

i
f(5,1)g f(4,1), (2,1), (2,2)g f(5,1), (4,1)g f(2,1), (2,2)g f(5,1)g f(5,1)g

Table 2: Detail Steps of SCAP Labeling Algorithm of Iteration 6

No SCAP is found at iteration 6 and the optimal earliest arrival 
ow is

obtained as follows.

x01(t) =

8<
:

7 ; t 2]0; 2:5]

12� 2t ; t 2]2:5; 4]

0 ; otherwise

; x02(t) =

8<
:

10 ; t 2]5; 6]

11� t ; t 2]6; 10]

0 ; otherwise

;

x03(t) =

�
10� t ; t 2]0; 5]

0 ; otherwise
; x12(t) = 0; t 2]0; 12] ;

x14(t) =

8<
:

7 ; t 2]4; 6:5]

20� 2t ; t 2]6:5; 8]

0 ; otherwise

; x24(t) =

�
10 ; t 2]6; 7]

0 ; otherwise
;

x25(t) =

�
12� t ; t 2]2; 11]

0 ; otherwise
; x32(t) =

�
11� t ; t 2]1; 6]

0 ; otherwise
;
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x45(t) =

8>><
>>:

7 ; t 2]5; 7:5]

22� 2t ; t 2]7:5; 9]

10 ; t 2]9; 10]

0 ; otherwise

; x50(t) =

8>>>>>><
>>>>>>:

0 ; t 2]0; 3]

13� t ; t 2]3; 7]

20� t ; t 2]7; 9:5]

39� 3t ; t 2]9:5; 11]

23� t ; t 2]11; 12]

0 ; otherwise

;

The maximum value V (T ) is equal to

V (T ) =

Z 12

0

x50(t)dt = 85:25

The complete solution of the example for the time horizon T = 12 is given

in the Table 6.

Iteration No. SCAP SP

1 0! 2! 5 ]7,12]

�0 = 2;�2 = 1

2 0! 3! 2! 5 ]3; 7]

�0 = 3;�3 = 2;�2 = 1

3 0! 2! 4! 5 ]11; 12]

�0 = 6;�2 = 5;�4 = 2

4 0! 1! 4! 5 ]7; 11]

�0 = 7;�1 = 3;�4 = 2

5 0! 3! 2! 4! 5 ]11; 12]

�0 = 7;�3 = 6;�2 = 5;�4 = 2

R0 = ;;R1 =]0; 6:5];R2 =]0; 6];R3 =]0; 5];R4 =]0; 9];R5 =]0; 12]

�01 =]0; 2:5]; �02 = ;; �03 =]0; 4]; �12 = ;; �14 =]6:5; 8]

�24 = ;; �25 =]6; 11]; �32 = ;; �45 =]9; 10];

Table 3: Solution of the Illustrative Numerical Example

The minimum dynamic cut is obtained from S
�p;q
i of the last iteration

(iteration 6), by using Eq. (19) - (20) and Eq. (12). The source side of the

cut at any time t is obtained as follows.

CT (t) :=

8>>>><
>>>>:

f0g ; t 2 ]0; 5]

f0; 3g ; t 2 ]5; 6]

f0; 3; 2g ; t 2 ]6; 6:5]

f0; 3; 2; 1g ; t 2 ]6:5; 9]

f0; 3; 2; 1; 4g ; t 2 ]9; 12]

Using Eq. (13), the minimal cut value is obtained equal to 85.25 units which

is equal to V (T ).
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7 Solving Evacuation Problems with Known

Occupancy

For a given T the building is cleared within the time horizon T if and only

if the corresponding dynamic network allows a maximal s� d 
ow with 
ow

value at least as large as the initial occupancy q. In this section we show

how to minimize T . The interrelation between EAF and the quickest 
ow

problem de�ned in the introduction is explained by the following theorem.

Theorem 7.1 Let VT (x) be the total value of 
ow x entering the sink within

time horizon T , i.e. VT (x) =
P

(i;d)2A

R T
0
xid(t)dt. Suppose x is the earliest

arrival 
ow. If T � := min fT 0 : VT 0(x) � q; T 0 � Tg exists then T � solves

the quickest 
ow problem with initial ocupancy q.

Proof :

If T � does not solve the quickest 
ow problem then there is T 00 < T � and


ow x00 with value VT 00(x00) = q. Hence VT 00(x) < VT 00(x00). This contradicts

that x is also maximum at T 00 < T . �

The theorem suggests a simple algorithm to solve quickest 
ow problem

via EAF.

Algorithm 7.1 : Solving Continuous Time QFP

Step 0 Set the time T large enough such that the problem is feasible, i.e.

if x is the maximum dynamic 
ow, then VT (x) � q

Step 1 Connect source node s to supersource node s
0
with capacity

bs0s(t) = q; t 2 [0; T ]

Step 2 Find x the solution of the continuous time earliest arrival 
ow problem with

T time periods.

Step 3 Find T
�
:= minfT

0

: V
T
0 (x) � q; T

0 � Tg

T
�
is the solution of the quickest 
ow problem.

Example 7.1

The minimum time to clear the network with 50 initial occupancies at node

0 is T � = 8:467 with the following optimal 
ows distribution.

x01(t) =

�
7 ; t 2]0; 1:467]

0 ; otherwise
; x02(t) =

�
11� t ; t 2]5; 6:467]

0 ; otherwise
;

x03(t) =

�
10� t ; t 2]0; 4]

0 ; otherwise
; x12(t) = 0; t 2]0; 8:467] ;

x14(t) =

�
7 ; t 2]4; 5:467]

0 ; otherwise
; x24(t) = 0; t 2]0; 8:467] ;
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x25(t) =

�
12� t ; t 2]2; 7:467]

0 ; otherwise
; x32(t) =

�
11� t ; t 2]1; 5]

0 ; otherwise
;

x45(t) =

�
7 ; t 2]5; 6:467]

0 ; otherwise
; x50(t) =

8<
:

0 ; t 2]0; 3]

13� t ; t 2]3; 7]

20� t ; t 2]7; 8:467]

;

Some calculations required to determine the minimum dynamic cut within

T � = 8:467 is summarized in Table 4.

Table 4: Some Calculations Required to Determine the Minimum Dynamic

Cut within T � = 8:467

Node 0 Node 1 Node 2 Node 3 Node 4 Node 5

R ; ]0; 5:467] ]0; 3:467] ]0; 2:467] ]0; 6:467] ]0; 8:467]

CT�(t) :=

8>>>><
>>>>:

f0g ; t 2 ]0; 2:467]

f0; 3g ; t 2 ]2:467; 3:467]

f0; 3; 2g ; t 2 ]3:467; 5:467]

f0; 3; 2; 1g ; t 2 ]5:467; 6:467]

f0; 3; 2; 1; 4g ; t 2 ]6:467; 8:467]

�01 =]0; 1:467]; �02 = ;; �03 =]0; 1:467]; �12 = ;; �14 = ;

�24 = ;; �25 =]3:467; 7:467]; �45 = ;

Minimum value of the dynamic cut (C8:467; C8:467) is 50 units.
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