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Abstract. A harmonic oscillator subject to a parametric pulse is examined. The

aim of the paper is to present a new theory for analysing transitions due to parametric

pulses. The new theoretical notions which are introduced relate the pulse parameters

in a direct way with the transition matrix elements.

The harmonic oscillator transitions are expressed in terms of asymptotic properties

of a companion oscillator, the Milne (amplitude) oscillator. A traditional phase-

amplitude decomposition of the harmonic-oscillator solutions results in the so-called

Milne's equation for the amplitude, and the phase is determined by an exact relation

to the amplitude. This approach is extended in the present analysis with new relevant

concepts and parameters for pulse dynamics of classical and quantal systems.

The amplitude oscillator has a particularly nice numerical behavior. In the case of

strong pulses it does not possess any of the fast oscillations induced by the pulse on the

original harmonic oscillator. Furthermore, the new dynamical parameters introduced

in this approach relate closely to relevant characteristics of the pulse.

The relevance to quantum mechanical problems such as re
ection and transmission

from a localized well and mechanical problems of controlling vibrations is illustrated.

Submitted to: J. Phys. A: Math. Gen.

1. Introduction

The theory of parametrically excited harmonic oscillators appears in various text in

classical mechanics [1]-[6] and it is also at the heart of quantum mechanics. The typically

studied parametric systems in classical mechanics are subject to periodic excitations due

to the frequent occurrence of rotating machines and interests in stability of such systems.

In quantum mechanics similar equations refer to electron dynamics in atom lattices or

in constant amplitude periodic external �elds.

In the present work we focus on pulsed parametric excitations of the harmonic

oscillator. Similar situations can be identi�ed for example in (�nite-time) maneuvered


exible multi-body systems and electronic states subject to pulsed �eld excitations. In

the context of 'smart materials', parametric control of vibrations is also of interest [6]-

[9]. Often in classical mechanics external and parametric excitations go together. In
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this respect we neglect the direct response of the oscillator and concentrate the analysis

on the homogeneous equation.

For the purpose of designing particular pulses, it is of some interest to develop

a theoretical framework which closes the gap between pulse parameters and the

transitions. This will be the prime aspect of the present work.

We explore the well known analysis of waves and oscillations in terms of amplitudes

and phases [10]-[16], in which the nonlinear equation for the amplitude, the Milne

equation, will play a key role. The theoretical result of our amplitude-phase analysis is an

exact formalism with numerical and interpretational advantages compared to straight-

forward integration of the parametric oscillator equation. Not only are the computations

faster, but the new dynamical parameters correspond closely to relevant properties of

the parametric pulse such as: duration, strength and 'frequency-pulse area'.

The paper is organized as follows. Section 2 introduces the amplitude-phase

decomposition of the parametric oscillator solutions. We explore the nonlinear Milne

equation for the amplitude function and focus on its properties as t! �1. In section 3

we write the fundamental solutions of the parametric oscillator in terms of the amplitude

function and we investigate its properties as t! �1. The important transition matrices

for real cos/sin solutions and propagating complex solutions are derived and discussed

in section 4. Section 5 is devoted to a numerical study of a cos2�pulse and conclusions

are drawn in section 6.

2. The parametrically pulsed oscillator and the corresponding Milne

oscillator

The parametric oscillator can be written:

�x+ !2(t)x = 0; (1)

where !(t)(> 0). In this paper we focus on the symmetric functions !(t), which

simpli�es the derivations, and further assume the normalized asymptotic limits

!(t)! 1; as t! �1: (2)

This unit limit of the symmetric angular frequency function !(t) is obtained in general

by a constant scaling of time. The non-constant behavior of !(t) (rather than !2(t) ) is

assumed to be suÆciently localized in time and will be referred to as the pulse.

The standard analysis of the pulse dynamics of the oscillator (1) would be to rewrite

the equation as two �rst-order equations subject to relevant initial and �nal linear

combinations of fundamental solutions of the asymptotically 'free' harmonic oscillator

as t! �1. Initially the parametric oscillator behaves like a harmonic oscillator of unit

angular frequency. After the action of the pulse it again resumes the harmonic oscillator

behavior with unit frequency, but the linear combinations of fundamental solutions have

changed.
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Instead of numerically integrating the original oscillator equations and extracting

the transition properties directly as numbers we propose another approach. Some new

theoretical notions are introduced which relate the pulse parameters in a direct way

with the transition matrix elements. For this purpose an amplitude-phase Ansatz for

the oscillator solutions are introduced as

X� = � exp(�i�); (3)

which has to satisfy (1). Inserting (3) into (1) we obtain the amplitude oscillator

equation

��+ !2(t)� =
1

�3
; (4)

provided the phase satis�es:

_� = ��2: (5)

Despite of its nonlinearity, the di�erential equation (4) { the so-called Milne equation

{ can be solved numerically without any problem. The (real !) solution is typically

oscillatory, however much less than the solutions of eq. (1). In particular, the solution

has no zeros. Depending on the initial conditions for � and _�, various Milne solutions can

be generated. It can be shown that any solution of the nonlinear di�erential equation

(4) together with (5) generates a pair of fundamental solutions (3) of (1). To analyze the

parametric oscillator behavior we typically have three natural choices for the amplitude

function; �i, �f and �a. The pre-pulse amplitude �i is de�ned to be asymptotically

constant as t! �1. From (2) and (4) we obtain the constant limit �i ! 1, as t! �1.

Eventually the pulse excites oscillations in the amplitude (see �gure 1). The post-pulse

amplitude �f is de�ned to be asymptotically constant as t ! +1. From (2) and (4)

we obtain the constant limit �f ! 1, as t! +1. In this case the amplitude has to be

oscillatory initially. A third solution �a can be constructed which is as slowly varying as

possible in the pulse region. This solution will be called the adiabatic amplitude �a. An

e�ective and easy way to �nd initial conditions for such anexact solution is to look at

the simplest approximate solution of Milne's equation. We simply try to �nd an almost

'constant' solution �a and neglect all time derivatives of this solution. Milne's equation

then reduces to

�4a(t) �
1

!2(t)
: (6)

This approximation | known as the WKB approximation in context with the quantum

wavefunction [16] | is exact only if !2 is truly constant. The ambition in this paper is

just to �nd a slowly varying amplitude � in the region where the pulse is the largest.

However, it does not have to be a unique adiabatic solution, rather one in a family (see

a recent discussion in [17]). The adiabatic solution in this work is de�ned by integrating

Milne's equation from the initial conditions �(0) = 1=
q
!(0) and _�(0) = 0 based on

(6). The very nice properties of the adiabatic amplitude for strong pulses motivates the

search for its relation to the original parametric oscillator.
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Figure 1. Two possible amplitude (Milne) solutions for the square pulse model

described in Example 1 with parameters � = 40; T = 1. The pre-pulse amplitude

�i starts with �i = 1 at t = �1, oscillats in the pulse region and inceases to large

amplitude oscillations for t > T . The adiabatic amplitude �a is constant during the

pulse and oscillates between �
�1=2 for jtj > T .

The formal Hamiltonian governing the dynamics of the Milne solutions is

H(p�; q; t) =
1

2
p2� +

1

2
!2(t)�2 +

1

2
��2; (7)

where p� = _�. The energy (7) is constant before and after the pulse and we introduce

the asymptotic energy EM for the asymptotic Milne solutions q:

EM =
1

2
_q2 +

1

2
q2 +

1

2
q�2: (8)

The asymptotic amplitude oscillator is governed by the particular potential function

V (q) = 1
2
(q2+ q�2) possessing a single minimum at q = 1. In this picture the amplitude

energy is bounded by EM � 1, with the minimum energy attained by the stationary

amplitudes q = �i and q = �f , but only in the initial and �nal asymptotic regions,

respectively.

We now seek the particular time dependence for non-stationary asymptotic

amplitudes. Since energy is conserved in the asymptotic regions, it is in fact possible

to solve the time dependence explicitly. To see this, we consider the single second-order

di�erential equation:

d2q

dt2
+ q =

1

q3
: (9)
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It is instructive to see this geometrically as the radial equation for a 2D radially

symmetric linear oscillator, i.e. with r = (x; y):

d2r

dt2
+ r = 0: (10)

With this view, the amplitude (or radial variable) q is of the form:

q =
q
x2(t) + y2(t): (11)

With a suitable shift of the origin of time t the orbit can be made to coincide with

the large and small symmetry axes, rigidly rotated in the x; y-plane. Then the form

simpli�es to

q =
q
q2� cos

2(t� � 0) + q2� sin
2(t� � 0); (12)

where q� are the turning points of the amplitude oscillator. Solving the turning point

equation ( _q = 0 in equation (8)) for the asymptotic amplitude motion, we �nd

q� =

r
EM�

q
E2
M � 1: (13)

A further simpli�cation using trigonometric relations then yields

q(t) =

r
EM �

q
E2
M � 1 cos(2(t� � 0)): (14)

A suitable origin t = � 0 may be chosen conveniently at the larger or smaller turning

point with + or �, respectively.
We can now describe the asymptotic behavior of any amplitude on either side of

the pulse region. It may not be possible to �nd the connections across the pulse region

in a nice form, however. For example, given the pre-pulse amplitude �i, we are not able

to write down the parameters E
(i)
M and � 0i , as t ! +1. On the other hand, if we have

found E
(a)
M and � 0a for an adiabatic and symmetric amplitude �a as t ! +1, then the

symmetry requires E
(a)
M and �� 0a as t! �1.

EXAMPLE 1: Let us illustrate the theory for the case of a square pulse:

! = � (> 1); �T < t < T; and ! = 1; jtj � T: (15)

The adiabatic amplitude is �a = 1=
p
�; �T < t < T , and the asymptotic energy

EM = (1+�2)=(2 �). At t = �T the amplitude assumes smoothly its asymptotic forms.

It increases from a minimum (at an inner turning point in the potential well) so that

� 0 = T . For t > T we have

qa(t) =

r
EM �

q
E2
M � 1 cos(2(t� T )): (16)

It is straight forward to verify qa(T ) = 1=
p
� and also q� = ��1=2. �

We return in the next section to the harmonic oscillator and its asymptotic behavior.
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3. The asymptotic form of the harmonic oscillator solutions

Any solution of the parametrically pulsed harmonic oscillator is a linear combination

of cos t and sin t, as t ! �1. In the following we restrict the analysis to symmetric

pulses and a symmetric amplitude function with asymptotic form:

�a ! qa =

r
EM �

q
E2
M � 1 cos(2(t� � 0)); t! +1: (17)

Our amplitude-phase decomposition using an adiabatic symmetric amplitude suggests

real fundamental solutions of the form

C(t) = �a(t) cos(

Z t

0
��2a (t0)dt0); S(t) = �a(t) sin(

Z t

0
��2a (t0)dt0): (18)

To analyze the corresponding asymptotic form as t ! +1, we introduce the phase

di�erence, �, between exact and asymptotic amplitude forms:

� =

Z +1

0
(��2a (t0)� q�2a (t0))dt0: (19)

We then get

C(t)! qa(t) cos(

Z t

0
q�2a (t0)dt0+�); S(t)! qa(t) sin(

Z t

0
q�2a (t0)dt0+�):(20)

The evolving phase in these functions is clearly not linear. A symbolic evaluation [19]

gives: Z t

0
q�2a (t0)dt0 = tan�1

�
[EM +

q
EM

2 � 1] tan(t� � 0)

�

+ tan�1
�
[EM +

q
EM

2 � 1] tan � 0
�
: (21)

Collecting the additional constant phase appearing in (21) we thus have the asymptotic

forms:

C(t)! qa(t) cos(�a(t) + � + �); S(t)! qa(t) sin((�a(t) + � + �); (22)

with

�a(t) =

Z t

� 0

q�2a (t0)dt0 = tan�1
�
[EM +

q
EM

2 � 1] tan(t� � 0)

�
; (23)

� =

Z � 0

0
q�2a (t0)dt0 = tan�1

�
[EM +

q
EM

2 � 1] tan(� 0)

�
: (24)

For the moment we neglect the constant phases and try to simplify the reduced

asymptotic forms:

c(t) = qa(t) cos�a(t); s(t) = qa(t) sin�a(t): (25)

A further symbolic analysis reveals:

c(t) =

r
EM �

q
E2
M � 1 cos(t� � 0); (26)

and

s(t) =

r
EM +

q
E2
M � 1 sin(t� � 0): (27)
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The energy factors here are nothing else than the turning point positions. We recall

their de�nitions

q� =

r
EM �

q
E2
M � 1: (28)

At this point we can start tracing the relations back to the original real amplitude phase

solutions. From (22) and (25) { (27) we have the matrix relation:

lim
t!+1

�
C(t) S(t)

�
=
�
cos(t� � 0) sin(t� � 0)

�

�
 
q� 0

0 q+

! 
cos(� + �) sin(� + �)

� sin(� + �) cos(� + �)

!
: (29)

This is referred to as the � 0-dressed representation in the limit t! +1. In the opposite

limit t! �1, symmetry requires:

lim
t!�1

�
C(t) S(t)

�
=
�
cos(t+ � 0) sin(t+ � 0)

�

�
 
q� 0

0 q+

!
�
 

cos(� + �) � sin(� + �)

sin(� + �) cos(� + �)

!
: (30)

We notice here that the true dynamical phases are � 0 and � +�.

EXAMPLE 2: For the case of a square pulse de�ned in EXAMPLE 1, where � 0 = T ,

we can analytically evaluate the constant phases � and �:

� =

Z T

0

�
��

�
EM �

q
E2
M � 1 cos(2(t� T ))

��1�
dt = �T ��; (31)

with

� = tan�1
�h
EM +

q
EM

2 � 1
i
tan(T )

�
: (32)

The turning point positions are:

q� =

r
EM �

q
E2
M � 1 = 1=

p
�; q+ =

r
EM +

q
E2
M � 1 =

p
�: (33)

We note that EM+
q
E2
M � 1 is the maximum value (�) of the square pulse. Furthermore,

2� 0 is the range (or duration) and 2(� +�) is the area of the square pulse. �

4. Pulse-induced transition matrices

The real transition matrix due to the pulse can now be constructed from the forward-

and backward connections in the previous section. To simplify the notation we introduce

one symbol for the dynamical phase � +�:

Æ0 = � +�: (34)

The � 0-dressed forward- and backward connections are now de�ned as matrices:

T+ =

 
q� cos Æ0 q� sin Æ0

�q+ sin Æ0 q+ cos Æ0

!
; (35)
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T� =

 
q� cos Æ0 �q� sin Æ0

q+ sin Æ0 q+ cos Æ0

!
: (36)

They combine to a � 0-dressed overall transition:

M� 0 = T+T
�1
� =

 
cos 2Æ0 q2� sin 2Æ0

�q2+ sin 2Æ0 cos 2Æ0

!
: (37)

In the evaluations here we have used that q+q� = 1. As a consequence we see that

detM� 0 = 1.

The pulse-induced transitions for undressed cos/sin oscillations are then given by

the matrix elements of M, where :

M = D(� 0)M� 0D(� 0); D(� 0) =

 
cos � 0 � sin � 0

sin � cos � 0

!
: (38)

In explicit terms we have:

M= (39) 
EM sin � sin Æ + cos � cos Æ EM cos � sin Æ � sin � cos Æ �pE2

M
�1 sin Æ

�EM cos � sin Æ + sin � cos Æ �pE2

M
�1 sin Æ EM sin � sin Æ + cos � cos Æ

!

where � = 2� 0 and Æ = 2Æ0. This is a primary result for transitions of real cos/sin

solutions.

We note that the matrix elements are restricted by two conditions detM = 1 and

M11 =M22. Just two real parameters are needed to describe the matrix. In our analysis

we have three parameters EM ; Æ; � . The main disadvantage with any choice of dynamical

parameters is a possible lack of monotonicity with respect to pulse parameters. For the

square pulse model (with its two parameters T and �) we have found a monotonic

relation to our EM ; Æ; � . An arbitrary parametrisation like

M =

 
a b

(a2 � 1)=b a

!
; (40)

would not provide us with nicely behaved parameters a and b. In this respect three

parameters are better than two. A more sophisticated parametrisation is perhaps

M =

 
cos y cosh x sin y cosh x� sinh x

� sin y cosh x� sinh x cos y cosh x

!
: (41)

Having the square pulse M matrix as an exact reference we know that the

elements contain two real phases and an amplitude parameter. It is not obvious

in the sophisticated parametrisation to identify them as two real and non-oscillating

parameters x and y.

EXAMPLE 3: In analogy with previous examples we can substitute Æ = 2�T , � = 2T ,

and EM = (1 + �2)=(2�) to �nd the exact 'pulse excitation' matrix M for the square

pulse. In the matrix elements, only Æ depends on the strength and the duration of

the pulse. In fact, it is rather the angular frequency-pulse action (an action integral).
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Figure 2. A cos t oscillation is excited by a square pulse of �xed strength � = 10:25

but with a variable duration. The amplitude of the excited oscillation contains slow

and fast variations with 'global' and 'local' maxima, respectively. The amplitude has

been reduced by a factor EM for comparison with our estimate of the global Amax.

Furthermore, EM only depends on the strength of the pulse, and � is the pulse duration.

If we study large, massive pulses it is relevant to see Æ as the most sensitive dynamical

quantity.

Let us analyze the amplitude ampli�cation of a pure cosine oscillation by a strong

pulse. In this context we assume EM >> 1 and simplify the matrix elements.

M �
 

EM sin � sin Æ EM cos � sin Æ � EM sin Æ

�EM cos � sin Æ � EM sin Æ EM sin � sin Æ

!
; (42)

The �rst column of the M-matrix gives us the cos/sin sub-amplitudes of the excited

oscillation. We then have the total amplitude of the excited oscillation

A =
p
2EM j sin Æj p1 + cos � : (43)

How large can this amplitude be? Obviously,

Amax � 2EM : (44)

with the ideal conditions for Æ and � being

j sin Æj � 1; cos � � 1: (45)

Let us then design a square pulse which gives this large amplitude. The pulse duration

can be taken as � = 2�, i.e. T = � in our model. Then we solve for a 'large' � in the

last equation, which gives

� = (2n+ 1)=4; n >> 1: (46)

In �gure 2 we show how the exact amplitude (obtained without approximation (42))

of the excited oscillation depends on the pulse duration � = 2T with a �xed value of



Parametrically pulsed oscillator: an amplitude (Milne) approach 10

Figure 3. A cos t oscillation is excited by two parametric square pulses of the same

strength � = 10:25. The left diagram shows an ampli�cation for T = �, where the

pulse duration is 2�. The right diagram shows a quenching for T = 0:52�.

� (and EM). We have chosen a value of � from the estimate above with n = 20 and

can con�rm that a 'global' (and 'local') maximum is located close to T = �. We also

see that Amax is close to our estimate (44). In �gure 3 we compare the action of the

constructed pulse on a cos t solution with that of a pulse which has approximately half

the duration. �

We conclude this section by discussing the pulse-induced transition matrix for

propagating (complex) oscillations exp(�it). The propagating asymptotic oscillations

are linear combinations of our real cos/sin solutions, i.e.

(exp(it); exp(�it)) = (cos t; sin t)

 
1 1

i �i

!
= (cos t; sin t)C: (47)

Therefore the corresponding complex transition matrix for these solutions are expressed

as

P = C�1MC: (48)

Recalling equation (38) we may also write the transition matrix as

P = [D(�� 0)C]�1M� 0D(� 0)C; (49)

or

P =

 
exp(�i� 0) 0

0 exp(i� 0)

!
C�1M� 0C

 
exp(�i� 0) 0

0 exp(i� 0)

!
: (50)
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The middle three matrices combine to

P� 0 =

0
@ cos 2Æ0 + iEM sin 2Æ0 i

q
E2
M � 1 sin 2Æ0

�i
q
E2
M � 1 sin 2Æ0 cos 2Æ0 � iEM sin 2Æ0

1
A ; (51)

where

(q2� + q�2� )=2 = EM ; (q2� � q�2� )=2 = �
q
E2
M � 1: (52)

Including the framing matrices and adopting the simpli�cations Æ = 2Æ0; � = 2� 0 we

�nd:

P =

0
@ (cos Æ + iEM sin Æ)e�i� i

q
E2
M � 1 sin Æ

�i
q
E2
M � 1 sin Æ (cos Æ � iEM sin Æ)ei�

1
A : (53)

The complex matrix P is particularly suited for quantum mechanical analyses.

EXAMPLE 4: In analogy with the previous examples we can, with the identi�cation

t = x, analyze transmission and re
ection of quantal waves from a square potential well.

Using the complex transition matrix in (53) we �nd the boundary conditions:

exp(�ix); x! �1; (54)

(cos Æ � iEM sin Æ)ei� exp(�ix) + i
q
E2
M � 1 sin Æ exp(ix); x! +1:(55)

Normalizing the left propagating current in the limit as x ! +1, we �nd the

transmission and re
ection amplitudes:

R =
i
q
E2
M � 1 sin Æ e�i�

cos Æ � iEM sin Æ
; (56)

T =
e�i�

cos Æ � iEM sin Æ
: (57)

For the case of a quantum mechanical square well problem, we just have to do the

substitutions derived in the previous examples. The result is exact. �

5. A smooth pulse

We demonstrate some numerical results here for a smooth parameter pulse of �nite

range:

!2(t) = 1 + (�2 � 1) cos2(
�t

2T
); �T � t � T : (58)

The maximal strength of the frequency pulse is � > 1, which can be compared with the

square pulse magnitude � > 1.

We use half the pulse range (i.e. 0 � t � T ) in the calculations of the adiabatic

Milne solution �a(t). The Milne energy EM is calculated from �a(T ) and _�a(T ) according

to (8). The dynamical range parameter � is obtained from the relation:

_qa(T )qa(T ) =
q
E2
M � 1 sin(2T � �); (59)
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which is easy to verify from the chosen asymptotic form

qa(t) =

r
EM �

q
E2
M � 1 cos(2t� �): (60)

The dynamical phase shift Æ requires a numerical integration of ��2a (t), which can be

easily done together with the computation of �a(t) and _�a(t), and is then obtained from:

Æ = 2

Z T

0
��2a (t)dt� 2 tan�1

�h
EM +

q
EM

2 � 1
i
tan(T � �=2)

�
: (61)

In a �rst application, we calculate our three dynamical parameters Æ, � , and EM

as a function of the pulse amplitude � in the interval 0 � � � 10. We take T = 1 and

obtain the results shown in the two upper sub-plots of �gure 4.

They show a smooth behavior of Æ, � , and EM , where Æ increases almost linearly

with � as for the square pulse. The slope is seen to be considerably smaller. � is almost

independent of �, which also agrees with the square pulse case. The Milne energy EM is

slightly less linear. We note that the values of EM are still moderately large for � = 10.

The last sub-plot of �gure 4 shows the � dependence of the matrix elementM11. The

eigenvalues of the M matrix can be written explicitly in terms of this matrix element:

m� =M11 �
q
M2

11 � 1; m+m� = 1: (62)

where

M11 = EM sin � sin Æ + cos � cos Æ: (63)

M11 can be either positive or negative depending on the phases Æ and � . For the case

jM11j � 1; (64)

the eigenvalues (and eigensolutions) are complex conjugates with jm�j = 1. This is the

typical, regular behavior if EM(> 1) is close to 1, i.e. small values of � in �gure 4. As

� (and EM) grows, the regular behavior will disappear and reoccur depending on the

oscillatory behavior ofM11. At the extreme valuesM11 = �1 the eigenvalues turn truly
real in intervals that grow as � becomes larger. The real eigenvalues and the possible

ampli�cation e�ect is related to the largeness of EM . The condition for such intervals

is:

jM11j > 1: (65)

The larger the values of EM , the wider the range of � where oscillations are possibly

ampli�ed. A very speci�c oscillation of an eigensolution can in fact be reduced in the

same interval of � while all the others are ampli�ed.

To continue our investigation, we �x the value of the pulse strength to � = 10 and

vary the pulse duration (0 < 2T < 10). The result is shown in �gure 5. Also here

the phases Æ and � show an almost linear dependence. The Milne energy EM , however,

seems to have a clear peak near the limit of short, 'sudden' pulses. We recall here that

the square pulse had EM = (�2 + 1)=(2�) � 5:05, which is independent of the pulse

duration. This value is close to the limiting peak value in �gure 5 of the cos2-pulse.
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Figure 4. Numerically calculated behavior of Æ, � , and EM as functions of � in the

two upper sub-plots. The part of the oscillatory matrix element M11 corresponding to

regular (non-magnifying) transitions is shown in the bottom sub-plot. T = 1.

The matrix element M11 in the last sub-plot of �gure 5 has more oscillations than

in the previous plot. Although the Milne energy EM is largest for short pulses, the

corresponding behavior of M11 is regular and the eigenvalues are of unit magnitude.

Let us �nally discuss how to construct a parametric cos2-pulse that minimizes an

existing oscillation in the harmonic oscillator. For this purpose we �rst try to derive the

ideal conditions in terms of our dynamical parameters EM , Æ and � .

We require a suÆciently large magnitude of the element M11. It is possible by

simple means to verify that �EM � M11 � EM . The maximum magnitude is attained

if

sin � = �1; sin Æ = �1; (any combination): (66)

The eigenvalues and the possible magni�cations are found to be

(m+; m�) =
�
� (EM +

q
E2
M � 1 );�(EM �

q
E2
M � 1 )

�
; (67)

where the signs go together. The maximal reduction factor jm�j is obtained for the

eigensolution pertaining to m�.

To see which oscillation is the corresponding eigen-oscillation for the minimum

eigenvalue we take a second look at theM-matrix. The condition (66) can be optimized

if we know that the shortest possible pulses give the largest Milne energy EM . We may



Parametrically pulsed oscillator: an amplitude (Milne) approach 14

Figure 5. Numerically calculated behavior of Æ, � , and EM as functions of 2T in the

two upper sub-plots. The part of the oscillatory matrix element M11 corresponding to

regular (non-magnifying) transitions is shown in the bottom sub-plot. � = 10.

then restrict the condition to the smallest possible value of � (the e�ective pulse range

parameter). Thus our explicit conditions take the form:

� = �=2; Æ = (2n + 1)
�

2
; n = 0; 1; � � � : (68)

Inserting (68) into (40), we obtain

M =

0
@ �EM �pE2

M
�1

�pE2

M
�1 �EM

1
A ; (69)

where the signs go together. We realize that the minimum eigenvalue oscillation needs

to be proportional to sin(t+ �=4) = (cos t+ sin t)=
p
2. Any oscillation of our harmonic

oscillator can be seen as such an eigen-oscillation by shifting the time origin, i.e. by a

proper timing of the activation of the pulse. If this can be successfully achieved, we can

go on and determine T and � of the pulse.

We consider the sequence of solutions of (68) using a 2-dimensional Newton

root searching procedure. Hence, we determine numerically the corresponding pulse

parameters which minimize the oscillation. The result is displayed in table 1. The

reduction factor jm�j depends on EM according to equation (67). The Milne energy

increases in the sequence and the reduction factor decreases. The weakest pulse we
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Table 1. Numerically calculated sequence of pulse parameters T and � satisfying

the reduction condition (68). The Milne energy EM and the eigenvalue m� for the

pulse-induced oscillator transitions are also given.

n T � EM m�

(0 0.5233 0.4224 1.3847 0.427)

1 1.3211 3.2073 1.2243 -0.518

2 1.1384 5.8632 1.5583 0.363

3 1.0792 8.5044 1.8413 -0.295

4 1.0329 11.2760 2.1135 0.252

5 1.0068 14.0348 2.3546 -0.223

6 0.9844 16.8630 2.5850 0.201

7 0.9692 19.6827 2.7961 -0.185

8 0.9555 22.5475 2.9990 0.172

9 0.9454 25.4061 3.1886 -0.161

10 0.9360 28.2970 3.3718 0.152

11 0.9286 31.1833 3.5452 -0.144

12 0.9218 34.0941 3.7134 0.137

13 0.9161 37.0012 3.8740 -0.131

14 0.9108 39.9278 4.0304 0.126

15 0.9063 42.8513 4.1808 -0.121

16 0.9020 45.7909 4.3275 0.117

found in the sequence does not ful�ll our basic requirement � > 1 and is neglected

in the discussion. For n = 16 we have jm�j � 0:12 (cf �gure 6). We note that the

corresponding pulse strength parameter � is quite large and recall that the amplitude of

the cos2-pulse depends quadratically on �. A square-shaped pulse of the same strength

would be much more e�ective as a reduction tool, since EM does not decrease with

the pulse duration (cf �gure 5). It stays at the peak level for all pulse durations. For

a square pulse with the same strength as the cos2-pulse corresponding to n = 16 we

would have jm�j � 0:02.

6. Conclusions

The parametrically pulsed harmonic oscillator undergoes transitions of oscillation

modes, which are interpreted and calculated from a particular, symmetric and well

behaved adiabatic solution of an associated amplitude (Milne) oscillator. Calculations

as well as interpretations of parametric excitations are intuitively powerful in this

theoretical model. Three dynamical quantities EM (where EM+
q
E2
M � 1 is the e�ective

pulse strength), Æ (e�ective phase shift), and � (e�ective pulse duration) are de�ned in

terms of a symmetric and positive solution of the Milne oscillator. They parametrise
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Figure 6. Illustration of a parametrically reduced oscillation.

the transition matrices while relating closely to the pulse properties.

A square-pulse model was studied analytically to illustrate the dynamical

parameters of the theory in relation to the pulse parameters of interrest. We also

studied a �nite-range cos2-pulse by numerical computations to verify the relevance of

the new dynamicalparametrisation as a tool in analysing pulse-induced transitions.
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