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Abstract. The frictionless motion of a particle on a plane billiard table bounded by

a closed curve provides a very simple example of a conservative classical system with

non-trivial, chaotic dynamics. The limiting cases of strictly regular (\integrable") and

strictly irregular (\ergodic") systems can be illustrated, as well as the typical case

which shows an intricate mixture of regular and irregular behavior. Irregular orbits

are characterized by an extremely sensitivity with respect to the initial conditions.

Such billiard systems are exemplarily suited for educational purposes as models for

simple systems with complicated dynamics as well as for far-reaching fundamental

investigations.

1 Introduction

In the past decades, classical physics has witnessed an unexpected, impetuous

development, which has led to an entirely new understanding of the classical

dynamics of simple systems, an area in physics that has usually been presumed

to be generally understood and concluded. It became evident, however, that {

contrary to the concepts conveyed by most physics textbooks { even simplest,

completely deterministic systems may show irregular, chaotic behavior, that is

as unpredictable as the tossing of a coin. Commonly one accepted a random,

stochastic behavior only for a system with a large (� 1023) number of degrees

of freedom, e.g., a gas. It has now been established that such a behavior can be

exhibited by systems with merely two degrees of freedom, hence a very small

number. The motion of a particle in a two-dimensional conservative force �eld,

i.e. in a potential, typically shows chaotic behavior. Since the �rst indication of

chaos in strictly deterministic systems, a torrent of scienti�c studies has set in,

in which the existence of such a \deterministic chaos" has been analyzed and

further veri�ed.

Chaotic systems in physics can be devided into two groups: There are so-

called dissipative systems, where friction is present, and then conservative sys-

tems, where energy is a constant of motion. We shall exclusively deal with the

latter case here. As an introduction to the discussed dynamics of conservative

systems, the textbooks by Lichtenberg and Liebermann [1] and Schuster [2] as

well as the excellent review article by Berry [3] are recommended.

The description of a system with N degrees of freedom necessitates, as we

know, 2N coordinates, namely N position coordinates q = (q1; q2; : : : ; qN ) and

N canonical momenta p = (p1; p2; : : : ; pN ). The time-evolution of the system is
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therefore given by (q(t); p(t)), a curve in a 2N -dimensional space, the so-called

phase space.

This curve is determined by the Hamiltonian di�erential equations of motion

_pi = �
@H

@qi
; _qi =

@H

@pi
; i = 1; : : : ; N : (1)

The textbooks in classical mechanics, with some rare exceptions, deal with so-

called integrable systems, i.e. there exist N independent constants of motion Fj ,

j = 1; : : : ; N , which are functions on phase space whose values do not change

along the trajectory. In addition, one must demand that these functions Fj(q; p)

are \in involution", i.e. their Poisson brackets vanish:

fFj ; Fkg =
X
i

�
@Fj

@pi
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@qi
�

@Fk

@pi

@Fj

@qi

�
= 0 : (2)

Because of the N conditions Fj(q; p) = fj = const:, the motion is restricted

to an N -dimensional manifold in 2N -dimensional phase space whose topology

is that of an N -torus [3{5]. Moreover, this must be true for any trajectory and

therefore the phase space is densely �lled with such nested tori. Such a dynamics

is called regular.

In a so-called conservative Hamiltonian system, the energy is one of the

constants of motion and consequently a one-dimensional conservative system is

always integrable. In the following we shall discuss the simplest non-trivial case,

namely two-dimensional conservative systems, which are thus integrable if there

exists yet another independent conserved quantity F , i.e. with fH;Fg = 0. Inte-

grable systems are, opposed to common belief, extremely rare. The probability

for the integrability of a randomly chosen system with more than one degree of

freedom is equal to zero. Integrability can, however, often be related to symme-

try: the motion of a particle in a central force �eld belongs to the few examples

of integrable systems. The opposite of an integrable system is an ergodic system,

for which almost every orbit �lls the available (for this energy!) phase space

densely. Such an orbit is called irregular or chaotic. There exist only few sys-

tems for which ergodicity has been rigorously proven. One of these systems is

the stadium billiard, i.e. a rectangle with semi-circular ends [6]. The typical case

is a system which is neither fully regular nor chaotic and contains both regular

and irregular orbits. Well-known examples are the double pendulum and the

three-body problem of celestial mechanics.

In order to visualize the complicated dynamics and to simplify its handling,

one uses a reduction of information by introducing a surface of section in phase

space: instead of studying the entire orbit, one keeps track only of the sequence

(qn; pn), n = 0; 1; 2; : : : of its intersection points with this surface of section. In

this manner we obtain a discrete mapping

(qn; pn)
T
�! (qn+1; pn+1) (3)

which associates each intersection point with its successor. For a Hamiltonian

system such a Poincar�e map T is area preserving. The set of all intersection
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points is called the Poincar�e section of the orbit. In such a section one can easily

distinguish the di�erent types of orbits.

Billiard systems are exemplarily suited as models for educational purposes

(as well as for far-reaching fundamental investigations!) since the billiard motion

is easy to comprehend and the numerical treatment does not, opposed to many

other systems, require numerical integration of di�erential equations. This is an

important advantage, since such a computation is, even by using modern com-

puters, comparatively time-consuming, especially since chaotic phenomena are

exhibited in the long-time behavior of an orbit. Furthermore, numerical methods

for solving di�erential equations are not exact, and show instabilities, which can

not always be clearly distinguished from the true chaotic behavior.

2 Billiard Systems

The two-dimensional billiard problem [6,7] describes a point particle moving

without friction on a plane billiard table, bounded by a closed curve. Between

the impacts at the boundary, the particle moves on straight lines with constant

velocity. It is re
ected at the boundary according to the re
ection law: the angle

of incidence is equal to the angle of re
ection. We shall deal with convex billiards

here, i.e. a straight line has at most two intersection points with the boundary

curve, which reads in polar coordinates

r = r(') : (4)

For a suÆciently smooth boundary curve such billiards are non-ergodic [6,8].

In the billiard system, the Poincar�e section evolves quite naturally from the

boundary curve. This means that the intersection points are represented by the

data at impact with the boundary, namely the angle ' at this point and the

direction of the trajectory after the impact, which can be measured by the angle

� with respect to the tangent (see Fig. 1). It is more convenient, however, to use

Pα

r
Sϕ

0 Fig. 1. Boundary curve r(') of a

billiard system, an initial part of

a billiard trajectory and the coor-

dinates: the arc length S(') and

p = cos� (� = angle between tra-

jectory and tangent of the bound-

ary curve).
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the projection on the tangent

p = cos� (5)

and the arc length divided by the total length L of the boundary curve:

S(') =
1

L

Z '

0

p
r2('0) + (dr=d'0)2 d'0 : (6)

The Poincar�e map T relates the data of the n-th impact Pn = (Sn; pn) to the

next one Pn+1 = (Sn+1; pn+1). This mapping can be shown to be area preserving

using these variables:

det
@(Sn+1; pn+1)

@(Sn; pn)
= 1 : (7)

More details about this mapping are given in the appendix. Numerically the

problem is quite simple: one has to compute the intersection of the trajectory

(a straight line) with the boundary curve, which yields the next impact angle

'n+1. Then the arc length Sn+1 is evaluated from eq. (6) and the angle �n+1
between the trajectory and the tangent of the boundary curve at this point is

determined, as well as pn+1 = cos�n+1 and the re
ected trajectory. Then this

process is continued to obtain the next impact data.

2.1 The Billiard Computer Program

For a comfortable study of the billiard dynamics an interactive computer pro-

gram Billiard was developed which allows eÆcient computations without any

prior knowledge of computing. This program is contained in a collection of PC

programs illustrating chaotic dynamics for a selection of systems with applica-

tions in physics [9]. In the billiard program some pre-set billiards can be chosen

or an arbitrary boundary curve r(') can be inserted via the keyboard. The pro-

gram shows position and phase space presentations of an orbit for variable initial

conditions. Comments concerning the numerical algorithm can be found in the

appendix. In the following we describe some numerical experiments which an be

carried out using this program.

3 Integrable Systems

3.1 Circular Billiards

For a circular billiard r(') = r0 the re
ections of the orbit can be evaluated very

easily. One �nds the explicit equation

'n = '0 + 2�n (8)

for the angle of the n-th impact. The direction angle � or the projection p = cos�

on the tangent direction is constant along the orbit which constitutes conserva-

tion of angular momentum L. We have a second constant of motion, L, and the
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circular billiard is therefore integrable. In phase space each orbit lies on a two-

dimensional surface, whose intersection with the (S; p){plane is a curve. Since

the coordinate p represents a conserved quantity, these invariant curves appear

as horizontal lines. For orbits with a rational angle ratio

�n =
m

k
� ; m; k 2 N m < k ; (9)

we have

'n = '0 +
m

k
2�n ; (10)

i.e. the orbits are periodic and close after k cycles. Such an orbit is called k{

periodic. In such a case, the Poincar�e section consists of a series of k discrete

points (Sn; pn), n = 1; : : : ; k, which are traversed periodically:

T k(Sn; pn) = (Sn; pn) : (11)

For this reason the k points (Sn; pn) are called �xed points of the mapping

T k = T Æ T Æ � � � Æ T| {z }
k�times

: (12)

For angles that are not rational multiples of �, the iterated points (Sn; pn) �ll,

with growing n, a horizontal line densely, a so-called invariant curve, because it

is invariant under the Poincar�e map T . Figure 2 shows such an irrational orbit;

radial distances < p are forbidden due to conservation of angular momentum.

Fig. 2. Circular billiard. A non-periodic orbit in position space (left) appears as a

straight line in the phase space diagram (S; p) (right).

The motion along the orbit can be divided into two components: an oscillation

between the inner envelope and the outer boundary curve and a rotation about
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the center. For a k-periodic orbit with � = m�=k the frequencies related to these

partial motions have the ratio
!1

!2
=

m

k
; (13)

i.e. for �=5 we �nd �ve oscillations between the inner and outer boundary curve

and a single rotation of 2�; for 2�=5 we have two such rotations.

3.2 Elliptical Billiards

We shall now consider an elliptical billiard with eccentricity �, i.e. the boundary

curve is given by

r(') =
bp

1� �2 cos2 '
(14)

with semi-minor axis b and semi-major axis a = b(1� �2)�1=2 . Figure 3 depicts

such an ellipse with � = 0:3. For large values of p, the orbits are similar to

those for a circular billiard. Such an orbit �lls an annular area in position space

and possesses an enveloping curve, that separates a forbidden inner region. It

can be shown that this enveloping curve { called caustic { is again an ellipse

with the same foci as the boundary ellipse. The orbit always intersects the large

diameter of the ellipse outside the line connecting both foci. For small values of

p a di�erent type of motion appears: the position space orbit �lls an area which

is bounded by two con-focal hyperbolic curves.

(a) (b)

Fig. 3. Elliptical billiard (eccentricity � = 0:3). Orbits which intersect the main axis

in the sections outside the two foci are bounded by an elliptical envelope (a); orbits

passing between the two foci have a hyperbolic envelope (b).

Figure 4 shows a Poincar�e section in the (S; p){plane for a number of trajec-

tories with di�erent initial conditions. Two di�erent kinds of orbits, as described

above, can be distinguished (compare also Fig. 3). For large p, the iterated phase

space points trace out a more or less undulating curve. For small values of p,

the phase space points alternate between two islands. When iterated, the orbit
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Fig. 4. Elliptical billiard (eccen-

tricity � = 0:3). Shown is a

Poincar�e section in the (S; p){

plane. Di�erent types of orbits

can be distinguished (compare

Fig. 3).

�lls two disconnected closed curves. The two types of motion are separated in

phase space by a separation curve (a separatrix ), that approximately satis�es

the equation

p(S) � �� sin(2�S) (15)

(see below). In the center of the separatrix we �nd a 2{periodic orbit along

the minor axis (with length l = 2b) expressed in other terms: the mapping T 2

possesses a �xed point there. This orbit is stable, i.e. suÆciently close orbits

always remain in its neighborhood [6]. This numerically observed stability can

also be veri�ed analytically using Eqs. (38) and (41) in the appendix, which yield

for the stability matrix of the diametrical two-bounce orbit

M2 =

0
BBB@

2

�
l

�
�1

�2

�1 2 l

�
1�

l

�

�

2

�

�
l

�
�1

��
2�

l

�

�
2

�
l

�
�1

�2

�1

1
CCCA ; (16)

where � is the radius of curvature at the points of impact. The stability condition

jTrM2j < 2 (see Eq. (43)) is in this case simply

l < 2� ; (17)

which immediately implies stability of the orbit along the minor axis (l = 2b <

2�) and instability of the orbit along the mayor axis (here we have l = 2a > 2�)1.

Orbits on the separatrix pass through both foci. These orbits clearly demon-

strate the focal properties of an ellipse. The separatrix orbit with p = 0 is a

2{periodic orbit along the large diameter, which is, in contrast to the small

1 From eq. (39) we easily deduce � = a
2
=b for the minor-axis orbit and � = b

2
=a for

the major axis.
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diameter orbit, unstable, which means that even smallest deviations from the

initial values yield orbits that do not remain in its vicinity. As with the circle,

the impact positions of an orbit either constitute �xed points of the Poincar�e

presentation (rational circular frequency), which implies a periodic orbit, or the

impact positions �ll a curve densely. In this case we have an irrational circular

frequency and the orbit �lls densely a two-dimensional surface in phase space,

whose section is then an invariant curve in Fig. 4. Since this holds true for all

orbits { invariant curves �ll the phase space section completely { the elliptical

billiard and the circular billiard represent integrable systems. Aside from the en-

ergy, there exists yet another conserved quantity, F . A simple consideration [7,9]

shows, that the product of the angular momenta with respect to the two foci re-

mains unchanged in a collision with an elliptical boundary. After an elementary

calculation described in the appendix, one obtains for the invariant

F ('; �) =
1

2

n
r2 � �2a2 +

�
a2 � �2r2 cos2 '

�
cos(2�)

o
: (18)

Minima of F lie at ' = �=2 or 3�=2 with � = �=2, where F has the value

��2a2. On the separatrix we have F = 0 (the orbit passes through both foci).

For small values of � one obtains the expression (15) for the separatrix. The

circular billiard and its constant of motion, the angular momentum L, appears

as a special case of the elliptical billiard.

4 \Typical" Billiards

The elliptical billiard is the only convex billiard with a smooth boundary curve

that leads to integrable dynamics. This conjecture by Poritsky (1950) [10] has

been proven in 1991 by Amiran (see [11], page 120). It is therefore a very atypical

system. As an example of a \typical" billiard we shall in the following study the

boundary curve

r(') = 1 + � cos' (19)

(a similar one has been investigated by Robnik [8]). With increasing deformation

� this curve deforms from a circle, for � = 0, into a cardioid-like curve for � = 1.

In the region between 0 � � � 0:5 the boundary curve is convex. We shall limit

ourselves to this case in the following discussion. Phase space presentations for

� = 0:1 to � = 0:5 are displayed in �gures 5(a) to (d) and 6. One encounters a

qualitatively di�erent behavior compared to the elliptical billiard. The di�erences

become more distinct with growing �. For small deformations � = 0:1 or � = 0:2

the picture structurally resembles closely that of an elliptical deformation of the

circle-billiard: the 2{periodic orbits for p = 0 are broken apart into a stable

and an unstable orbit, which bounce back and forth between (S; p) = (0; 0)

and (1=2; 0) or (1=4; 0) and (3=4; 0), respectively. One should note, however,

that for the curve (19) the diameter of the billiard in the horizontal direction

is independent of �, while the diameter in the vertical direction increases with

�. For small values of �, we �nd a maximum of the diameter at cos' � � with



Chaotic Billiards 9

magnitude a � 1 + �2=2. An ellipse with the same diameters therefore has an

eccentricity (1 � (b=a)2)1=2 � �. If one approximates the billiard by an ellipse,

the latter appears to be turned by 90Æ compared to the one studied in section

3. Apart from this, the basic structures of the phase space diagrams for � = 0:2,

for example, are very similar (compare Fig. 5(b) and Fig. 4).

(a) (b)

(c) (d)

Fig. 5. Phase space diagram (S; p) for the typical billiard (19) for various values of the

deformation parameter: � = 0:1 (a), 0:2 (b), 0:3 (c), 0:4 and (d).
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Fig. 6. Phase space diagram

(S; p) for the typical billiard (19)

for a deformation parameter � =

0:5.

The resemblance with an elliptical billiard for small values of � is merely

super�cial. Even for � = 0:1 some clear island chain structures can be discerned,

a �rst indication for the non-integrability of our billiard. If one studies the island

structures more closely, one �nds in the center of these islands an n{periodic

orbit, for example the 3{periodic orbit in Fig. 5(a) for � = �=3, (p = cos� � 0:5),

the 4{periodic orbit for � � �=4 (p � 0:707) or both 5{periodic orbits at � � �=5

(p � 0:809) and � � 2�=5 (p � 0:309). The centers of the island chains in

Fig. 5(a) consist of stable �xed points of Tn for n = 2; 3; : : :. Between these

stable �xed points one �nds unstable �xed points of Tn. This appears to be quite

similar to the metamorphosis of the 2{periodic orbits in the transition circle !

ellipse (�gure 4). The second major di�erence to the phase space presentation

of the ellipse is the appearance of irregular orbits. One can recognize orbits in

the vicinity of the unstable �xed points, whose Poincar�e sections no longer trace

out a curve but �ll an area in phase space. This necessitates the non-existence

of a constant of motion, and it is therefore quite astonishing that the majority

of orbits behaves as though one existed. Most orbits again �ll, upon iteration,

an invariant curve.

We shall formulate the behavior of our circle-billiard with a small perturba-

tion in a somewhat di�erent manner. The so-called KAM-theorem is important

here, named after the mathematical physicists A. N. Kolmogorov, V. I. Arnold,

and J. Moser, [1{4]. In the proof of this theorem, a suÆciently often di�erentiable

potential is a pre-requisite, which is not ful�lled by our hard-bounded billiard.

The statements of the KAM-theorem can therefore only be applied with some

caution. The KAM-theorem states that for a perturbed integrable system those

invariant curves remain unchanged, whose frequency ratio between radial and

angular oscillation is suÆciently irrational. More precisely, all invariant orbits

with ����!1!2 �
m

k

���� > C(�)

k5=2
(20)
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for arbitrary coprime natural numbers m and k remain unchanged (with the

assumption !1 < !2).

C(�) is a constant depending on the perturbation � of the integrable system

and approaches 0 for � = 0. Around each rational frequency ratio !1=!2 = m=k

there exists a narrow region of the size C(�)k�5=2, in which (20) is not satis�ed.

For a more irrational frequency ratio, i.e. a larger denominator k in m=k, the

region excluded by (20) appears to be more narrow. Since the set of rational

numbers !1=!2 is dense in the interval [0; 1] and for every rational frequency

ratio m=k an entire interval ����!1!2 �
m

k

���� � C(�)

k5=2
(21)

is excluded by (20), one could assume that (20) is practically never satis�ed. This

is, however, not the case. A simple estimate yields for the union of all intervals

violating (20)

X
m<k

0

����!1!2 �
m

k

���� <
X
k

kX
m=1

����!1!2 �
m

k

���� �
X
k

k C(�)k�5=2 = C(�)
X
k

k�3=2 (22)

where the primed sum denotes that m and k have no common integer divisor.

Since the sum
P

k k
�3=2 converges, the interval sum in (22) goes with � to zero (as

C(�) does), i.e. for a suÆciently small perturbation � the area which is not �lled

with invariant curves can be made arbitrarily small. The majority of invariant

curves remains unchanged even in the perturbed system. A closer inspection of

the phase space diagrams 5(a), 5(b) con�rms these statements.

The invariant curves in the zones excluded by the KAM{condition are typi-

cally destroyed. Rational orbits with !1=!2 = m=k decay into `k stable and `k

unstable �xed points, where the natural number ` is often equal to one (compare

the theorem of Poincar�e and Birkho� [3]). This is also con�rmed by Figs. 5(a)

and 5(b).

These statements are valid for small deformations �. With increasing � the

destroyed zones grow, and the chaotic area-�lling orbits in phase space increase.

The \chaotic sea" is, at the beginning, still enclosed by intact invariant curves

(compare Fig. 5(b) ). With increasing � a growing number of invariant curves

is destroyed. For � = 0:3 we �nd an extended chaotic region. All points in this

wide chaotic band jpj � 0:77 are created by a single orbit. Only small islands

with invariant curves remain. For � = 0:4 these regions are further diminished

and for � = 0:5 we �nd only very small visible islands (for example at � = 90Æ,

' = 143:13Æ). All points in Fig. 6 originate from a single orbit.

5 Further computer experiments

5.1 Uncertainty and Predictability

In the previous section we have seen that regular and irregular or \chaotic" or-

bits can be distinguished by their phase space behavior. There exists yet another
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characteristic of chaotic orbits: in the regular case, initially neighboring orbits

remain quite close. For irregular, chaotic orbits this does not hold true and tra-

jectories separate extremely fast. Here very important questions arise concerning

the long-time predictability of strictly deterministic processes.

For the simple case of a circular billiard the e�ects of an initial uncertainty

(Æ'0; Æ�0) can easily be derived. We �nd

Æ'n = Æ'0 + 2Æ�0 n ; (23)

i.e. the errors grow linearly. Similar relations are valid for other integrable cases

and for regular orbits in general. The irregular case is completely di�erent: here

the orbits are very sensitive to small deviations in the initial conditions and the

initial uncertainties grow exponentially :

jÆ'nj = jÆ'0j e
�n ; (24)

where the coeÆcient � is known as the Lyapunov Exponent .

0.1

1

10

0 1 2 3 4 5 6

x

x

x

x

x
x

n

∆ϑ [deg]

Fig. 7. Angle di�erence Æ'n of

two initially close orbits as a func-

tion of the number of impacts n

for a chaotic orbit (�) of the bil-

liard (15) with � = 0:5 and for

a regular orbit (�) of the circle-

billiard.

Figure 7 shows the angular separation for two orbits of the chaotic billiards

(19) for � = 0:5 with '0 = 0 and �0 = 70Æ and 70:1Æ as a function of n

on a logarithmic scale. The exponential law (24) is approximately satis�ed with

� = 0:7. For comparison, the separation of two regular orbits of a circular billiard

is also plotted, where the errors grow linearly.

The consequences of the depicted behavior: An orbit is completely unpre-

dictable if, for example, the angular precision reaches the value Æ'max = 2�.

Under the conditions of Fig. 7 the destiny of the regular orbit is predictable up

to about 1800 impacts with the boundary, in the irregular case merely

nmax =
1

�
ln

Æ'max

Æ'0
�

1

0:7
ln

360

0:1
� 12 : (25)

Doubling the initial precision doubles the predictability of the regular case to

3600 impacts, in the irregular case it only increases by (ln 2)=� to nmax � 12 +
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Fig. 8. Magni�cation of the

neighborhood of the central �xed

point in Fig. 5(c).

(ln 2)=0:7 � 13. This exponential increase in the uncertainty and the merely

logarithmic increase of the predictability is characteristic of chaotic orbits. A

predictability of about 100 impacts with the conditions of Fig. 7 yields a required

initial precision of the angle to be 2�e�70 � 2 � 10�30 . It is therefore impossible,

or only possible with an unrealistic e�ort, to make long term predictions even

for strictly deterministic dynamics.

5.2 Fine Structure in Phase Space

The last example showing the complexity of non-integrable dynamics draws our

attention to the �ne structure of the phase space. We have seen that invariant

curves with a rational frequency ratio break up into chains of stable and unstable

�xed points. Now each of these stable �xed points is itself a center of a system

of invariant curves, which can be broken apart even further. Figure 8 shows a

Fig. 9. Periodic orbit in the cen-

ter of the six islands of Fig. 8.
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Fig. 10. Magni�cation of the is-

land in the upper right corner of

Fig. 8.

Fig. 11. Magni�cation of the is-

land in the upper left corner of

Fig. 10.

magni�cation of the vicinity of the central 2{periodic �xed point of Fig. 5(c).

The neighborhood of this �xed point shows a system of invariant curves with

narrow, broken-up rational orbits. This becomes especially evident for the six

outer islands: they belong to a periodic orbit with period 12 in the center of these

islands. Figure 9 shows these orbits in position space. Magnifying once more, for

example the island at the upper right corner of Fig. 8, one �nds a similar island

structure again, as displayed in Fig. 10. A stable �xed point of T 12 is located

in the center, which is again surrounded by a system of invariant curves and by

regions broken apart into stable and unstable �xed points. Figure 11 shows a

further magni�cation of an island in Fig. 10. In principle, we can continue this

magni�cation into deepest depths. Each �xed point \is a microcosmos of the

whole, down to arbitrarily small scales" (M. V. Berry [3] ).

In the present study we can only give a glimpse of the myriad of fascinating

phenomena of chaotic dynamics, which can be illustrated in a simple fashion

by a billiard system. Much could not be mentioned here, as for example the

metamorphosis of stable periodic orbits with increasing perturbation parameter

by a sequence of period-doublings. We refer to the literature [1{4,6] where these

and other phenomena are discussed.

6 Gravitational Billiards

Another class of frequently studied billiard systems are gravitational billiards , a

mass point moving freely in a homogeneous gravitational �eld which is re
ected

elastically from a hard convex surface (in three space dimensions) or a hard con-

vex boundary curve (in two space dimensions). Here we only consider the latter

case. The most prominent example of such a system is the wedge billiard [12{15].

Figure 12 illustrates the motion in such a symmetric wedge, which consists of a
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sequence of re
ections at the boundary (two straight lines for the wedge billiard)

connected by parabolic trajectories.

g

θ
h

→

Fig. 12. Hopping of a mass point

in a wedge under the action of a

gravitational �eld.

The dynamics can be worked out analytically in this case, leading to a simple

two-dimensional mapping, which can be most conveniently formulated in velocity

space. Using the components vx and vy parallel or orthogonal to the wedge,

respectively, | or even better |

X = vx= cos � ; Y = vy= sin � ; (26)

where � is half of the opening angle of the wedge, one can derive a simple mapping

equation

Xn+1 = F (Xn; Yn) ; Yn+1 = G(Xn; Yn) ; (27)

where F and G are simple elementary functions (see [12{15] for details). Graph-

ically, the iteration can be conveniently displayed in terms of the variables Xn

and Zn = Y 2
n , where the mapping

(Xn; Zn) �! (Xn+1; Zn+1) (28)

is again area preserving. These equations are used for the numerical iterations

and the theoretical analysis. In the displayed velocity space sections, x = vx and

z = v2y are plotted. First of all, conservation of the energy

E =
m

2

�
v2x + v2y

�
+mgh : (29)

where h is the height with respect to the vertex of the wedge, or { using scaled

units {

1 = x2 + z + h (30)

restricts the dynamics in velocity space to the parabolic region

0 � z = 1� x2 � h � 1� x2 : (31)
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Trajectories directly hitting the vertex (h = 0) map to the parabolic boundary

z = 1� x2; the base line z = 0 describes a sliding motion along the wedge and

points on the line x = 0 are trajectories orthogonal to the wedge. Contrary to the

billiard systems discussed in the preceding sections, the dynamics of the wedge

billiard depends on a single parameter, the wedge angle �.

The program Wedge | again chosen from the collection of programs for

chaotic systems [15] | can be used to explore the interesting dynamical features

of the wedge billiard.

Fig. 13. Poincar�e section in velocity space (x; z) for a wedge billiard with wedge half

angle � = 44Æ (left) and � = 17Æ (right).

As an example, Fig. 13 shows the velocity space Poincar�e sections for � = 44Æ

and � = 17Æ. One again observes an interesting island and sub-island structure

(the islands are generated by stable periodic trajectories) embedded in a more

or less extended chaotic sea. With varying wedge angle � the pattern undergoes

interesting structural changes, related to bifurcations of the stability properties

of the underlying skeleton of periodic orbits.

More numerical experiments exploring the wedge billiard can be found in

H. J. Korsch, H.-J. Jodl: Chaos { A program collection for the PC [15]. Let us

�nally note that also gravitational billiards with a smooth boundary curve have

been explored in context with trapping of atoms in gravitational cavities (see,

e.g., [16,17]); in particular it has been shown that the parabolic gravitational

billiard is integrable.

7 Quantum Billiards

As demonstrated above, billiard systems helped us to investigate and illustrate

the fascinating features of chaotic dynamics. However, these systems are classical

and, as we all know, on small scales we enter the world of quantum mechanics.
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Immediately a seemingly simple question arises: Does chaos also exist for quan-

tum systems? Up to now, this question has not been fully answered. (As a simple

exercise, an unexperienced reader should note that quantum dynamics is gov-

erned by linear equations, whereas classical chaos originates from nonlinearity.)

In a milder formulation, one could pose the question: "Are there signatures of

classical chaotic dynamics in quantum systems?" A discussion of this problem

can be found in recent textbooks by F. Haake [18] and M. Gutzwiller [19] (see

also [20{22]).

Most of our knowledge in this �eld is again based on computational (and,

more recently, also experimental) studies of some model systems. Here we will

con�ne ourselves to quantum studies of billiard systems, or closely related studies

of wave dynamics in cavities.

Figure 14 shows an example of such a study of \postmodern quantum me-

chanics" [21]. Shown is the motion of a wave packet in the stadium billiard

[21,23], which is classically ergodic. After a short time the quantum wave func-

tion is completely delocalized.

Fig. 14. Motion of an initially localized

wavepacket in a stadium billiard [21].

Fig. 15. Quantum corral on a metal

surface [24].

Related experimental studies investigate waves on a metal surface and quan-

tum corrals [24], the transport of electrons through billiard shaped quantum dots

(see, e.g., [25]) or wave-propagation in various macroscopic systems, which serve

as substitute of quantum dynamics because of the similarity of the Helmholtz

and the Schr�odinger equation. Such systems are microwave cavities (see, e.g.,

[26{28]), light propagation in optical cavities [29], water surface waves in water

tanks [30], or even vibrating soap �lms [31].

In such studies of quantum (or wave) dynamics the classical chaoticity is man-

ifested in di�erent ways. A prominent example is the nearest-neighbour spacing

distribution [19,18], which is Poisson distributed for classically integrable and

Wigner distributed for classically ergodic systems. In many cases one also ob-

serves so-called `scars', i.e. states whose wave function localizes on (unstable)

classically periodic orbits. It is a topic of contemporary semiclassical analysis to

investigate the connection between the classical periodic orbits (note that these
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orbits form the skeleton of the classical phase space structure) and the quantum

eigenstates [19].

Finally, we would like to mention the recent experiments by M. Raizen in-

vestigating the (quantum) dynamics of atoms in strong laser �elds, where a

gravitational wedge billiard (compare the end of the preceding section) is cre-

ated by (blue-detuned) laser light which re
ects the atoms. The chaotic motion

of the atoms is then used in a cooling scheme aiming at the production of a

Bose-Einstein condensate [32].

Appendix

Billiard Mapping

Following [9] we give a brief description of the evaluation of the billiard mapping.

Let us assume that the angles 'n and �n are given. Then the angle #n between

the positive direction of the tangent and the radial ray is given by

tan#n =
r(')

dr=d'

����
n

(32)

and the direction �n of the trajectory (i.e. the angle it forms with the ' = 0

direction) is

�n = � + 'n + �n � #n : (33)

Hence, the straight line trajectory after impact n is given in polar form by

R(') = r('n)
sin (�n � 'n)

sin (�n � ')
: (34)

The next impact coordinate 'n+1 is determined by the intersection of the line

(34) with the boundary r('), i.e. the solution of the equation

R(')� r(') = 0 : (35)

βn

αn

ϑn

ϕn

Pn

R(ϕ)
ϕn + 1

r (ϕ)

αn + 1

ϑn + 1

αn + 1

Pn + 1

Fig. 16. Billiard mapping (�n; 'n)! (�n+1; 'n+1).
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When r(') is convex, there exists only one further solution, 'n+1, in addition to

'n, which is numerically extracted by the Newton iteration scheme. The angle

of the trajectory with respect to the tangent in 'n+1 is

�n+1 = 'n+1 � 'n + #n � #n+1 � �n ; (36)

as illustrated in Fig. 16. The succeeding boundary re
ections are computed by

repeating these steps.

Stability Map

For an investigation of the stability properties of an orbit, a useful linearization

of the billiard Poincar�e mapping (Sn+1; pn+1)
T
�! (Sn; pn) and its linearized

matrix form

�
dSn+1

dpn+1

�
=

@(Sn+1; pn+1)

@(Sn; pn)

�
dSn

dpn

�
=Mn+1;n

�
dSn

dpn

�
(37)

is known [6], which we here formulate for n = 0:

M1;0 =

0
BB@

�
q0

q1
+

l10

q1�0
�

l10

q0q1

�
l10

�0�1
+

q1

�0
+

q0

�1
�
q1

q0
+

l10

q0�1

1
CCA (38)

with qi = sin'i. Here, the length of the straight line segment from P0 to P1 is

denoted by l10 , and �i is the radius of curvature at 'i given by

�(') =
(r2 + r0 2)3=2

r2 + 2r0 2 � rr00
; (39)

with r = r('), r0 = dr=d' and r00 = d2r=d'2. The determinant of M10 is equal

to unity, i.e. the mapping T is area-preserving.

The linearization of the iterated map Tn(S0; p0) is

Mn0 =

nY
i=1

Mi;i�1 ; (40)

where the Mi;i�1 have the form (38). For the special case of a periodic n-bounce

orbit, we have (Sn; pn) = (S0; p0), and the deviation map

Mn =M0;n�1Mn�1;n�2 � � �M1;0 (41)

determines its stability: the eigenvalues of the stability matrix M are given by

�� =
1

2

n
TrM�

p
(TrM)2 � 4

o
(42)



20 Hans J�urgen Korsch and Frank Zimmer

(detM = 1) and therefore the condition for stability is (see, e.g., [15], p.40)��TrM�� < 2 : (43)

In this case the eigenvalues are complex conjugate with modulus unity and small

deviations from the �xed point remain small, whereas in the opposite case we

have a pair of real valued eigenvalues, where one of them has modulus bigger

than one, i.e. a typical deviation from the �xed point will blow up.

Elliptical Billiard: Constant of Motion

It is easy to construct the invariant for the elliptical billiard. Let r1 be the

vector from the focal point F1 to the point of impact. Before the collision with

the boundary, the angular momentum with respect to F1 is

L1 = p r1 sin 
1 ; (44)

where p is the (constant) momentum and 
1 is the angle between r1 and the

trajectory. This angle is determined by the angle � between the trajectory and

the tangent and the angle � between the focal ray and the normal at the point

of impact by 
1 = �=2� �� � (compare Fig. 17). Similarly we have

L2 = p r2 sin 
2 (45)

with 
2 = �=2��+� (note that the normal bisects the angle between the focal

rays).

After the collision with the boundary, we have angular momenta L1 = p r1 sin 

0

1

and L2 = p r2 sin 

0

2 with 
01 = 
2 and 
02 = 
1 as can be seen from Fig. 16.

Therefore the product is conserved:

L01L
0

2 = L1L2 (46)

and elementary algebra yields the formula (18) for the constant of motion F =

L1L2=p
2.

α

F2 F1

β
β

α

Fig. 17. Billiard mapping (�n; 'n)! (�n+1; 'n+1).
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