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Abstract

A pure Yang-Mills theory extended by addition of a quartic term is con-

sidered in order to study the transition from the quantum tunneling regime

to that of classical, i.e. thermal, behaviour. The periodic �eld con�gurations
are found, which interpolate between the vacuum and sphaleron �eld con�g-

urations. It is shown by explicit calculation that only smooth second order
transitions occur for all permissible values of the parameter � introduced
with the quartic term. The theory is one of the rare cases which can be

handled analytically.
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1. Introduction.

One of the amazing phenomena of quantum physics is the barrier penetra-

tion due to tunneling processes. The occurrence of such processes in di�erent

areas of physics (solid state physics, high energy multiparticle scattering with
baryon number violation, low-temperature physics, nuclear reactions, the for-

mation of the Universe etc.) does not leave any doubt that they do actually

take place. The theory of tunneling has been studied in many ways. It has

become evident that such processes are due to classical con�gurations, which

are solutions of the classical equation of motion with Euclidean time, namely
stable vacuum con�gurations, now called instantons, which are responsible
for transitions between topologically distinct vacua (relevant in explaining

the high energy multiparticle collisions accompanied by baryon number vio-
lation) [1-4] and unstable periodic con�gurations called periodic instantons

and periodic bounces, which determine the decay of metastable physical sys-

tems [5-7]. On the basis of the latter a theory of barrier penetration at
�nite energies has been developed [8-12]. In particular it was shown, that
the transition from temperature assisted tunneling to thermal activation can
be considered as a phase transition which takes place as the temperature

(or energy) of the system increases. Dissipative forces do not a�ect the gen-
eral features of transitions. At zero temperature the barrier penetration is
determined by tunneling with a rate controlled by vacuum instantons and

is proportional to exp(�S) where S is the action. As the temperature in-
creases the tunneling process (temperature assisted tunneling) begins to be

suppressed and at su�ciently high energies (comparable with the height of
the potential barrier) the system overrides the barrier (by thermal activation)

and the penetration is governed by the Boltzman factor exp(�E0=kT ) where

E0 is the energy of the system, corresponding to a particle sitting at the top
of the barrier (the sphaleron). The con�gurations, which interpolate between

these two processes are the periodic instantons [13-15]. It was recently dis-
covered, that depending on the shape of the potential barrier a transition of

the �rst order (i.e. a sharp transition) is also possible [16]. In the context
of the Higgs model with some e�ective potential this type of transition was

known before [17]. In refs. [18,19] criteria for the occurrence of the transi-
tion of the �rst order have been derived and examined for various quantum

mechanical models. Furthermore it has been shown [20-21], that the periodic

instantons may have bifurcations, which qualitatively change the behaviour

of the phase transitions at �nite temperature.
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Recently large-spin systems turned out to be of increased interest, as

these exhibit the �rst order phase transitions [22,23]. The speci�c feature

of these systems is a nonlinearity of the kinetic term. This could hint at

the existence of sharp �rst order transitions in �-models. One should keep

in mind, that although the general theory of tunneling is well understood ,
only few examples are known, which make it possible to analyse the prob-

lem of phase transitions by explicit analytical calculations. In �eld theory

the problem is even more complicated. In spite of these drawbacks one has

succeeded to investigate the problem in some �eld-theoretical models numer-

ically or by reducing the problem to a quantum mechanical one [24-29]. In
the present work we consider a nonabelian globally SU(2)-invariant theory
in four dimensions and show analytically, that the phase transitions are of

second order. The model we consider here is one of the very few in more than
two dimensions which can be treated analytically and therefore deserves par-

ticular attention even in spite of its idealisation.

2. The model

The model we consider is described by the Euclidean action

S =
Z
d4x

(
1

4
F��aF��a �

�g2

12
(A�aA�a)

2

)
(1)

in which as usual

F��a = @�A�a � @�A�a + g"abcA�bA�c: (2)

Although the additonal quartic term breaks the local gauge invariance the

model is still globally SU(2)-invariant and is of interest from a �eld-theoretical
point of view. The model admits pseudoparticle-antipseudoparticle classical

�eld con�gurations[30]. We present below periodic �eld con�gurations, which

are responsible for quantum-classical phase transitions. In what follows we
shall work in the framework of a �eld-theoretical approach [31], which is

constructed on the sphere S3 embedded in a 4-dimensional Euclidean space.
This approach is especially convenient for conformally invariant theories, as

the system can be considered to evolve along the radius of S3; in which case

the operator of scale transformations becomes an evolution operator. Thus

the radius r, namely the parameter � = ln r; is a proper time of the physical

system and the operator of scale transformations is considered as the \scaled

energy" of the system.
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We shall illustrate this by considering the simplest example of the scalar

�eld �(x). The general conformal group contains a dilatation operator D

de�ned in terms of the �eld �(x) as

D =
Z
d3xx�T4�

where T�� is the energy-momentum tensor. The scaling transformation for

the �eld is

i[D;�(x)] = x�@��(x) + �(x):

We introduce spherical coordinates in 4-dimensional Euclidean space by set-
ting

x� = rn� (3)

with a unit vector

n� = (sin sin � cos �; sin sin � sin �; sin cos �); (4)

and de�ne the �eld �(r; n�) = r�(x). In terms of the new coordinates and
the �eld �(r; n�) the transformation law reads:

i[D;�(r; n�)] =
@�(r; n�)

@ ln r
;

which makes the role of D as the evolution operator evident. One can also
�nd the following integral representation for D:

D =
Z
d


(
@L

@@�=@ ln r

@�

@ ln r
� L

)
;

which is the Legendre-transform of the Lagrangean L integrated over the
angles. The action of the system is then

S =
Z
d ln rd
L:

Thus we conclude, that in �eld theory constructed on S3 the energy is re-

placed by the eigenvalues of the operator of the scaling transformations. The

temperature is de�ned as the inverse of the period of periodic �eld con�gu-

rations expressed in terms of the proper time ln r. The period is determined
as the derivative of the action with respect to the \scaled energy".
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We now return to our model. We look for periodic �eld con�gurations of

period P (E), where E is a \scaled energy" of the system, which interpolate

between the vacuum and the unstable �eld con�guration named sphaleron

as the proper time � varies from �P (E)=2 to P (E)=2: We make the Ansatz

A�a =
1

g
�a��n�

�(r)

r
(5)

with the spherically symmetric function �(r) to be determined. Performing
the integration over the angle variables we obtain (with � = ln r):

S =
6�2

g2

Z
P (E)=2

�P (E)=2
d�

8<
:12

 
@�(� )

@�

!2

+ V (�(� ))

9=
; ; (6)

in which V (�(� )) is an e�ective potential in terms of the function �(� ):

V (�(� )) =
(2� �)

4
�4(� )� 2�3(� ) + 2�2(� ): (7)

The shape of the potential depends on the parameter �. The potential
V (�(� )) is quartic except for � = 2 in which case it becomes cubic. For
nonzero values of � the potential is asymmetric, indeed for 0 < � < 2 there
are two unequal minima at

�1min = 0; �2min =
3 +

p
1 + 4�

2� �
> 0 (8)

and one maximum at

�max =
3�

p
1 + 4�

2� �
> 0: (9)

For � > 2 the shape of the potential is changed and there are two maxima
at

�lmax =
�3�

p
1 + 4�

�� 2
< 0; �smax =

�3 +
p
1 + 4�

�� 2
> 0; (10)

with the small and large barriers Vsmax and Vlmax and one minimum at

�min = 0: (11)
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In the case of � = 2 the potential is cubic with the minimum at �c = 0 and

maximum at �c = 2=3 . The case of � = 0 is just the gauge theory with

local SU(2)-symmetry and the e�ective potential is symmetric in this case

with two minima at � = 0; 2 and one maximum at � = 1. All these cases are

shown in Fig. 1. The points of intersection of the line E = const with the
potential determine the turning points of the periodic motion.

3. Quantum-classical transitions.

1. The case 0 < � < 2.

The equation of motion for nonzero constant of integration E reads:

1

2

 
@�

@�

!2

= V (�(� ))� E: (12)

The solution, which satis�es the periodicity condition �(� +P (E)) = �(� ) is
found to be:

�(� ) =
c(b� d)� d(b� c)sn2(B(�;E)� +K(k); k)

(b� d)� (b� c)sn2(B(�;E)� +K(k); k)
; (13)

in which

B(�;E) =

s
(2 � �)

8

q
(b� d)(a� c); (14)

and k is the modulus of the Jacobian elliptic function

k =

vuut(b� c)(a� d)
(a� c)(b� d)

: (15)

The function K(k) is the complete elliptic integral of the �rst kind. The

quantities a; b; c; d with a > b > c > d are turning points of the motion (see

Appendix). The solution corresponds to the periodic motion from the point

c via the maximum of the potential to b and back. The period of motion is

P (E) =
2K(k)

B(�;E)
; (16)
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so that

�(�P (E)=2) = �(P (E)=2) = c and �(0) = b:

The period P (E) is a monotonous function of the energy, as shown in Fig. 2.

This indicates that the quantum-classical phase transition is of second order.

Substituting the solution into the action and integrating over the period gives
the following expression:

S(�;E) =
6�2

g2

�
EP (E) +D(�;E)K(k) +G(�;E)E(k)+

H(�;E)�(�2; k)

�
; (17)

with

�2 =
b� c
b� d

> 0

The functions D(E); G(E); H(E) are de�ned in the Appendix. The func-
tions K(k); E(k) and �(�2; k) are complete elliptic integrals of the �rst,
second and third kind respectively. In semiclassical approximation the solu-

tion describes the quantum tunneling process. As the solution responsible
for the thermal activation we choose the constant solution of the equation
of motion, namely �(� ) = �max which corresponds to the \particle" with
the maximal energy E = Vmax = V (�max) sitting at the top of the potential

barrier. The action of this con�guration is

S0(T ) =
6�2

g2
Vmax

T
; (18)

where T is the temperature. In Fig. 3 we display the action-versus-tempera-

ture plot (with P (E) = 1=T (E) in (17)). One can see, that the transition is
of the second order with the transition temperature Tcr = 0:24.

The case of � = 0 (theory with local symmetry) is included in our formu-

lae for 0 < � < 2 by setting � = 0. Nevertheless we give the exact expressions
for the solution of the problem. The turning points for the periodic motion

with �nite\energy" as the solutions of the equation

V (�) =
1

2
�4 � 2�3 + �2 = E
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are:

1 �
q
1 +

p
E; 1�

q
1�

p
E; 1 +

q
1 �

p
E; 1 +

q
1 +

p
E:

The periodic �eld con�guration, which describes the motion between the

points 1 �
q
1 �

p
E and 1 �

q
1 +

p
E is

�(� ) = 1 +

q
1 �

p
Esn

q
1 +

p
E(� + P0(E)=2) (19)

and satis�es the condition �(�P0(E)=2) = �(P0(E)=2), in which

P0(E) =
4q

1 +
p
E
K(k0)

is a period of motion with modulus

k0 =

vuut1�
p
E

1 +
p
E
:

The values of the actions corresponding to the periodic motion and the static
�eld con�guration � = 1=2 (at the top of the barrier) are then

S0(E) =
6�2

g2

(
E

T (E)
+
4

3
(1 +

p
E)

q
1�

p
E
h
(1 + k20)E(k0)� (1 � k20)K(k0)

i)
;

S0st =
3�2

g2T
:

with temperarute T0(E) = P�10 (E). The period is a decreasing function of
the energy and the phase transition is of second order. Finally we mention,
that although we have restricted ourselves to positive values of the parameter

�, some negative values may also be allowed, in particular one sees from the

expressions of the extrema of the potential V (�(� )) that the maximum exists
for �1=4 < �. For the values of � � �1=4 the potential V (�(� )) does not

have a maximum any more.

2. The case � > 2.

In the case of � > 2 the \particle" sitting in the potential well with
minimal energy can move in the direction of either a bigger or smaller barrier.
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The solutions of the �eld equations in both cases will be presented in the form,

which is di�erent from that given by (13). The turning points as > bs > al >

bl are given by

as = ms + ns; bs = ms � ns; al = ml + nl; bl = ml � nl;

where = ms; ns; ml; nl are determined in the Appendix. We consider �rst

the motion to the small barrier. In this case the periodic �eld con�guration

is:

�s(� ) =
qsbs + psas � (qsbs � psas)cn

�q
(��2)psqs

2
(� + Ps(E)=2); ks

�

qs + ps � (qs � ps)cn
�q

(��2)psqs
2

(� + Ps(E)=2); ks

� ; (20)

with the conditions

�s(�Ps(E)=2) = �s(Ps(E)=2)) = a;

�s(�Ps(E)=4) = �s(Ps(E)=4) = Vlmax; �s(0) = b:

The real quantities qs; ps and the modulus ks of the Jacobian elliptic func-

tions are de�ned as

qs = (ml � as)2 � n2l ; p2
s
= (ml � bs)2 � n2l ;

ks =
1

2

s
4n2

s
� (ps � qs)2

psqs
:

The period of the motion

Ps(E) = 4

s
2

(�� 2)psqs
K(ks) (21)

is again a monotonically decreasing function of the energy E. The action
integrated out over the period is a linear combination of complete elliptic

integrals:

Ss(�;E) =
6�2

g2

�
EPs(E) +Ds(�;E)K(ks) +Gs(�;E)E(ks)+

Hs(�;E)�(
a2
s

�2
s
� 1

; ks)
�
; (22)
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with

�2
s
=
ps � qs
ps + qs

The coe�cients Ds(E); Gs(E); Hs(E)) are given in the Appendix. Fig. 4

a) shows the action-versus-temperature plot, in which

Ss0(T ) =
6�2

g2
Vsmax

T

is an action corresponding to the top of the small barrier.

In the case of motion to the large barrier the solution is de�ned by formula
(21) with appropriately replaced coe�cients, in particular

�l(� ) =
qlbl + plal � (qlbl � plal)cn

�q
(��2)p

l
q
l

2
(� + Pl(E)=2); kl

�

ql + pl � (ql � pl)cn
�q

(��2)p
l
q
l

2
(� + Pl(E)=2); kl

� ; (23)

This solution corresponds to periodic motion starting at the point al, going
to bl and back to al. The quantities pl; ql are given by

ql = (ms � al)2 � n2s; p2
l
= (ms � bl)2 � n2s:

The period Pl(E) is a monotonically decreasing function of E and is given

by (20) with ks replaced as

ks ! kl =
1

2

vuutn2
l
� (pl � ql)2

plql

The action Sl(�;E) is also de�ned by (22) with di�erent coe�cients Dl(E);

Gl(E); Hl(E) (see Appendix) and the parameter

�2
l
=
pl � ql
pl + ql

instead of �2
s
. The action of the sphaleron in this case is expressed through

the value Vlmax:

Sl0 =
6�2

g2
Vlmax

T
:

The corresponding diagrams, again showing the existence of the smooth sec-

ond order phase transition, are shown in Fig. 4 b). The critical temperatures
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are Tlcr = 0:58 and Tscr = 0:38. One can see, that tunneling through the small

potential barrier dominates that of the large barrier (Sl(�;E) > Ss(�;E) for

a given \energy" E). With increase of the parameter � this di�erence is di-

minished. In Fig. 5 we display the behaviour of f(�) = Sl(�;E)� Ss(�;E)
as a function of � at the \energy" E = 0:1.

3. The case � = 2.

In the case of � = 2 the �nite \energy" periodic solution of the equation

of motion is

�c(� ) =
bc(ac � dc)� dc(ac � bc)sn2(

q
ac�dc

2
(� + P (E)

2
))

(ac � dc)� (ac � bc)sn2(
q

ac�dc

2
(� + P (E)

2
))

; (24)

in which

kc =

s
ac � bc
ac � dc

is the modulus of the elliptic functions and the quantities ac > bc > dc are
turning points given by the solutions of the cubic equation

� 2�3 + 2�2 = E: (25)

The solution describes a motion from the point bc to ac and back. The period
of motion

P (E) =
2
p
2K(kc)p
ac � dc

is a monotonic function of E. The action integrated over the period P (E)

reads:

Sc(�;E) =
6�2

g2

8<
: E

T (E)
+
8(bc � dc)2

5

s
ac � dc

2

�
" 

2(2 � k2
c
)

3(1� k2
c
)2
�

2

1� k2
c

!
E(kc)�

(2 � k2
c
)

3(1 � k2
c
)
K(kc)

#)
: (26)

The maximum of the potential is 8=27 and thus the action of the static �eld

�c is Sc0 = 16�2=9T . The\energy" dependence of the period and the action-

versus-temperature diagrams con�rm the existence of the phase transitions
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of the second order and we do not reproduce the corresponding diagrams.

Conclusions

Above we demonstrated that in the model considered the smooth phase
transitions of the second order take place. This is not surprising, since it is

known from general arguments that in theories with cubic and quartic terms

the phase transitions of the second order occur. Although our considerations

are explicit they are based on the Ansatz (5), which singles out a class of

periodic �eld con�gurations (which are nonselfdual) reducing the problem to
the one-dimensional one. In order to check the criteria for occurrence of a
transition of the �rst order [19] one has to investigate 
uctuations around a

static (in our model constant) con�guration. The nonselfdual character of the
solutions complicates the second order 
uctuation di�erential equations for

derivation of analytical solutions considerably, so that this is not attempted

here.
Acknowledgment. J.-Q.L.and D. K. Park are indebted to The Deutsche

Forschungsgemeinschaft (Germany) for �nancial support of visits to Kaiser-
slautern

Appendix

We here give some explicit formulae referred to above for the 3 possible
domains of the parameter �.

a) 0 < � < 2:
The turning points of the periodic motion as solutions of the equation

(2� �)
4

�4 � 2�3�2 = E

are:

a =
1

2
(r +

q
r2 � 2r + y) +

1

2

s
2(r2 � r � y) + 2r

r2 � 2r
p
r2 � 2r + y

;

b =
1

2
(r +

q
r2 � 2r + y)�

1

2

s
2(r2 � r � y) + 2r

r2 � 2r
p
r2 � 2r + y

;

c =
1

2
(r �

q
r2 � 2r + y) +

1

2

s
2(r2 � r � y)� 2r

r2 � 2r
p
r2 � 2r + y

;

11



d =
1

2
(r �

q
r2 � 2r + y)�

1

2

s
2(r2 � r � y)� 2r

r2 � 2r
p
r2 � 2r + y

;

in which

r =
4

2 � �
;

y =
1

3
r + 2

vuut1

3

 
r2

3
� rE

!
cos

0
@1
3
arctan

2
q
� 2

27
E(E � Vmax)(E � V2min)

� 2
27
r3 + 1

2
r2(r � 4

3
E)

1
A :

One checks, that the quantities a; b; c; d are real for \energies" E in 0 <

E < Vmax. The coe�cients in the expression for the action S(�;E) are
de�ned as

D(�;E) =
4B(�;E)

�2
(b�c)2

 
�2k2 + �2 � 3k2

3(1� �2)
+
(2�2k2 + 2�2 � �4 � 3k2)2

8(1� �2)2(k2 � �2)

+
k2(2�2k2 + 2�2 � �4 � 3k2)

12(1 � �2)(k2 � �2)

!
;

G(�;E) =
4B(�;E)(b� c)2

k2 � �2

 
�2k2 + �2 � 3k2

3(1 � �2)
+
(2�2k2 + 2�2 � �4 � 3k2)2

8(1 � �2)2(k2 � �2)

!
;

H(�;E) =
4B(�;E)(b� c)2

�2

�
�k2+

(�2k2 + �2 � 3k2)(2�2k2 + 2�2 � �4 � 3k2)

(1 � �2)(k2 � �2)
+
(2�2k2 + 2�2 � �4 � 3k2)3

8(1 � �2)2(k2 � �2)2

!
:

b) � > 2:
The quantities ms; ns; ml; nl which determine the turning points in this

case, are given by

ms =
1

2
(�r +

q
r2 + 2r + y);

ns =
1

2

r
4r(r + 1) � (r �

q
r2 + 2r + y)2 + 4

q
y2 � rE;

ml =
1

2
(�r �

q
r2 + 2r + y);

nl =
1

2

r
4r(r + 1) � (r +

q
r2 + 2r + y)2 � 4

q
y2 � rE;

12



with

r =
4

�� 2

and

y = �
1

3
r+2

vuut1

3

 
r2

3
+ rE

!
cos

0
@1
3
arctan

2
q
� 2

27
E(E � Vmin)(E � Vmax)
2
27
r3 + 1

2
r2(r + 4

3
E)

1
A :

The coe�cients which appear in the action Ss read:

Ds(�;E) =
8p2

s
q2
s
(as � bs)2

3�4
s
(ps + qs)4

s
(�� 2)psqs

2

"
�4k2

s
�

2(6k2
s
+ �2

s
� 2�2

s
k2
s
)

(�2
s
� 1)(�2

s
+ k2

s
� �2

s
k2
s
)

�
3(2�2

s
k2
s
� �2

s
� 2k2

s
)2

(�2
s
� 1)2(�2

s
+ k2

s
� �2

s
k2
s
)2

+
2k2

s
(2�2

s
k2
s
� �2

s
� 2k2

s
)

(�2
s
� 1)(�2

s
+ k2

s
� �2

s
k2
s
)

#
;

Gs(�;E) =
8p2

s
q2
s
(as � bs)2

3�4
s
(ps + qs)4

s
(�� 2)psqs

2

"
2�2

s
(6k2

s
+ �2

s
� 2�2

s
k2
s
)

(�2
s
� 1)(�2

s
+ k2

s
� �2

s
k2
s
)
+

3�2
s
(2�2

s
k2
s
� �2

s
� 2k2

s
)

(�2
s
� 1)2(�2

s
+ k2

s
� �2

s
k2
s
)2

#
;

Hs(�;E) =
8p2

s
q2
s
(as � bs)2

3�4
s
(ps + qs)4

s
(�� 2)psqs

2

 
12k2

s

1 � �2
s

+

3(2�2
s
k2
s
� �2

s
� 2k2

s
)3

(�2
s
� 1)3(�2

s
+ k2

s
� �2

s
k2
s
)2

+
3(2�2

s
k2
s
� �2

s
� 2k2

s
)(6k2

s
+ �2

s
� 2�2

s
k2
s
)

(�2
s
� 1)2(�2

s
+ k2

s
� �2

s
k2
s
)

!
:

The corresponding quantities in Sl(�;E) are obtained by the following re-
placements:

as; bs ! al; bl; �s ! �l ks ! kl; ps; qs ! pl; ql:

c) � = 2:

The turning points in this case are the solutions of the cubic equation
(25), in particular:

ac =
1

3
+ cos

�

3
; bc =

1

3
+ cos

�+ 2�

3
+; dc =

1

3
+ cos

�+ 4�

3
;

in which the angle � is de�ned by

tan
�

3
= �

2
q
�1

4
(� 2

27
+ E

2
)2 + 1

27

� 2
27
+ E

2

:
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Figure captions

FIG. 1. Di�erent shapes of the e�ective potential for di�erent values of

�.

FIG. 2. Energy dependence of the period for � = 1=8; which is typical

for all �.

FIG. 3. The action-versus-temperature diagram: The solid line repre-

sents the action of the periodic instanton and the dashed line the action of

the sphaleron �(� ) = �max for � = 1=8:

FIG. 4. The action-versus-temperature diagrams: a) For the small bar-
rier the solid line represents the action Ss(�;E) of the periodic instanton
and the dashed line the action Ss0 of the the sphaleron �(� ) = �smax at

� = 14. b) For the large barrier the solid line represents the action Sl(�;E)
of the periodic instanton and the dashed line the action Sl0 of the sphaleron
�(� ) = �lmax at � = 14.

FIG. 5. The di�erence of the actions Sl(�;E) and Ss(�;E) as a function

of the parameter � at the \energy" E = 0:1.
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