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Abstract

The duality symmetries of various chiral boson actions are investigated using D = 2 and

D = 6 space-time dimensions as examples. These actions involve the Siegel, Floreanini-

Jackiw, Srivastava and Pasti-Sorokin-Tonin formulations. We discover that the Siegel,

Floreanini-Jackiw and Pasti-Sorokin-Tonin actions have self-duality with respect to a com-

mon anti-dualization of chiral boson �elds in D = 2 and D = 6 dimensions, respectively,

while the Srivastava action is self-dual with respect to a generalized dualization of chiral

boson �elds. Moreover, the action of the Floreanini-Jackiw chiral bosons interacting with

gauge �elds in D = 2 dimensions also has self-duality but with respect to a generalized

anti-dualization of chiral boson �elds.
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1 Introduction

Chiral p-forms, sometimes called chiral bosons, are described by an antisymmetric pth

order tensor A(p) in the D = 2(p+ 1) dimensional space-time, whose external di�erential

F (p+1)(A) = dA(p) satis�es the self-duality condition

F
(p+1)

� F (p+1)(A)� �F (p+1)(A) = 0; (1)

where �F (p+1)(A) is de�ned as the dual partner of F (p+1)(A). In the space with the

Lorentzian metric signature, the self-duality requires A(p) to be real if p is even, or complex

if p is odd. In the latter case the theory can equivalently be described by a pair of real

antisymmetric tensor �elds related by a duality condition.

Chiral bosons have attracted much attention because they play an important role in

many theoretical models. InD = 2 dimensional space-time, they occur as basic ingredients

and elements in the formulation of heterotic strings [1] and in a number of statistical

systems [2]. In D > 2 dimensional space-time, they form an integral part in D = 6

and type IIB D = 10 supergravity and M-theory �ve-branes [3-6]. Since the equation

of motion of a chiral boson, i.e., the self-duality condition, is �rst order with respect to

the derivatives of space and time, it is a key problem to construct the corresponding

action and then to quantize the theory consistently. To this end, various formulations of

actions have been proposed [7-12]. These actions can be classi�ed by manifestly Lorentz

covariant versions [7-10] and non-manifestly Lorentz covariant versions [11,12] when one

emphasizes their formalism under the Lorentz transformation, or by polynomial versions

[7-9] and non-polynomial version [10] when one focuses on auxiliary �elds introduced in

the actions. Incidentally, there are no auxiliary �elds introduced in the non-manifestly

Lorentz covariant actions [11,12].

Many proposals have been suggested to construct chiral boson actions, among which

are four typical ones [7,11,8,10] we are interested in here. The �rst scheme, proposed by

Siegel [7], is to impose the square of the self-duality condition upon a pth order antisym-

metric tensor �eld through the introduction of an auxiliary tensor �eld as a Lagrange
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multiplier. The problem is that the Siegel action su�ers from an anomaly of gauge sym-

metries. However, it is possible [7] to cancel the anomaly either by introducing a Liouville

term or by taking a system of 26 chiral bosons. The second proposal, by Floreanini and

Jackiw [11] only in D = 2 dimensions, is to o�er a unitary and Poincar�e invariant for-

mulation by means of a �rst order Lagrangian in the following three ways: (i) a nonlocal

Lagrangian in terms of a local �eld, (ii) a local Lagrangian in terms of a nonlocal �eld,

and (iii) a local Lagrangian in terms of a local �eld which is of fermionic character. The

equivalence between item (ii), known as the Floreanini-Jackiw formulation, and the Siegel

formulation in D = 2 dimensions has been shown by Bernstein and Sonnenschein [13],

and the intrinsic relation between items (i) and (iii) has also been uncovered by Girotti

et al.[14] from the point of view of chiral bosonization. In addition, the Floreanini-Jackiw

formulation has been generalized to D = 2(p + 1) dimensional space-time by Henneaux

et al.[12]. The third proposal, suggested by Srivastava [8] by following Siegel's idea but

adding the self-duality condition itself, gives rise to the so-called linear formulation of chi-

ral bosons in D = 2 dimensions. Although it has some defects as pointed out by Harada

[15] and Girotti et al.[16], the linear formulation strictly describes a chiral boson from the

point of view of equations of motion at both the classical and quantum levels. Moreover,

it is quite straightforward to generalize this formulation to D = 2(p + 1) dimensional

space-time (cf. Subsect.4.2). The fourth scheme, recently proposed by Pasti, Sorokin and

Tonin [10], is to construct a Lorentz covariant formulation of chiral p-forms inD = 2(p+1)

dimensions that contains a �nite number of auxiliary �elds in a non-polynomial way. The

simplest case is that only one auxiliary scalar �eld is introduced. This formulation reduces

to the non-manifestly covariant Floreanini-Jackiw formulation [11] provided appropriate

gauge �xing conditions are chosen. On the other hand, it has a close relationship with the

Lorentz covariant McClain-Wu-Yu formulation [9] that contains in�nitely many auxiliary

�elds in the usual polynomial way. That is to say, the Pasti-Sorokin-Tonin formulation

turns into the McClain-Wu-Yu formulation if one gets rid of the non-polynomiality and

eliminates the scalar auxiliary �eld at the price of introducing auxiliary (p+1)-forms, or,
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vice versa, if one consistently truncates the McClain-Wu-Yu in�nite tail and puts on its

end the auxiliary scalar �eld.

Because various types of strings are related by dualities, the duality symmetries of

the Pasti-Sorokin-Tonin formulation have been studied and some interesting results have

been obtained [10]. The chiral boson action in D = 2 dimensions is self-dual with respect

to both the dualization of the chiral boson �eld and the dualization of the auxiliary scalar

�eld. In the D = 4 case, the action is still self-dual under the dualization of the two

real chiral 1-forms, but turns out to be a new covariant duality-symmetric Maxwell action

that contains an auxiliary 2-form �eld under a duality transform of the auxiliary scalar

�eld. The Pasti-Sorokin-Tonin action in D = 6 dimensional space-time gives rise to such a

dual version that includes an auxiliary 4-form �eld and has a di�erent symmetry structure

from that of its initial action when one performs a duality transform of the auxiliary scalar

�eld. Incidentally, the self-duality of the action with respect to the dualization of the chiral

2-form �eld in the D = 6 case was not explicitly veri�ed in Ref.[10].

In this paper we investigate the duality properties of the four typical chiral p-form

actions mentioned above by using D = 2 and D = 6 dimensions as examples. We pay our

main attention to these actions' dual versions under duality transforms of chiral p-form

�elds since we expect to extract some common property from the four actions that have

such big di�erences in formulation. As to the duality under transforms of auxiliary �elds

for the �rst three chiral p-form actions, it is a trivial problem because of the linearity

of auxiliary �elds in the Siegel and Srivastava actions [7,8] and of the non-existence of

auxiliary �elds in the Floreanini-Jackiw action [11,12]. As a result, we discover that the

Siegel, Floreanini-Jackiw and Pasti-Sorokin-Tonin actions are self-dual under a common

anti-dual transform of 1-form `�eld strengths' in D = 2 dimensional space-time and of

3-form �eld strengths in the D = 6 case, while the Srivastava action is self-dual under a

generalized dual transform of 1-form `�eld strength' in D = 2 dimensions and of 3-form

�eld strength inD = 6 dimensions. We also �nd that the self-duality conditions of the four

actions in the D = 2 and D = 6 cases, respectively, have the same transformation although
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the transforms of the �eld strengths are quite di�erent from one another. Moreover, we

extend the self-duality of actions from free chiral bosons to interacting cases and choose,

as an example, the action of the Floreanini-Jackiw chiral bosons interacting with gauge

�elds proposed by Harada [17]. We �nd that this action is also self-dual but with respect

to a generalized anti-dualization of the chiral boson �eld, and that the transformation of

the di�erence between the 1-form `�eld strength' and its dual partner is very di�erent from

that of the free cases because of interactions.

The paper is arranged as follows. In Sects. 2, 3, 4 and 5, we discuss the duality

symmetries of the four chiral p-form actions one by one in the Siegel, Floreanini-Jackiw,

Srivastava and Pasti-Sorokin-Tonin formulations. Each section is divided into two sub-

sections for the D = 2 and D = 6 cases. Then we turn to the interacting theory of the

Floreanini-Jackiw chiral bosons and gauge �elds in Sect. 6, and �nally make a conclusion

in Sect.7.

The metric notation we use throughout this paper is

g00 = �g11 = � � � = �gD�1;D�1 = 1;

�012���D�1 = 1: (2)

Greek letters stand for space-time indices (�; �; �; � � � = 0; 1; � � � ;D � 1) and Latin letters

are spacial indices running from 1 to D � 1.

2 Self-duality of the Siegel action

2.1 The D=2 case

We begin with the Siegel action [7] in D = 2 dimensional space-time

S =

Z
d2x

�
1

2
@��@

��+
1

2
��� (@

��� ���@��) (@
��� ���@��)

�
; (3)

where � is a scalar �eld, and ��� a symmetric and traceless auxiliary tensor �eld.

We investigate the duality property of eq.(3) with respect to the dualization of the

�eld �(x) along the line of Ref.[10]. The �rst step is to introduce two independent vector
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�elds, F� and G�, and replace eq.(3) by the action

S =

Z
d2x

�
1

2
F�F

� +
1

2
���F

�
F
� +G� (F� � @��)

�
; (4)

where F� is de�ned as the di�erence between F � and its dual partner ���F�

F
� = F �

� ���F� : (5)

Then, varying eq.(4) with respect to G� gives the expression for the �eld F� in terms of �

F� = @��; (6)

together with which eq.(4) turns back to the original Siegel action eq.(3). This shows the

classical equivalence between actions eqs.(3) and (4). The third step is to vary eq.(4) with

respect to F�, which yields the expression of G� in terms of F �

G� = �F �
� (g�� + ���) ���F

� : (7)

Similar to eq.(5), G� is de�ned as

G
� = G�

� ���G� ; (8)

which, when eq.(7) is substituted, gives a relationship between F� and G�

F
� = �G

�: (9)

It is necessary to point out in advance that eq.(9) is generally satis�ed for all the four

chiral boson actions discussed in this paper (cf. Subsects. 3.1, 4.1 and 5.1) although the

relations between F � and G� for these actions are very di�erent from one another. With

eq.(9), it is easy to invert eq.(7) and obtain F � in terms of G�

F � = �G� + (g�� + ���)���G
� : (10)

We can check from eq.(7) that when the self-duality condition is satis�ed, i.e., F� = 0,

which is called `on the mass shell' in Ref.[10], F � and G� relate with an anti-duality
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G�
= ����F� . Note that in Ref.[10] they relate with a dual relation because of the

distinct metric notation. We will see that this type of anti-duality also appears in the

Floreanini-Jackiw and Pasti-Sorokin-Tonin actions in the D=2 case although eqs.(7), (27)

and (51) are quite di�erent from one another (cf. Subsects. 3.1 and 5.1), but does not in

the Srivastava action (cf. Subsect. 4.1). Substituting eq.(10) into eq.(4), we get the dual

version of the Siegel action

Sdual =

Z
d2x

�
�

1

2
G�G

�
+

1

2
���G

�
G
�
+ �@�G

�

�
: (11)

Variation of eq.(11) with respect to � gives @�G
�
= 0, whose solution should be

G�
( ) = ����@� � ����F�( ); (12)

where  is an arbitrary scalar �eld. When eq.(12) is substituted into eq.(11), we obtain the

dual action that is exactly the same as the Siegel action eq.(3) only with the replacement

of � by  . As analysed above, � and  coincide with each other up to a constant when

the self-duality condition is imposed. Therefore, the Siegel action is self-dual with respect

to the �(x)�  (x) anti-dualization expressed by eqs.(6) and (12).

2.2 The D=6 case

The Siegel action in D = 6 space-time dimensions takes the form [7]

S =

Z
d6x

�
1

6
F���(A)F

���
(A) +

1

2
���F

���
(A)F�

��(A)

�
; (13)

where F���(A) is the 3-form �eld strength of the real antisymmetric tensor �eld A��(�; � =

0; 1; � � � ; 5)

F���(A) = @�A�� + @�A�� + @�A�� � @[�A��]; (14)

and F���(A) is de�ned as

F���(A) = F���(A)�
1

3!
�������F

���
(A): (15)

In order to discuss the duality of the Siegel action, we introduce two 3-form �elds

F��� and G���, and replace eq.(13) by the following action

S =

Z
d6x

�
1

6
F���F

���
+

1

2
���F

���
F

�
�� +

1

3
G���

�
F��� � @[�A��]

��
; (16)
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where F��� and G��� act, at present, as independent auxiliary �elds. To vary eq.(16) with

respect to G���
gives

F��� = @[�A��]; (17)

which, when substituted into eq.(16), yields the equivalence between actions eqs.(13) and

(16). On the other hand, variation of eq.(16) with respect to F��� leads to the expression

of G���
in terms of F ���

G���
= �F ���

� ��[�F�
��]
�

1

3!
���������[�F

�

��]: (18)

Like eq.(15), we de�ne G
���

to be

G
���

= G���
�

1

3!
�������G��� ; (19)

and obtain, when eq.(18) is substituted into eq.(19), the relation

F
���

= �G
���: (20)

Note that this is generally satis�ed for all the four actions in the D = 6 case although

relations of F ���
and G���

in these actions are quite di�erent from one another (cf.

Subsects. 3.2, 4.2, and 5.2). With eq.(20), we can invert eq.(18) quite easily and solve

F ���
in terms of G���

F ���
= �G���

+ ��[�G�
��]

+
1

3!
���������[�G

�

��]: (21)

We can verify from eq.(18) that when the self-duality condition is satis�ed, i.e., F
���

= 0,

F ���
and G���

relate with an anti-duality G���
= �

1
3!�

������F��� . This relation also

appears in the Floreanini-Jackiw and Pasti-Sorokin-Tonin actions in the D = 6 case, but

does not in the Srivastava action. Now substituting eq.(21) into the action eq.(16), we

obtain the dual Siegel action in the D = 6 case

Sdual =

Z
d6x

�
�

1

6
G���G

���
+

1

2
���G

���
G
�
�� +A��@�G

���

�
: (22)

Variation of eq.(22) with respect to A�� gives

@�G
���

= 0; (23)

8



whose solution should be

G���(B) = �
1

3!
�������@[�B��] � �

1

3!
�������F���(B); (24)

where B�� is an arbitrary 2-form �eld. When eq.(24) is substituted into the dual action

eq.(22), we get the result that the dual action is the same as the Siegel action eq.(13) only

with the replacement of A�� by B�� . Consequently, the Siegel action is self-dual in D = 6

dimensional space-time with respect to the A�� � B�� anti-dualization given by eqs.(17)

and (24).

3 Self-duality of the Floreanini-Jackiw action

3.1 The D=2 case

The Floreanini-Jackiw action in D = 2 dimensions has the form [11]

S =

Z
d2x

h
@0�@1�� (@1�)

2
i
; (25)

in which no auxiliary �elds are introduced. It is a non-manifestly Lorentz covariant action,

but has Poincar�e invariance from the point of view of Hamiltonian analyses.

As in Subsect. 2.1, we introduce two independent auxiliary vector �elds F � and G�,

and replace eq.(25) by the action

S =

Z
d2x

h
F0F1 � (F1)

2 +G�(F� � @��)
i
: (26)

Variation of this action with respect to the Lagrange multiplier G� gives rise to the same

result as eq.(6), which leads to the equivalence between eqs.(25) and (26). On the other

hand, variation of eq.(26) with respect to F� gives the expression of G� in terms of F�

G0 = �F1;

G1 = �F0 + 2F1; (27)

whose inversion is

F0 = �2G0
�G1;

F1 = �G0: (28)
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If we de�ne F� and G� as in eqs.(5) and (8), respectively, we discover that they still satisfy

the relation eq.(9) as pointed out in Subsect. 2.1. Moreover, F � and G� have an anti-dual

relation G� = ����F� if the self-duality condition in the D = 2 case F� = 0 is imposed

into eq.(27). Substituting eq.(28) into eq.(26), we obtain the dual Floreanini-Jackiw action

Sdual =

Z
d2x

h
�(G0)

2 +G0G1 + �@�G
�

i
: (29)

The remaining procedure is the same as that in Subsect. 2.1. As a result, the Floreanini-

Jackiw action in D = 2 dimensional space-time is self-dual with respect to the �(x)� (x)

anti-duality as shown in eqs.(6) and (12).

3.2 The D=6 case

The non-manifestly Lorentz covariant formulation of Floreanini and Jackiw was general-

ized to chiral p-forms in Ref.[12]. The action for a chiral 2-form in D = 6 dimensions

is

S =

Z
d6x

�
1

2

�
F0ij(A)�

1

3!
�0ijklmF

klm(A)

�
�
1

3!
�0ijnpqF

npq(A)

�
; (30)

where F���(A) is the �eld strength of A�� , as stated in eq.(14), and Latin letters stand

for spatial indices (i; j; � � � = 1; � � � ; 5). Note that no auxiliary �elds appear in eq.(30). In

the following, we utilize the simplier form of eq.(30)

S =

Z
d6x

�
1

12
�0ijklmF0ij(A)Fklm(A)�

1

6
Fklm(A)Fklm(A)

�
: (31)

We begin with the duality property of the action eq.(31) under the dualization of the

antisymmetric tensor �eld A�� . Introducing two auxiliary 3-forms F��� and G���, we

construct a new action to replace eq.(31)

S =

Z
d6x

�
1

12
�0ijklmF0ijFklm �

1

6
FklmFklm +

1

6
G���(F��� � @[�A��])

�
; (32)

where F��� and G��� are treated as independent �elds. For the sake of convenience in the

calculation, we rewrite eq.(32) to be

S =

Z
d6x

�
1

12
�0ijklmF0ijFklm �

1

6
FklmFklm +

1

2
G0ij(F0ij � @[0Aij])

+
1

6
Gklm(Fklm � @[kAlm])

�
: (33)
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Variation of eq.(33) with respect to the Lagrange multiplier G��� gives eq.(17), which

shows the equivalence between eqs.(31) and (33). Moreover, variation of eq.(33) with

respect to F��� gives the expression of G��� in terms of F���

G0ij = �

1

6
�0ijnpqFnpq;

Gklm = �

1

2
�0npklmF0np � 2F klm; (34)

from which F��� can be calculated

F 0ij = �2G0ij +
1

6
�0ijnpqGnpq;

F klm =
1

2
�0npklmG0np: (35)

If we de�ne F��� and G��� as in eqs.(15) and (19), respectively, we �nd that they still

satisfy eq.(20) although eqs.(18) and (34), i.e., the relations of F ��� andG��� for the Siegel

and Floreanini-Jackiw formulations of chiral 2-forms, are quite di�erent. In addition, when

imposing the self-duality condition in the D = 6 case, i.e., F��� = 0, into eq.(34), we still

derive the anti-duality between F ��� and G���, G��� = �
1

3!
�������F��� . Substituting

eq.(35) into eq.(33), we obtain the dual formulation of the Floreanini-Jackiw chiral 2-form

in the D = 6 case

Sdual =

Z
d6x

�
�

1

2
G0ijG0ij +

1

12
�0ijklmG

0ijGklm +
1

2
A��@�G

���

�
: (36)

The following steps are straightforward. Variation of eq.(36) with respect to A�� gives

@�G
��� = 0, whose solution is eq.(24) in which an antisymmetric tensor �eld B�� is

introduced. With eq.(24), the dual action eq.(36) is the same as the action eq.(31), only

with the replacement of A�� by B�� . Therefore, we verify that the Floreanini-Jackiw

action for a chiral 2-form in D = 6 dimensions is self-dual under the A�� � B�� anti-

duality transform of eqs.(17) and (24).

4 Self-duality of the Srivastava action
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4.1 The D=2 case

We write the linear formulation of chiral bosons suggested by Srivastava [8]

S =

Z
d2x

�
1

2
@��@

��+ ��(@
��� ���@��)

�
; (37)

where � is a scalar �eld and �� an auxiliary vector �eld. This action has some defects

as pointed out by others [15,16], but it `synthesizes' the manifest Lorentz covariance and

self-duality constraint.

Let us introduce two auxiliary vector �elds F� and G�, and construct a new action to

replace eq.(37)

S =

Z
d2x

�
1

2
F �F� + ��(F

�
� ���F�) +G�(F� � @��)

�
; (38)

where F� and G� are independent of the other �elds. When varying eq.(38) with respect

to G�, we have F� = @��, i.e., eq.(6), and with it we can prove that the new action eq.(38)

is equivalent to the original one eq.(37). On the other hand, when varying eq.(38) with

respect to F�, we get G� in terms of F�

G� = �F �
� (�� + �����); (39)

or, vice versa, F� in terms of G�

F � = �G�
� (�� + �����): (40)

If F� and G� are de�ned as in eqs.(5) and (8), respectively, they again satisfy the relation

eq.(9) although eq.(39) is quite di�erent from eq.(7) and eq.(27). However, F � and G�

no longer relate with any anti-duality when the self-duality condition F� = 0 is imposed

into eq.(39). This happens because the self-duality condition with a Lagrange multiplier

is introduced linearly in the action eq.(37). We may say that this anti-duality between F �

and G� is not necessary when one considers the duality property of actions because the

self-duality condition can not be directly imposed into actions. Substituting eq.(40) into

eq.(38), we obtain the dual version of the Srivastava action

Sdual =

Z
d2x

�
�

1

2
G�G� � ��(G

�
� ���G�) + �@�G

�

�
: (41)
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When varying eq.(41) with respect to �, we get @�G
� = 0 and then solve

G�( ) = ���@� � ���F�( ); (42)

where  is an arbitrary scalar �eld. When eq.(42) is substituted into eq.(41), we �nd that

the dual action is the same as the original one eq.(37) only with the replacement of � by

 . Consequently, the Srivastava action in the D = 2 case is self-dual under the generalized

dualization eq.(42). Here the word `generalized' means that �(x) does not coincide with

 (x) even if the self-duality condition is considered.

4.2 The D=6 case

We can easily generalize the D = 2 Srivastava action to the D = 6 case

S =

Z
d6x

�
1

6
F���(A)F

���(A) +
1

3
����F

���(A)

�
; (43)

where F���(A) and F
���(A) are de�ned as eqs.(14) and (15), respectively, and ���� is an

auxiliary antisymmetric tensor �eld. Variation of this action with respect to ���� gives

the self-duality condition F���(A) = 0 that is in fact the equation of motion of A�� .

Therefore, eq.(43) indeed describes a chiral 2-form �eld in D = 6 dimensional space-time.

As to its canonical Hamiltonian analysis, it can be achieved straightforwardly by following

the procedure shown in Ref.[8]. Here we omit it.

We introduce two auxiliary 3-form �elds F��� and G���, and construct a new action

to replace eq.(43)

S =

Z
d6x

�
1

6
F���F

��� +
1

3
����F

��� +
1

3
G���(F��� � @[�A��])

�
; (44)

where F��� and G��� are treated as independent �elds, and F���
� F ���

�
1
3!
�������F��� .

By varying eq.(44) with respect to G���, we get F��� = @[�A��] and then verify the

equivalence between eqs.(43) and (44). On the other hand, by varying eq.(44) with respect

to F��� , we have the expression of G��� in terms of F���

G��� = �F ���
� (���� +

1

3!
�����������); (45)
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or, vice versa, that of F��� in terms of G���

F ���
= �G���

� (���� +
1

3!
�����������): (46)

As usual, we de�ne G
���

= G���
�

1
3!
�������G��� and obtain, using eq.(45), F

���
= �G

���
.

This relation is generally correct for all the four formulations of chiral 2-forms although

eqs.(18), (34), (45) and (56) are quite di�erent from one another. But, similar to the

D = 2 case, F ���
and G���

do not relate with any anti-duality in the Srivastava action

even if the self-duality condition F
���

= 0 is imposed to eq.(45). The reason remains the

linearity of the self-duality condition in the action eq.(43). This situation does not occur in

the Siegel, Floreanini-Jackiw and Pasti-Sorokin-Tonin actions. Substituting eq.(46) into

eq.(44), we get the dual action

Sdual =

Z
d6x

�
�

1

6
G���G

���
�

1

3
����G

���
+A��@�G

���

�
: (47)

Variation of eq.(47) with respect to A�� gives @�G
���

= 0, and the solution should be

G���
(B) =

1

3!
�������@[�B��] �

1

3!
�������F���(B); (48)

where B�� is an arbitrary 2-form �eld. Substituting eq.(48) into eq.(47), we recover the

Srivastava formulation with B�� as the argument. This shows the self-duality of the

Srivastava action in the D = 6 case with respect to the generalized duality transform

eq.(48). Here we add the word `generalized' because A�� no longer coincides with B�� on

the mass shell.

5 Self-duality of the Pasti-Sorokin-Tonin action

5.1 The D=2 case

The self-duality of the Pasti-Sorokin-Tonin action in the D = 2 case has been explicitly

shown in Ref.[10]. In order to make our paper complete, we brie
y repeat the main

procedure by means of our metric notation that is di�erent from that used in Ref.[10].

14



The non-polynomial formulation of chiral bosons proposed by Pasti, Sorokin and Tonin

[10] takes the form

S =

Z
d2x

�
1

2
@��@

��+
1

2(@�a)(@�a)
[@�a(@��� ���@

��)]2
�
; (49)

where �(x) is a scalar �eld, and a(x) an auxiliary scalar �eld introduced in a non-

polynomial way. Note that we have adopted our metric notation in the action eq.(49).

By introducing two auxiliary vector �elds F� and G�, we construct a new action to

replace eq.(49)

S =

Z
d2x

�
1

2
F�F

� +
1

2(@�a)(@�a)
(@�aF�)

2 +G�(F� � @��)

�
; (50)

where F� and G� are dealt with as independent �elds, and F� � F� � ���F
� . Variation

of eq.(50) with respect to the Lagrange multiplier G� gives F� = @��, i.e., eq.(6), which

yields the equivalence between the Pasti-Sorokin-Tonin action and the new action eq.(50).

Moreover, variation of eq.(50) with respect to F� leads to the expression of G� in terms

of F�

G� = �F �
�

@�a+ ���@�a

(@�a)(@�a)
(@�aF�): (51)

In order to easily solve F� in terms of G� from the above equation, we de�ne, like eq.(8),

G
� = G�

� ���G� . When eq.(51) is substituted into G�, we get the relation F� = �G
�,

which also exists in the �rst three formulations of chiral bosons discussed in Subsects 2.1,

3.1 and 4.1. By using F� = �G
�, we therefore solve F � from eq.(51)

F � = �G� +
@�a+ ���@�a

(@�a)(@�a)
(@�aG�): (52)

We can see that F � and G� satisfy an anti-duality G� = ����F� on the mass shell.

Note that in Ref.[10] their relation is dual because of the distinct metric notation. We

have known that this type of anti-duality also appears in the Siegel and Floreanini-Jackiw

actions in the D = 2 case although eqs.(7), (27) and (51) are quite di�erent from one

another, but does not in the Srivastava action. Now substituting eq.(52) into eq.(50), we

obtain the dual action

Sdual =

Z
d2x

�
�

1

2
G�G

� +
1

2(@�a)(@�a)
(@�aG�)

2 + �@�G
�

�
: (53)
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Exactly following the discussions below eq.(11), we can conclude that the Pasti-Sorokin-

Tonin action in D = 2 dimensional space-time is self-dual with respect to the �(x)� (x)

anti-dualization given by eqs.(6) and (12).

5.2 The D=6 case

Since the self-duality of the Pasti-Sorokin-Tonin action with respect to the dualization of

chiral 2-form �elds in D = 6 dimensional space-time was not explicitly veri�ed in Ref.[10],

we add the veri�cation here in terms of our metric notation.

First we write the Pasti-Sorokin-Tonin action for a chiral 2-form �eld A��

S =

Z
d6x

�
1

6
F���(A)F

���(A) +
1

2(@�a)(@�a)
@�aF���(A)F

���(A)@�a

�
; (54)

where F���(A) and F���(A) are de�ned as in eqs.(14) and (15), respectively, and a(x) is

an auxiliary scalar �eld introduced in a non-polynomial way.

By introducing two auxiliary 3-form �elds F��� and G���, we construct a new action

to replace eq.(54)

S =

Z
d6x

�
1

6
F���F

��� +
1

2(@�a)(@�a)
@�aF���F

���@�a

+
1

3
G���(F��� � @[�A��])

�
; (55)

where F��� andG��� are dealt with as independent �elds, and F
���

� F ���
�

1
3!
�������F��� .

Variation of eq.(55) with respect to the Lagrange multiplier G��� gives F��� = @[�A��],

i.e., eq.(17), which yields the equivalence between eqs.(54) and (55). On the other hand,

variation of eq.(55) with respect to F��� leads to the expression of G��� in terms of F���

G��� = �F ���
�

1

(@�a)(@�a)

�
@[�aF��]�@�a+

1

3!
�������@[�aF��]�@

�a

�
: (56)

When we de�ne G��� = G���
�

1
3!
�������G���, we obtain F��� = �G

��� once again. As

we have pointed out in Subsect. 5.1, this relation is generally correct for all the four

chiral 2-form actions in D = 6 dimensions although eqs.(18), (34), (45) and (56) are quite

di�erent from one another. Considering the general relation, we can solve from eq.(56)
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F ��� in terms of G���

F ��� = �G��� +
1

(@�a)(@�a)

�
@[�aG��]�@�a+

1

3!
�������@[�aG��]�@

�a

�
: (57)

As discussed in Subsects. 2.2 and 3.2, we can prove that G��� relates to F ��� by an anti-

duality G��� = �
1
3!�

������F��� on the mass shell, that is, under the condition F��� = 0.

The anti-dual relation is satis�ed in the Siegel, Floreanini-Jackiw and Pasti-Sorokin-Tonin

actions, but not in the Srivastava action. Now substituting eq.(57) into eq.(55), we get

the dual action in terms of G���

Sdual =

Z
d6x

�
�

1

6
G���G

��� +
1

2(@�a)(@�a)
@�aG���G

���@�a+A��@�G
���

�
: (58)

We do not repeat the subsequent steps which are equally the same as below eq.(22). As

a result, the Pasti-Sorokin-Tonin action has self-duality under the A�� � B�� anti-dual

transform eqs.(17) and (24).

6 Self-duality of the gauged Floreanini-Jackiw chiral boson

action

We extend the discussion of self-duality of chiral p-form actions from free theories to

interacting cases, and choose the action of Floreanini-Jackiw chiral bosons interacting

with gauge �elds [17] as our example.

We �rst write the action of this interacting theory

S =

Z
d2x

h
@0�@1�� (@1�)

2 + 2e@1�(A0 �A1)

�

1

2
e2(A0 �A1)

2 +
1

2
e2aA�A

�
�

1

4
F��F

��

�
; (59)

where � is a scalar �eld, A� a gauge �eld and F�� its �eld strength; e is the electric charge

and a a real parameter caused by ambiguity in bosonization. It is a non-manifestly Lorentz

covariant action but indeed has Lorentz invariance [17]. In the following discussion, the

interacting term, i.e., the third term in eq.(59), is important, while the last three terms

that relate only to gauge �elds have nothing to do with the duality property of the action.
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By introducing two auxiliary vector �elds F� and G�, we construct a new action to

replace eq.(59)

S =

Z
d2x

�
F0F1 � (F1)

2 + 2eF1(A0 �A1)�
1

2
e2(A0 �A1)

2

+
1

2
e2aA�A

�
�

1

4
F��F

�� +G�(F� � @��)

�
; (60)

where F� and G� are treated as independent �elds. Variation of eq.(60) with respect to

the Lagrange multiplier G� gives F� = @��, which yields the equivalence between the two

actions eqs.(59) and (60). Furthermore, variation of eq.(60) with respect to F� leads to

the expression of G� in terms of F�

G0 = �F1;

G1 = �F0 + 2F1 � 2e(A0 �A1): (61)

It is easy to solve for F� from the above equation

F0 = �2G0
�G1

� 2e(A0 �A1);

F1 = �G0: (62)

If we de�ne F� = F�� ���F
� and G� = G�� ���G

� , we �nd that they satisfy the relation

F� = �G� � 2e(g�� � ���)A
� ; (63)

which is di�erent from that of the free Floreanini-Jackiw case because of interactions. In

other words, if the interaction did not exist, i.e., e = 0, eq.(63) would reduce to the free

theory case F� = �G�. Substituting eq.(62) into eq.(60), we obtain the dual action in

terms of G�

Sdual =

Z
d2x

�
�(G0)2 �G0G1

� 2eG0(A0 �A1)�
1

2
e2(A0 �A1)

2

+
1

2
e2aA�A

�
�

1

4
F��F

�� + �@�G
�

�
: (64)

Variation of eq.(64) with respect to � gives @�G
� = 0, whose solution should be

G�( ) = ����@� � ��
��F�( ); (65)
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where  (x) is an arbitrary scalar �eld. Substituting eq.(65) into eq.(64), we get the dual

action in terms of  

Sdual =

Z
d2x

h
@0 @1 � (@1 )

2
+ 2e@1 (A0 �A1)

�

1

2
e2(A0 �A1)

2
+

1

2
e2aA�A

�
�

1

4
F��F

��

�
: (66)

It has the same formulation as the original action eq.(59) only with the replacement of

� by  . Note that because of interactions, �(x) no longer coincides with  (x) up to

a constant on the mass shell, which is di�erent from that of the free theory case. This

means that eq.(65) shows a generalized anti-dualization of F� and G�. Therefore, we prove

that the action of gauged Floreanini-Jackiw chiral bosons has self-duality with respect to

the generalized anti-dualization of `�eld strength' expressed by eq.(65). Incidentally, if

we chose the solution G�
( ) = ���@� instead of eq.(65), the dual action would have a

minus sign in the third term. That is to say, the dual action derived in this way would

be di�erent from the action eq.(59) in formulation. However, the physical spectrum is the

same whether the third term of eq.(66) is positive or negative.

7 Conclusion

By following the procedure of duality analyses illustrated by Pasti, Sorokin and Tonin

[10], we have proved that the Siegel, Floreanini-Jackiw and Pasti-Sorokin-Tonin actions

are self-dual with respect to a common anti-dualization of 1-form `�eld strengths' given

by eq.(12) in D = 2 dimensional space-time, and that they are self-dual with respect

to another common anti-dualization of 3-form �eld strengths given by eq.(24) in D = 6

dimensional space-time. For the Srivastava action, we have veri�ed that it has self-duality

under a generalized dual transform of 1-form `�eld strength' expressed by eq.(42) in the

D = 2 case, and that it has self-duality under another generalized dual transform of 3-form

�eld strength expressed by eq.(48) in the D = 6 case. Here the word `generalized' means

that G�
( ) and F �

(�) do not relate with an anti-duality G�
( ) = ����F�(�) on the

mass shell F
�
(�) = 0 in D = 2 dimensions, and that G���

(B) and F ���
(A) do not relate
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with another anti-duality G���
(B) = �

1

3!
�������F���(A) on the mass shell F

���
(A) = 0

in D = 6 dimensions. The reason is the linearity of the self-duality condition introduced

with an auxiliary �eld in the Srivastava action. We emphasize that this type of anti-

duality is not necessary for self-duality of actions because the self-duality condition, i.e.,

the mass shell condition, cannot directly be imposed on actions. Moreover, we have found

a generally satis�ed relation for all the four actions discussed in this paper, that is, eq.(9)

for the D = 2 case and eq.(20) for the D = 6 case. This relation means that the self-

duality condition remains unchanged although the transforms of �eld strengths are quite

di�erent from one action to another. Incidentally, we do not mention in our paper the

duality property of actions under transforms of auxiliary �elds because on one hand it is

a trivial problem for the �rst three chiral p-form actions, and on the other hand it has

been studied in detail for the Pasti-Sorokin-Tonin action [10]. The triviality is caused

by the linearity of auxiliary �elds in the Siegel and Srivastava actions [7,8] and by the

non-existence of auxiliary �elds in the Floreanini-Jackiw action [11,12].

We have tried to extend the self-duality of actions from free theories to interacting ones

and chosen, as our example, the action of the Floreanini-Jackiw chiral bosons interacting

with gauge �elds. By utilizing the concept of the generalized dualization extracted from

the self-duality of the Srivastava action, we obtain that the action of the interacting theory

is self-dual with respect to a generalized anti-dualization of the 1-form `�eld strength' of

chiral scalars.

As stated in Ref.[10] that the self-duality of the Pasti-Sorokin-Tonin action remains in

D = 2(p+1) dimensions, we can conclude that the Siegel, Floreanini-Jackiw and Srivastava

actions are also self-dual in D = 2(p + 1) dimensional space-time. Finally, we point out

that the self-duality also exists in a wider context of theoretical models that relate to chiral

p-forms, such as the generalized chiral Schwinger model (GCSM) [18], whose self-duality

corresponds to the vector and axial vector current duality. This work is arranged in a

separate paper [19].

Note added. The Kavalov-Mkrtchyan formulation [20] can be proved to be self-dual
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with respect to an anti-dualization of chiral 2-form �elds along the line of this paper. We

thank Dr. R. Manvelyan for pointing this out.
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