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Abstract

Starting from the Hamiltonian operator of the noncompensated two-sublattice

model of a small antiferromagnetic particle, we derive the e�ective Lagrangian of

a biaxial antiferromagnetic particle in an external magnetic �eld with the help of

spin-coherent-state path integrals. Two unequal level-shifts induced by tunneling

through two types of barriers are obtained using the instanton method. The energy

spectrum is found from Bloch theory regarding the periodic potential as a super-

lattice. The external magnetic �eld indeed removes Kramers' degeneracy, however

a new quenching of the energy splitting depending on the applied magnetic �eld

is observed for both integer and half-integer spins due to the quantum interference

between transitions through two types of barriers.
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1 Introduction

The magnetization vector in solids is traditionally viewed as a classical variable. In recent

years, theoretical and experimental works have demonstrated, however, that the vector



can tunnel quantum mechanically out of metastable magnetic states or resonate between

two degenerate ground states[1-13] known as macroscopic quantum phenomena(MQP)

which are distinguished into the macroscopic quantum tunneling (MQT) and the macro-

scopic quantum coherence (MQC) respectively. Quantum tunneling of the magnetization

vector in small single-domain ferromagnetic (FM) particles[1,2], quantum nucleation of

FM bubbles[3], and quantum depinning of a domain wall in bulk ferromagnets[4] are

typical examples of the macroscopic quantum phenomena. Similar e�ect also exists in

small single-domain antiferromagnetic (AFM) particles in which the N�eel vector plays a

role of macroscopic variable and can tunnel between orientations of lowest energy[5,6].

Since the tunneling rate in the AFM particles is much higher than that in the FM par-

ticles [7], the AFM particles are expected to be a better candidate for the observation

of MQP than the FM particles. Another interesting phenomenon relating to tunneling

in magnetization is that for spin systems with discrete rotation symmetry of two folds,

the tunneling rate is completely suppressed for half-integer total spin known as Kramers'

degeneracy[8]. Such an e�ect is called topological quenching in literature [9] and has been

studied extensively[8-14].

In literature the AFM particle is usually described by the N�eel vector of two collinear

sublattices whose magnetizations are coupled by strong exchange interaction. External

magnetic �eld does not play a role since the net magnetic moment vanishes for idealized

sublattices. The quantum and classical transitions of the N�eel vector in antiferromagnets

has been well studied[15] in terms of the idealized sublattice model. The temperature de-

pendence of quantum tunneling was also given for the same model[16] and the theoretical

result agrees with the experimental observation[17]. A biaxial AFM particle with a small

non-compensation of sublattices in the absence of external magnetic �eld was studied in

Ref.[18] where it was shown that the noncompensated magnetic moment leads to a mod-

i�cation of oscillation frequency around the equilibrium orientations of the N�eel vector.

In the present paper we demonstrate that the small noncompensated magnetic moment

obtains extra energy in magnetic �eld which changes the original equilibrium orientations

of the N�eel vector and results in interesting tunneling e�ects in AFM particles. With the

help of spin-coherent-state path integrals we convert the spin system into a pseudoparticle



moving in a e�ective potential �V (�) with a periodically recurring asymmetric twin bar-

riers which lead to two kinds of instantons. The total e�ect of tunneling gives rise to the

level splitting which is determined with Bloch theory regarding the periodic potential as

a superlattice. We show explicitly that the external magnetic �eld removes the rotation

symmetry of two-fold and , therefore, the Kramers' degeneracy[10]. The level splitting is

not quenched any longer for half-integer spin. However a remarkable observation is that

quantum interference between transitions through two-type of potential barriers results

in an oscillation of level splitting with the external �eld. The splitting could be entirely

suppressed at the certain value of magnetic �eld due to the disconstructive interference.

2 The e�ective Lagrangian of a biaxial AFM particle

with a small non-compensated magnetic moment

and the equilibrium orientations of the N�eel vector

Consider a biaxial AFM particle having two collinear FM sublattices with a small non-

compensation.We assume that the particle possesses a x easy axis and x-y easy plane,

and the magnetic �eld H is applied along the y direction. Regarding each sublattice as a

FM particle the Hamiltonian operator of the AFM particle has the form

Ĥ =
X
�=1;2

(k?Ŝ
z2
�
+ kkŜ

y2
�
� HSy

�
) + JŜ1 � Ŝ2; (1)

where k?, kk > 0 are the anisotropy constants, J is the exchange constant,  is the

gyromagnetic ratio, and Ŝ1 ; Ŝ2 denote the spin operators in two sublattices with the

commutation relation [Si

�
; S

j

�
] = i�h�ijk���Ŝ

k

�
(i; j; k = x; y; z ; �; � = 1; 2). Here we

emphasize that because of the non-compensation of the two collinear FM sublattices the

interaction terms with magnetic �eld, i:e: the third term in the summation of Eq.(1), do

not vanish and result in the equilibrium-orientation change of the N�eel vector. We begin

with the evaluation of the matrix element of the evolution operator in spin- coherent-state

representation by means of the coherent state path integrals

hNf je
�2iĤT=�h

jNii =

Z "M�1Y
k=M

d�(Nk)

# "
MY
k=1

hNkje
�i�Ĥ=�h

jNk�1i

#
: (2)



Here we de�ne jNi = jn1ijn2i ; jNMi = jNf i = jn1;fijn2;f i ; jN0i = jNii = jn1;iijn2;ii

and tf � ti = 2T ; � = 2T=M ,respectively. The spin coherent state is de�ned as

jn�i = e�i��Â�
jS�; S�i ; (� = 1; 2); (3)

where n� = (sin �� cos ��; sin �� sin��; cos ��) is the unit vector, Â� = sin��Ŝ
x

�
�cos��Ŝ

y

�

and jS�; S�i is the reference spin eigenstate. The measure is de�ned by

d�(Nk) =
Y

�=1;2

2S� + 1

4�
dn�;k ; dn�;k = sin ��;kd��;kd��;k: (4)

As M !1 ; �! 0, exp(�i�Ĥ=�h) � 1 � i�Ĥ=�h, with

Ĥ =
X
�=1;2

"
kk

2
Ŝ2
�
+

 
k? �

kk

2

!
Ŝz2
�
�

kk

4

�
Ŝ+2
�

+ Ŝ�2
�

�
�

H

2i

�
Ŝ+
�
� Ŝ�

�

�#

+
J

2

h�
Ŝ�1 Ŝ

+
2 + Ŝ+

1 Ŝ
�
2

�
+ 2Ŝz

1 Ŝ
z

2

i
; (5)

where Ŝ+
�
= Ŝx

�
+ iŜy

�
; Ŝ�

�
= Ŝx

�
� iŜy

�
. Making use of the following approximation

hNkjĤjNk�1i � hNkjĤjNkihNkjNk�1i (6)

with

hNkjNk�1i =
Y

�=1;2

hn�;kjn�;k�1i; (7)

hNkjĤjNki =
X
�=1;2

[S2
�
(k? cos

2 ��;k + kk sin
2 ��;k sin

2 ��;k)� HS� sin ��;k sin��;k]

+JS1S2[sin �1;k sin �2;k cos(�1;k � �2;k) + cos �1;k cos �2;k]; (8)

hn�;kjn�;k�1i =

�
1 + n�;k � n�;k�1

2

�S�
exp[�iS�A�(n�;k;n�;k�1;n0)]

� exp[�iS�(��;k � ��;k�1)(1� cos ��;k)]; (9)

andA�(n�;k;n�;k�1;n0) being the area of the spherical triangle with vertices[19] at n�;k ; n�;k�1

and n0 = (0; 0; 1). Under the large S limit we obtain

hNf je
�i�ĤT=�h

jNii = e
�i
P

�=1;2
S�(��;f���;i)

Z Y
�=1;2

D[��]D[��] exp

�
i

�h

Z
tf

ti

Ldt

�
: (10)

Where L = L0 + L1 is the Lagrangian with

L0 =
X
�=1;2

S� _�� cos �� � JS1S2[sin �1 sin �2 cos(�2 � �1) + cos �1 cos �2]; (11)

L1 = �

X
�=1;2

(k?S
2
�
cos2 �� + kkS

2
�
sin2 �� sin

2 �� + HS� sin �� sin��): (12)



For our interest of quantum transition between macroscopic states only the low energy

trajectories with almost antiparallel S1 and S2 contribute to the path integral[18]. We

therefore replace �2 and �2 by �2 = � � �1 � �� and �2 = � + �1 + ��, where �� and ��

denote small uctuations. Working out the uctuation integrations over �� and �� the

transition amplitude Eq.(10) reduces to

hNf je
�iĤT=�h

jNii = e�iS0(�f��i)
Z
D[�]D[�] exp

�
i

�h

Z
tf

ti

L
0dt

�
; (13)

L
0 = 


"
m


_� cos � +

�?

22
( _�2 + _�2 sin2 �)

#
� V (�; �): (14)

Where (�1; �1) has been replaced by (�; �) . V (�; �) = 
(K? cos2 � + Kk sin
2 � sin2 � �

mH sin � sin�), S0 = S1 + S2 ; m = �h(S1 � S2)=
, 
 is the volume of the AFM par-

ticle. K? = 2k?S
2=
 and Kk = 2kkS

2=
 are the trasnverse and longitudinal anisotropy

constants, respectively. We have set S1 = S2 = S except in the terms containing S1�S2.

The parameter �? = 2=J is introduced according to Ref.[20] for the problem at hand.

We consider a very strong transverse anisotropy i:e: K? � Kk. In this case N�eel

vector is forced to lie in the x-y plane. Replacing � by �=2 + �� where �� denotes the

small uctuation and carrying out integral over �� we obtain

hNf je
�iĤT=�h

jNii = e�iS0(�f��i)
Z
D[�] exp

�
i

�h

Z
tf

ti

Leffdt

�
; (15)

where

Leff = (If + Ia)



2

 
d�

dt

!2

� V (�) (16)

is the e�ective Lagrangian which is seen to be the Lagrangian of a plane rotor. Where

If = m2=22K? and Ia = �?=
2 are the e�ective FM and AFM moments of inertia,

respectively[6]. V (�) = 
Kk(sin��4)2 (4 = H=Hc with a parameter Hc = 2Kk=m) is

the e�ective potential. It is seen that the net magnetic moment of the noncompensated

sublattices in the applied magnetic �eld shifts the equilibrium orientations of N�eel vector

for corresponding angles � arcsin4 as shown in Fig.1-(b) besides the modi�cation of

FM moment of inertia If given in Refs.[6,18]. It may be worth while to compare our

results with that in literature. In the absence of the magnetic �eld (namely 4 = 0) the

two degenerate equilibrium orientations return to the positive and negative x-axis (see

Fig.1-(a)) respectively in agreement with the equilibrium phases of the AFM particle with



noncompensated sublattices[18]. The small oscillation frequency of N�eel vector around

its equilibrium orientations which serves as a characteristic parameter for the ip of N�eel

vector of the AFM particle is seen to be

!(H;m) =

"
2Kk(1�4

2)

If + Ia

#1=2
: (17)

For 4 = 0 it reduces exactly to

!(H = 0;m) =

"
2Kk

If + Ia

#1=2
(18)

as given in Ref.[18]. If we consider idealized sublattices that m = 0 the frequency Eq.(17)

goes back to the well known value

!(H = m = 0) = 

"
2Kk

�?

#1=2
=
h
2KkJ

i1=2
: (19)

The e�ective potential of the plane rotor is plotted in Fig.2. The minima of the potential

correspond to the equilibrium orientations of the N�eel vector. The energy of net magnetic

moment in the applied magnetic �eld lowers the barrier height in the direction of magnetic

�eld while increases the barrier height in the opposite direction. We are interested in the

quantum tunneling of the e�ective plane rotor through the barriers.

3 Two types of instantons and level shifts

In order to obtain the tunneling rate we evaluate the Euclidean path integrls in Eq.(15)

with the Wick rotation t = i� . The Euclidean Lagrangian for the pseudoparticle

moving in the classical forbidden region, namely, in the barrier is seen to be LE =

(If + Ia)


2

�
d�
d�

�2
+ V (�). The equation of motion of rotor at �nite energy is




2
(If + Ia)

 
d�

d�

!2

� V (�) = �E ; (20)

The periodic potential V (�) = V (� + 2n�) has an asymmetric twin barrier (Fig.2) .The

two-fold rotation symmetry[10], namely, V (�+�) = V (�) in the presence of magnetic �eld

is removed . When the energy is higher than the ground sta8te tunneling is dominated by

periodic instantons[21,22]. Thus there are two di�erent periodic instantons corresponding



to two types of barriers. With the periodic boundary condition, two periodic instanton

solutions of Eq.(17) are found to be

�(1)
c

=
�

2
+ 2 arctan[�1sn(q�; k)] ; (21)

�(2)
c

=
3�

2
� 2 arctan[�2sn(q�; k)] ; (22)

where sn(q�; k) is elliptic function with modulus k and period 4�(k). �(k) denotes the

complete elliptic integral of the �rst kind, with

k =

"
(1� �)2 �42

(1 + �)2 �42

#1=2
; � =

 
E


Kk

!1=2

:

The parameters q ; �1 and �2 are de�ned by

q =

 
Kk

2(If + Ia)

!1=2

[(1 + �)2 �42]1=2 ; �i =

"
(1� �)2 �42

(1 � (�1)i4)2 � �2

#1=2
; (i = 1; 2)

The trajectories of instantons �(1)
c

and �(2)
c

are shown in Fig.2. At initial time �i, instantons

�(1)
c
, �(2)

c
start from the potential well at �i = arcsin4 and reach the neighbouring well

at �f = � � arcsin4 at �nal time �f along the anticlockwise (through small barrier)

and clockwise (through large barrier) paths respectively. In other words the N�eel vector

tunnels through a large barrier (or small barrier) between two angular positions with the

lowest energy.

We assume that jm;�
(1)
2n i and jm;�

(2)
2n+1i denote the eigenstates of the harmonic os-

cillator approximated Hamiltonian in the potential wells at �
(1)
2n = 2n� + arcsin4 and

�
(2)
2n+1 = (2n+ 1)� � arcsin4, respectively, where m is the index of low-lying levels. The

amplitudes tunneling through two di�erent barriers are given by[21]

A(1)
m

= hm;�
(1)
0 je

�
2�Ĥ
�h jm;�

(2)
1 i = exp

 
�

2�"m

�h

!
sinh

 
2�4"(1)

m

�h

!
; (23)

A(2)
m

= hm;�
(2)
1 je

� 2�Ĥ
�h jm;�

(1)
2 i = exp

 
�

2�"m

�h

!
sinh

 
2�4"(2)

m

�h

!
; (24)

where4"(1)
m
(4"(2)

m
) is the level shift induced by tunneling through the small (large) barrier

alone. 4"(i)
m

is actually the overlap integral de�ned in the following Eqs.(42),(43). Where

� = �f��i. With the help of the path integral, the matrix element in Eq.(23) and Eq.(24)

can be rewritten as

A(1)
m

=
Z
 �
m
(�

(1)
0 ; �f) m(�

(2)
1 ; �i)K

(1)(�f ; �f ; �i; �i)d�fd�i ; (25)



A(2)
m

=
Z
 �
m
(�

(2)
1 ; �f) m(�

(1)
2 ; �i)K

(2)(�f ; �f ; �i; �i)d�fd�i ; (26)

where

 �
m
(�

(1)
0 ; �f ) = hm;�

(1)
0 j�f i ;  m(�

(2)
1 ; �i) = h�ijm;�

(2)
1 i ;

 �
m
(�

(2)
1 ; �f ) = hm;�

(2)
1 j�f i ;  m(�

(1)
2 ; �i) = h�ijm;�

(1)
2 i ;

K
(i)(�f ; �f ; �i; �i) =

Z
�f

�i

D[�] exp

0
@�S(i)

E

�h

1
A ; (27)

S
(i)
E

=
Z

�i

�f

2
4

2
(If + Ia)

 
d�

d�

!2

+ V (�)

3
5d� ; (i = 1; 2): (28)

Here S
(i)
E

denotes the Euclidean action, and K
(i)(�f ; �f ; �i; �i) is Feynman propagator

through two kinds of barriers. Substituting the periodic instanton solutions Eq.(21) and

Eq.(22) into Eq.(28) the Euclidean action along the classical trajectory is found to be

S
(i)
Ec

= 2E� +W (i) ; (29)

W (i) =
4
�?q

2�2
i

h
�2
i
E(k) + (k2 � �2

i
)�(k) + (�4

i
� k2)�(k; �i)

i
; (30)

where E(k) is the complete elliptic integral of the second kind, and �(k; �i) is the complete

elliptic integral of the third kind with the parameter �i. The level shift 4"(i)
m

can be

determined by completing the integrals of (25) and (26) and comparing the result with

Eq.(23) and Eq.(24). Using the method in Ref.[21], the transition amplitude is obtained

as

A(i)
m

= exp

 
�

2E�

�h

!
sinh

8<
: �

��(k0)

 
2Kk

Ia + If

!1=2

exp

 
�

W (i)

�h

!9=
; ; (i = 1; 2); (31)

where k0 = (1�k2)1=2 and � = [(1+�)2�42]1=2. Comparing this expression with Eq.(23)

and Eq.(24) we �nd that two types of level shifts are

4"(i)
m

=
�h

��(k0)

 
2Kk

Ia + If

!1=2

exp

 
�

W (i)

�h

!
; (i = 1; 2); (32)

4 The magnetic �eld dependence of tunneling rates

It is easy to see that the di�erence between the heights of larger and small barriers

increases with the external magnetic �eld . On the other hand, the e�ective frequency



of oscillator near the bottom of potential well given in Eq.(17) i: e: ! = !0(1 � 4
2)1=2

decreases with the increasing �eld, where !0 = (
2Kk

Ia+If
)1=2 is the frequency in the absence

of the magnetic �eld[18]. For the low energy case that the energy E is far below the

barrier height , i:e: � � 1 � 4; k ! 1; k0 ! 0, E(k), �(k) can be expanded as power

series of k0. The complete elliptic integral of the third kind is expressed as

�(k; �i) =
k2

k2 + �2
i

+

"
�2
i

(1 + �2
i
)(k2 + �2

i
)

#1=2 n
E(k)F (�i; k0) + �(k)[E(�i; k0)� F (�i; k0)]

o
;

where �(i) = arcsin(�2
i
=(k2 + �2

i
))1=2: F (�(i); k0); E(�(i); k0) are the incomplete elliptic

integrals of the �rst and second kinds, respectively. Thus �(k; �i) can be also expanded

as the power series of k0. Then, the power series expression of W (i) reads

W (1) =
4Kk


!0

�
(1�42)1=2 �4 arccos4�

1

16
(1�42)3=2k04

�
ln

4

k0
+ 1

��
; (33)

W (2) =
4Kk


!0

�
(1�42)1=2 +4 arccos(�4)�

1

16
(1�42)3=2k04

�
ln

4

k0
+ 1

��
; (34)

In the low energy case, k0 = 4�=(1 �42) � 1,we may take the oscillator approximated

energy-quantization i:e: E ! Em = (m+1=2)�h!. Taking note of limits �(k ! 0)! �=2

and �(�! 0)! (1 �42)�1=2 we �nd

4"(1)
m

= Fm(1 �4
2)5=4+3m=2 expf�B[(1�42)1=2 �4 arccos4]g; (35)

4"(2)
m

= Fm(1 �4
2)5=4+3m=2 expf�B[(1�42)1=2 +4 arccos(�4)]g: (36)

Where

Fm = F0
1

n!
[4B]n ; B =

4Kk


!0�h
; F0 = �h!0

�
8B

�

�1=2
:

Eq.(35) and Eq.(36) give rise to the �eld dependence of the level shift for low-lying ex-

cited states. There is an obvious di�erence between the level shifts induced by tunneling

through two kinds of barriers. For a given excited state,4"(i)
m

as a function of the external

magnetic �eld is plotted in Fig. 3, with kk = 106erg=cm3 ; K? = 108erg=cm3 ; �? = 104 ;

the excess of spin S1�S2 = 10 and the AFM particle radius r = 7:5nm. It is clearly shown

that the tunneling rate through a small barrier increases rapidly with the external mag-

netic �eld because the �eld reduces both the height and width of barrier. The situation is

just opposite for the tunneling through the larger barrier . In addition, Fig.3 also shows



that the tunneling rate increases with the energy levels in the low-lying excited states.

When 4 = H=Hc attends to 1 there is no tunneling at all since the small barrier shrinks

to zero and only one easy direction remains. In the absence of applied magnetic �eld we

have (4 = 0)4"(1)
m

= 4"(2)
m

and for the ground state tunneling,namely E = � = 0,the

level shift 4"0 reduces to exactly the result in Ref.[18].

5 Level splitting and quantum interference e�ect

4"(i)
m

is only the level shift induced by tunneling through a single barrier (smaller or

larger). The periodic potential V (�) = V (�+2n�) can be regarded as a one-dimensional

superlattice consisting of two sublattices. The general translation symmetry results in

the energy band structure, and the energy spectrum could be determined with the Bloch

theory. Let jm;�
(1)
2n i be the eigenstates of the zero order Hamiltonian Ĥ

(1)
0 in the potential

well which lies at �
(1)
2n = 2n� + arcsin4. jm;�

(2)
2n+1i denote the eigenstates of the zero

order Hamiltonian H
(2)
0 in the well at �

(2)
2n+1 = (2n+ 1)� � arcsin4. Thus

H
(1)
0 jm;�

(1)
2n i = "mjm;�

(1)
2n i ; (37)

H
(2)
0 jm;�

(2)
2n+1i = "mjm;�

(2)
2n+1i : (38)

Bloch state with 2� periodic boundary condition is written as

j i =
X
n

�
ei(�+S0)�

(1)
2n jm;�

(1)
2n i+ ei(�+S0)�

(2)
2n+1 jm;�

(2)
2n+1i

�
; (39)

where � is Bloch wave vector , eiS0�
(1)
2n (or eiS0�

(2)
2n+1) is seen to be the topological phase from

Eq.(15). Substituting Eq.(39) into the following stationary Schr�odinger equation

Ĥj i = Ej i ; (40)

and taking into account only the nearest neighbours yield the energy spectrum as

E = "m �4"
(1)
m

cos[(� + S0)(� � 2 arcsin4)]

�4"(2)
m

cos[(� + S0)(� + 2arcsin4)]; (41)



where the level shift 4"(i)
m

is actually the overlap integral de�ned by

4"(1)
m

= �

Z
u�
m
(�� �

(1)
2n )Hum(�� �

(2)
2n+1)d� ; (42)

4"(2)
m

= �

Z
u�
m
(�� �

(1)
2n )Hum(�� �

(2)
2n�1)d� : (43)

The Bloch wave vector � can be assumed to take either of the two values 0 and 1 in the

�rst Brillouin zone[21,23]. Thus the level splitting is seen to be

4"m = j4"(1)
m

cos[2(1 + S0) arccos4] + (�1)2S04"(2)
m

cos[2(1 + S0) arccos4]

�4"(1)
m

cos[2S0 arccos4]� (�1)2S04"(2)
m

cos[2S0 arccos4]j

= E�
m
j sin[(2S0 + 1) arccos4]j ; (44)

where

E+
m

= Rm cosh(B�4=2) ; (S0 = integral) ; (45)

E�
m

= Rm sinh(B�4=2) ; (S0 = half � integer) ; (46)

Rm = 4Fm(1 �4
2)7=4+3m=2

expf�B[(1�42)1=2 +4 arcsin4]g: (47)

When H = 0; i:e: arcsin4 = 0, energy spectrum in Eq.(41) reduces to the re-

sult in Ref.[14], and for S0 = half-integer the MQC is quenched in agreement with

Kramers' theorem which can be well understood as two-fold discrete rotation-symmetry

of Hamiltonian[10] . The applied magnetic �eld breaks the rotation symmetry and the

Kramers' degeneracy is removed. Level splitting Eq.(44) shows the quantum interfer-

ence e�ect depending on applied magnetic �eld. The level splitting increases with the

magnetic �eld and whenever the magnetic �eld reaches some speci�c values which satisfy

H=Hc = cos[l�=(2S0 + 1)] (l is a integer), we have 4"m = 0 no matter S0 is integer or

half-integer. The quenching is similar to the case of the FM particle in Refs.[9,24] and is

the result of quantum interference between transitions through the two kinds of barriers.

Fig.4 shows the oscillation of the level splitting with the �eld for the ground state.



6 Conclusion

We present a full study of quantum tunneling e�ect for AFM particle with a small non-

compensation of sublattices in an external magnetic �eld. The level splitting which is

obtained only for ground state in literature has been extended to low-lying excited states

with the help of periodic instanton method. The quantum interference e�ect, particularly,

the entire suppression of tunneling may be of signi�cance for practical application.
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Figure captions

Fig.1 (a) The two degenerate equilibrium orientations of N�eel vector with noncom-

pensated sublattices in an applied magnetic �eld. �+ = arcsin4. (b) The equilibrium

orientatons of N�eel vector in the absence of applied magnetic �eld (4 = 0).

Fig.2 The periodic potential with asymmetric twin-barrier and the instanton trajec-

tories.

Fig.3 The level shift 4"(i)
m

as a function of H=Hc. Solid line for 4"(1)
m

and dotted line

for 4"(2)
m
.

Fig.4 The level splitting at ground state as a function of H=Hc.
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