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Periodic Instanton Method and Macroscopic Quantum Tunneling between two

weakly-linked Bose-Einstein Condensates
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A new method is used to investigate the tunneling between two weakly{linked Bose{Einstein con-
densates con�ned in double{well potential traps. The nonlinear interaction between the atoms in

each well contributes to a �nite chemical potential, which, with consideration of periodic instantons,
leads to a remarkably high tunneling frequency. This result can be used to interpret the newly

found Macroscopic Quantum Self Trapping (MQST) e�ect. Also a new kind of �rst{order crossover

between di�erent regions is predicted.
PACS numbers: 03.75.Fi, 05.30.Jp, 32.80.Pj

Following the �rst observation of Bose{Einstein con-

densation (BEC) in dilute gases of trapped alkali atoms,

remarkable progress has been made both theoretically

and experimentally [1]. In particular, interference be-

tween two freely expanding condensates has been ob-

served after switching o� the double{well potential that

con�nes them [2]. By using a thinner barrier between the

two condensates it should be possible to establish reliably

a weak link and study quantum tunneling, or the Joseph-

son e�ect, for atoms. Aspects of these questions have

already been studied theoretically in the limit of nonin-

teracting atoms [3] and for small{amplitude Josephson

oscillations [4,5].

Here we develop another theoretical method for a sen-

sitive and precise investigation of the tunneling between

two condensates. The almost trivially looking problem of

the tunneling behavior in a double{well potential has at-

tracted much attention from theorists for decades. For a

single particle, the solution can be found even in quantum

mechanics textbooks [6]. The advantage of a nonpertur-

bative method, as presented here, is that it gives not only

a more accurate description of the tunneling phenomena

but also a comprehensive physical understanding in the

context of quantum �eld theory. The periodic instan-

ton con�gurations, which have been shown to be a useful

tool in several areas of research such as spin tunneling [7],

bubble nucleation [8] and gauge �eld theory [9], enable

also the investigation of the �nite temperature behavior

of these systems. In the case of the Bose{Einstein system,

however, we need to evaluate the tunneling frequency for

a �nite chemical potential even at zero temperature, due

to the nonlinear interaction between the con�ned atoms.

Therefore the chemical potential here replaces the posi-

tion of the excited energy and gives rise to an expected

higher tunneling frequency.

A novel nonlinear e�ect has been predicted to occur

in the Bose{Josephson Junction (BJJ) [10]: The self{

trapping of a BEC population imbalance arises because

of the interatomic nonlinear interaction in the Bose gas.

This was considered to be a novel \macroscopic quantum

self{trapping" (MQST) and was predicted to be observ-

able under certain experimental conditions. The three

parameters, i.e. the ground state energy E0, the interac-

tion energy U , and more importantly, the tunneling am-

plitude K, are still undetermined for a speci�c geometry

of the potential well and have been taken as constants

in refs. [10,11]. Here we present a rigorous derivation

of these quantities and �nd that they actually depend

on the number of atoms N . This N{dependence re�nes

the conclusions and makes the self{trapping easier to ob-

serve.

The macroscopic wave function � associated with the

ground state of a dilute Bose gas con�ned in the potential

V
ext

(r) obeys the well{known Gross{Pitaevskii Equation

(GPE), which can be obtained using a variational proce-

dure, i.e. i�h@�=@t = �E=���. The energy functional E

is de�ned by

E[�] =

Z
d3r

�
�h2

2m
jr�j2 + V

ext
(r) j�j2 + g

2
j�j4

�
(1)

where g = 4��h2a=m is the interatomic coupling constant

with a the s�wave scattering length. The three terms in

the integral are the kinetic energy of the condensate E
kin

,

the (an)harmonic potential energy E
ho
, and the mean{

�eld interaction energy E
int
, respectively. In the simplest

case of an isotropic harmonic trap V
ext

(r) = m!2
0
r2=2,

these energies can be calculated beyond the Thomas{

Fermi (TF) approximation [1,4,12] as

E
kin

N
=

5

2
C
TF

;
E
ho

N
=

3

7
�
TF

+ C
TF

;

E
int

N
=

2

7
�
TF
�C

TF
; C

TF
=

�h2

mR2
ln

�
R

1:3a
ho

�

by using nontrivial relationships among the various en-

ergy components, i.e. the virial theorem 2E
kin
� 2E

ho
+

3E
int

= 0, the expression for the chemical potential � =

(E
kin

+E
ho

+ 2E
int

) =N and the thermodynamic de�ni-

tion � = @E=@N . Here N is the number of atoms and

the harmonic oscillator length a
ho

= (�h=m!0)
1=2 is intro-

duced for simplicity. The chemical potential in the TF

approximation is evaluated as �
TF

= �h!0

2
(15Na=a

ho
)
2=5

and is related to the radius of the condensate R through

�
TF

= m!2
0
R2=2. We note that in the derivation, the
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TF wave function is normalized to N . If one uses in-

stead a wave function normalized to unity, the following

correspondence should be realized

U1;2N1;2! 2
E
int

N
; E0

1;2
! E

kin

N
+
E
ho

N

and we obtain the ground state energy E0

1;2
and the in-

teraction self energy U1;2N1;2 for the isolated traps with

N1 = N2 = N as in ref. [10]

E0

1;2
=

3

7
�
TF

+
7

2
C
TF

; U1;2N1;2 =
4

7
�
TF
� 2C

TF

Considering a condensate of N = 5000 sodium atoms

con�ned in a symmetric spherical trap with frequency

!0 = 100Hz, we have E0 = 1:18nK; UN = 1:03nK, quite

close to the values estimated in [10].

Calculation of the tunneling frequency by means of the

periodic instanton method: We study the amplitude for

tunneling between the two condensates con�ned in the

wells of an external double{well potential

V
ext

(x) =
m!2

0

8x2
0

(x2 � x2
0
)2 (2)

The two minima are located at �x0 on the x{axis, and

the harmonic oscillation frequency near these minima

is !0. The barrier height between the two wells V0 =
1

8
m!2

0
x2
0
is assumed to be high enough so that the over-

lap between the wave functions relative to the two traps

occurs only in the classically forbidden region where in-

teraction can be ignored and one can safely use the WKB

wave function approximately [4]. The tunneling ampli-

tude K in ref. [10] can be calculated by di�erent methods,

and we demonstrate in this work the use of the nonper-

turbative instanton approach. It is easily shown that this

tunneling amplitude is just the quantityR of [11] (up to a

minus sign), if one observes the orthogonality property of

the eigenfunctions
R
dx��

i
(x)�

j
(x) = �

ij
; i; j = 1; 2, with

�1;2(x) the local modes in each well, which are taken as

the harmonic oscillator single particle ground state wave

function in ref. [11]. The nonlinear interaction between

the atoms in the same well will be included, which mod-

i�es only the chemical potential � to or beyond the TF

approximation.

Now we turn to the �eld theory description of the GPE.

To this end we consider a scalar �eld in a 1{dimensional

time plus 1{dimensional space. After a Wick's rotation

t = �i� the Euclidean{Lagrangian equation of motion

for a �nite chemical potential takes the form

1

2
m

�
dx

d�

�2

� V
ext

(x) = �� (3)

The reason why we can handle a nonlinear problem by

means of a linear equation of motion is that we discuss

the tunneling behavior in the barrier region where the

nonlinear interaction is negligible. However, there are

obvious di�erences between the BEC tunneling system

and the usual one-body problem, i.e. the nonlinear in-

teraction contributes a �nite chemical potential, which

is just the integration constant on the right hand side of

eq.(3). The classical turning points on both sides of the

barrier can be determined by the relation V (x1;2) = �

as suggested in ref. [4]. For a noninteracting system the

chemical potential approaches the ground state energy

corresponding to the vacuum instanton case in [13].

Solving this Euclidean time classical equation in the

usual way [13] one obtains the periodic instanton so-

lution in terms of the Jacobian elliptic function x
c
=

2x0kb(k)=!0 sn (b(k)� ) with the parameters de�ned as

b(k) =
!0

2

r
2

1 + k2
; k2 =

1� u

1 + u
; u =

r
�

V0

The Euclidean action for this solution in half of the imag-

inary period T = 2K(k)=b(k) can be obtained through

S =
R
T=2

�T=2
d�
�
1

2
m(dx=d� )2 + V

ext
(x)
�
= W +�T=2 with

W =
2

3

8V0

!0
(1 + u)1=2 (E(k)� uK(k)) (4)

where K(k) and E(k) are complete elliptic integrals of the

�rst and second kinds with modulus k, respectively. The

frequency of tunneling between the two condensates is

then given by the energy level splitting of the two lowest

states, i.e. 
 = �E=�h = 2K=�h = 2R=�h and can be

calculated by means of the path integral method as [13]


 =
1

�h
Ae�W=�h =

p
1 + u

2K(k0) !0 exp [�W=�h] (5)

We emphasize here that this formula has been proven to

be valid for the whole region when the chemical poten-

tial is below the barrier height. The condition V0 = �

determines the sphaleron con�guration, where a type of

phase transition may occur. In the TF approximation

this means

x0 = 2R = 2a
ho

�
15N

T
a

2a
ho

�1=5

where N
T
= N1+N2 is the total number of atoms in both

wells together. Therefore for a speci�c type of trapped

atoms and a given double{well potential with separation

x0 (atom number N
T
) there exists a critical number of

atoms N
c1 (critical separation x

c1) determined by the

above equation, below (above) which the tunneling pro-

cess will give the main contribution to the tunneling am-

plitude. However, above this critical number of atoms or

below this critical separation value another process, i.e.

the over{barrier activation will dominate (which is de�-

nitely not \thermal activation" as in spin tunneling since

the temperature is zero) (cf. Fig. 1). Between these
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two processes there exists a crossover. A more explicit

condition for this critical number of atoms (separation

between the two minima) can be derived beyond the TF

approximation, i.e.

x0 = 2R

s
1 +

3

5

�
15N

T
a

2a
ho

�
�4=5

ln

�
15N

T
a

2a
ho
1:35

�

As an example, we consider two weakly{linked conden-

sates of N
T
= 104 sodium atoms, con�ned in two sym-

metric spherical traps with frequency !0 = 100Hz as in

ref. [10]. The critical value for x
c1 is x

c1 = 24:58�m or

more accurately x
c1 = 25:29�m. We note that here the

height of the potential barrier is V0 = 2:21nK and the

ground state is located at �h!0=2 = 0:38nK so that there

are several energy levels beneath the barrier height. This

means the interaction between the atoms contributes to

the chemical potential, which e�ectively raises the classi-

cal turning points to a remarkably high level. Although

the atoms remain in the ground state, the interaction en-

ergy is so strong that the vacuum instanton method can

no longer be applied. We have to resort to the periodic

instanton method, as will be shown below.
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FIG. 1. Di�erent regions with the corresponding critical

parameter

Low{energy limit: We now consider the \low-energy"

limit, � ! 0. As in the case of a uniform Bose gas, the

number of atoms in the ground state can be macroscopic,

i.e., of the order of the total number in one potential well,

when the chemical potential becomes equal to the energy

of the lowest state, which, in our 1{dimensional case here,

is �! �
c
= 1

2
�h!0. The lower boundary for the chemical

potential in fact implies that R
c
= a

ho
, i.e. the radius of

the condensate should never be less than the harmonic os-

cillator length a
ho
. We thus have a result similar to that

in the vacuum instanton case [13] and the \low energy"

limit here is only meaningful in this sense. Expanding eq.

(5) far below the barrier height, i.e., around the modulus

k ! 1, or equivalently evaluating the tunneling ampli-

tude in the vacuum instanton method [13], we obtain for

the tunneling frequency


 = 2

r
6S

c

��h
!0 exp (�Sc=�h) (6)

with the Euclidean action

S
c

�h
=

2

3

8V0

�h!0
=

2

3

x2
0

a2
ho

This result can be compared with that of ref. [11] where

the problem of tunneling in the BEC system is consid-

ered. We reexpress the tunneling frequency of ref. [11] in

the notation of the harmonic oscillator length a
ho

as


 =
x2
0

a2
ho

!0e
�x

2

0
=a

2

ho (7)

which, however, gives not only a smaller exponential con-

tribution 8V0=�h!0 (there is a 2=3 factor) but also an inac-

curate prefactor x2
0
!0=24 = !0Sc=�h. The source of this

inaccuracy is the adoption of the too simple harmonic os-

cillator wave function of a single particle, which obviously

oversimpli�es the Bose{Einstein condensation tunneling

problem. At least one should use the WKB wave function

in the tunneling region, and it can be shown that this cor-

responds to the vacuum instanton result we present here.

For the agreement between WKB and vacuum instanton

methods we refer to ref. [14].

Observation of Macroscopic Quantum Self Trapping:

The periodic instanton result will lead to an exponen-

tially growing behavior for the tunneling frequency when

the chemical potential, i.e. the number of atoms, is in-

creased. According to ref. [10], for a �xed value of the ini-

tial population imbalance (for simplicity we consider here

only the zero{phase case �(0) = 0 which describes the

interwell atomic tunneling dynamics with a zero time{

average value of the phase across the junction), if the

parameter � = UN
T
=2K exceeds a critical value �

c
, the

population becomes macroscopically self{trapped with a

nonzero average population di�erence N1�N2. There are

di�erent ways in which this state can be achieved, and

all of them correspond to the so-termed MQST condition

that

� =
UN

T

2K
> �

c
= 2

 p
1� z(0)2 + 1

z(0)2

!
(8)

This requirement is actually that the modulus of the el-

liptic function, which appears in the population oscilla-

tion solution, should be larger than 1 so that the elliptic

function cn will be replaced by dn and the oscillation pe-

riod is shortened from 8kK(k)=C� to 4kK(k)=C�. The
parameters UN

T
and K are taken as constants in ref.

[10]. Considering the fact that they are actually N{

dependent as in our calculation above, we can re�ne the

conclusions of refs. [10,11]. To access the region of self{

trapping, that is, � > �
c
, it is better to lower the value

of K by making a higher barrier height V0 through in-

creasing the separation x0 or the oscillation frequency

!0, than to increase the number of atoms as suggested

in ref. [10]. In fact, the quantity UN
T
here is propor-

tional to �
TF

� N2=5 which means that increasing the
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number of atoms will not increase the interaction en-

ergy signi�cantly, and at the same time the tunneling

amplitude will be increased more drastically. Thus, con-

trary to the result of ref. [10,11], we �nd that the MQST

will occur when the number of atoms is smaller (instead

of larger) than a critical value N
c2, i.e. we should de-

crease the number of atoms instead of increasing it (Fig.

1). Inserting the values of the interaction energy and

the tunneling amplitude into eq.(8) we can obtain this

critical number of atoms for a given potential geometry.

The parameters which can be adjusted are the number

of atoms N
T
, the oscillation frequency !0, and the sep-

aration distance between the two condensates x0. Fig

1. shows the three di�erent regions for di�erent num-

bers of atoms and distances between the potential wells.

When x0 (NT
) is smaller (larger) than the critical value

x2c(Nc2), the atoms will oscillate between these two po-

tential wells. Once we increase the separation above (or

decrease the number of atoms below) this critical value,

the MQST will occur, i.e., most of the atoms will tend to

remain in their appropriate wells, leading to only a small

oscillation around a �xed population di�erence.

We take the initial condition for the population di�er-

ence to be z(0) = 0:4 as an example. For sodium atoms

con�ned in the double{well potential with !0 = 100,

we show numerically in Fig. 2 the critical line between

the three di�erent regions. The upper region marks the

self{trapping region, the lower the over{barrier activa-

tion. Quantum tunneling occurs only for a small range

of the parameter. The solid line is the result beyond

the TF approximation and the dashed line corresponds

to TF results. We also �nd that the tunneling will be

suppressed when the separation or the number of atoms

satis�es x0 > 24�m or N > 7000. The crossover will

occur directly between the self{trapping and the over{

barrier regions, quite similar to the �rst{order transition

in spin tunneling [7]. The TF result pushes this critical

point out to x0 � 25�m, N
T
� 12000.
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FIG. 2. Critical line for MQST e�ect

In conclusion we can say, we have shown that the peri-

odic instanton method can be used to investigate the tun-

neling problem in BEC systems at zero temperature. The

tunneling amplitude and the nonlinear interaction energy

between the atoms can be calculated analytically beyond

the TF approximation. The MQST e�ect is more easily

observed if one takes into account the N{dependence of

the tunneling amplitude K and the self interaction en-

ergy UN
T
. The crossover between the di�erent regions

may be of the �rst{order type when the two minima of

the potential wells are separated su�ciently far or the

number of con�ned atoms in the potential well is large

enough.
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