Bloch particle in presence of dc and ac fields: Statistics of the Wigner delay time
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The paper studies quantum states of a Bloch particle in
presence of external ac and dc fields. Provided the period
of the ac field and the Bloch period are commensurate, an
effective scattering matrix is introduced, the complex poles of
which are the system quasienergy spectrum. The statistics of
the resonance width and the Wigner delay time shows a close
relation of the problem to random matrix theory of chaotic
scattering.
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This paper studies quantum states of a Bloch particle
in presence of external ac and dc fields

H = p*/2 + cosz + Fx + F,z cos(wt) . (1)

Although being of very physical importance, this problem
proves to be pretty tough and was analyzed before exclu-
sively in a one-band approximation by using the tight-
binding model [1]. In our recent paper [2] we have sug-
gested a method which allows us to go beyond a n-band
approximation. For the case of a one to one resonance
between the Bloch period Tg = fi/F and the period of ac
field T, = 27 /w the analysis of the complex quasienergy
spectrum was done in Ref. [3]. It was shown that in
the generic case, where the classical dynamics of the sys-
tem (1) (with the static field canceled) is chaotic [5], the
spectrum should be regarded as quasi-random. Then the
statistical analysis is an appropriate one for describing
the spectrum. The distribution of decay times of the
quantum metastable states (the decay time is defined by
the imaginary part of complex quasienergy) was found
to have an algebraic tail, which is responsible for a spe-
cific phenomenon of quantum stabilisation reported in
Ref. [3,4].

In this present letter we analyze the model (1) under a
weaker condition of commensurate periods: T /T, = r/q
(r,q are coprime integers). We show that in this case
the eigenvalue problem for the Hamiltonian (1) can be
reduced to an effective scattering problem with ¢ open
channels. In other words, we introduce an effective scat-
tering matrix of size g x ¢, the complex poles of which
are the complex resonance spectrum. This is a central
result of the paper [6]. Further analysis involves the fa-
mous conjecture in the theory of quantum chaos that,
provided the classical dynamics of the system is chaotic,
the system spectral properties are similar to those of a
random matrix sharing the same symmetry [7]. Using
the results of modern random matrix theory of chaotic
scattering (see [8] and references therein) we can predict

the asymptotic behavior of the distributions for the de-
cay and delay times. In particular, it follows that in the
incommensurate case (which can be approached through
the limit r,q — oo, r/q — irrational) the distribution
has no algebraic tail. This explains the absence of quan-
tum stabilisation in the incommensurate case observed in
the numerical simulation of the system dynamics [3,4].

We briefly recall some results of the papers [2,3]. It
is convenient to include the ac term of the Hamilto-
nian (1) in the periodic potential, which is done by
the gauge transformation p — p + (F, /w)sin(wt), z —
x — (F,/w?)cos(wt). Then the Hamiltonian takes the
form

H=§/2+V(e,t) +Fe, (2)

V(z,t) = cos[z — ecos(wt)] , €= F,/w?.

The dynamics of the system (2) is determined by the
system evolution operator which, provided the existence
of the common period T' = ¢Is = rT,, is periodic in
time [2]. Thus time-Floquet formalism can be used and,
denoting by U the Floquet operator (i.e., the evolution
operator over the period T'), the equation for the system
quasienergies has the form

Utp(z) = exp(—iA)p(z) . (3)

Equation (3) should be accomplished by a boundary con-
dition, the type of which defines whether the spectrum
is complex (and discrete) or real (and continuous). In
this paper we consider a hermitian boundary condition.
Thus A is real in what follows and the eigenfunctions are
normalized against d-function.

We obtain a constructive analytical expression for the
unitary operator U by using the standard substitution
Y(z,t) = exp(—iFzt/h)Y(z,t) in the Schrodinger equa-
tion. Then

U =e W | (4)

W:&B{—%/OT [quf(x,t)] dt} ,

where the caret over exponent denotes time ordering. It
is seen from Eq. (4) that the operator U commutes with
the translational operator over the lattice period and,
therefore, the quasimomentum k is a good quantum num-
ber. Presenting the wave function in Eq. (3) in the form
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we reduce the eigenvalue problem (3) to diagonalisation
of an infinite matrix given by the product of two unitary
matrices:

SWe = exp(—id)c . (6)

In Eq. (6), S is the shift matrix with the ele-
ments Sy, = (n'|exp(—igz)|n) = dp.n—q and the
elements of the matrix W are given by Wy , =
(n'| exp(—ikx)W exp(ikx)|n) (note that the quasimo-
mentum £ enters as a parameter). By convention the
expansion coefficients cglk’)‘) are arranged in a column vec-
tor ¢ with an index n decreasing from up to down and, to
simplify the formulas, we shall omit the quasimomentum
index k and quasienergy index A.

First we consider the case ¢ = 1. The method of solv-
ing Eq. (6) is based on the fact that the matrix W tends
asymptotically to a diagonal one

Wi n = O pwpn , n,n' — £o0, (7)

T
(hn + hk — Ft)*dt

w, = exp [—;—h
0

Let us assume that the asymptotic (7) is “good enough”
for |n| > N. [The characteristic size of the “interaction
region”, where the asymptotic fails, is given by 2N* ~
J/27h with J being the volume of the chaotic component
of the classical phase space (see Fig. 1 in Ref. [3]). In the
regular case e = 0, J is the volume under separatrix.]
Then we decompose the vector ¢ into three sub-vectors

c)

e=[c0 |, (8)
C(f)

where ¢(t) consists of the coefficients ¢, with indices n >
N, c¢=) —with n < =N — 1, and ¢ is constructed from
¢, with indices —N —1 < n < N. The vector ¢(*) is
completely defined by the value of the coefficient ¢y
and the equation

WnCp = exp(—i)\)cn,l ) (9)

which follows from Eq. (6) for ¢ = 1 and asymptotic (7).
Analogously, the vector ¢(~) is defined by Eq. (9) and the
value of ¢__1. For the vector ¢(®) we have an algebraic
equation

[Qn(SW) — exp(—iN)]e® = —wniiensien . (10)

In Eq. (10) Qn(SW) is the truncated matrix SW

H O1x(2n+1) 01x1 >
SW) = RNGE!
NS (”(2N+1)x(2N+1) O2n+1)x1 (11)

and ey is a column vector of the same size 2N + 2 with
all elements equal to zero except the first one, equal to
unit. We note that Eq. (10) actually relates the coeffi-
cient c_py_1 to the coefficient c¢y41 and, thus, matches
two asymptotic solutions ¢(*) and ¢(=). Without loss
of generality we can choose the phase of ¢y1 such that
—wyt1cN41 = L

We define the matrix G(A) (of dimension 1 x 1 in the
considered case ¢ = 1) as a phase gain (loss) relative
to the case when the matrix W is given by Eq. (7) for
arbitrary n,n’ (we shall refer to the latter case as “zero
solution”). Thus

C_N_-1= G()\)E,N,1 5 (12)

where é_n_1 ~ exp[i(2N + 2)]] is the zero solution. Us-
ing Eq. (10), the matrix G(X) can be presented in the
form

G(\) = lim an(N\)ey[@n(SW) — exp(—i\)] lex .

N—o00

(13)

where €'y is a row vector with all elements equal to zero
except the last one, equal to unit, and the phase factor
an(\) = ¢* 5_, is given by the zero solution. We also
add the limit N — oo in the Eq. (13) which insures
the validity of asymptotic formula (7). The numerical
calculation of the scattering matrix (13) indicates a rapid
convergence of the limit.
An important characteristic of G(A) is the quantity

dlnG(\) . .dG
BT

T = (14)
which is known in the literature as the Wigner delay time
(note, that here 7 can take negative values) and is directly
related to density of states of a continuous quasienergy
spectrum. The quantity 7 also determines the normal-
ization of the sub-vector ¢(®). [The whole vector cy is
normalized against a d-function: (cy|cy) = d(N — A).]
Namely,

N
= 1 0))2 _
r=jm 3 (PP, (15)

Calculation of the delay time 7 on the basis of Eq. (15)
is actually preferable compared to Eq. (14) because it
eliminates a numerical estimation for the derivative.

As an example, the left panel in Fig. 1 shows the delay
time 7 as a function of the quasienergy A and quasimo-
mentum k for the parameters w = 10/6, ¢ = F,/w? =
1.5, i = 0.5, and F = h/T, =~ 0.13 of the Hamilto-
nian (2). In addition, the right panel in Fig. 1 (after [3])
depicts the real part of the complex quasienergy corre-
sponding to the most stable states [9]. As expected, the



quantity 7 = 7(A, k) reveals the underlying resonance
structure.

In this paragraph we generalize the main formulas dis-
played above for the case of arbitrary ¢. For arbitrary g,
Eq. (9) has the form

Wy Cp, = exp(—iN)cp—q - (16)

It follows from Eq. (16) that there are ¢ independent
solutions ¢(¥%), (i = 1,...,q), and, therefore, the matrix
G()) is of dimension g x q. We adopt Eq. (13) for this
case by substituting the vector ey by the matrix ey of
the size ¢ x (2N + 14 q) of the following structure (shown
forq=2, N=2)

enN =

coocococo~
coococorO

m\

2

Il

N

c o

c o

and the prefactor any by the diagonal ¢ x ¢ matrix with
the elements given by the zero solutions. The quan-
tity Eq. (14) is also a matrix 7 = —iGTdG/d\ and
the normalization condition Eq. (15) takes the form
Tii =y oo SN ()2 = 1/g).

The rest of the paper is devoted to the statistics of
the delay and decay times. First we discuss which result
could be expected. To avoid a misunderstanding, we also
recall that the decay and delay times are related but not
identical notions. The decay time is the life-time of a
metastable states and is defined as 7' = 1/I', where T’
is the resonance width, i.e., twice the imaginary part of
the complex (quasi-)energy. Thus the decay time is a
characteristic of the complex spectrum. In contrast, the
delay time Eq. (14) is a characteristic of continuous real
spectrum. Physically it corresponds to the time interval,
during which a wave packet (coming from the asymptotic
region) is captured within the interaction region.

Statistical approach to chaotic scattering, which is
based on the random matrix assumption (the system
Hamiltonian is modeled by a random matrix), is nowa-
days widely used in the problems like ballistic electron
scattering in the mesoscopic devices, decay of unstable
nuclei and molecules, and many others [10]. In these
cases the general theory predicts the following distribu-
tions of the normalized partial Wigner delay time 7 and
resonance width I" (inverse decay time) [11]

1 1 1
P) = 37w (-1 ) (18)
MM dM _psinh [
) = 7=t g (e - ) ,(19)

where M is the number of open channels and the system
is assumed to belong to GUE symmetry class [12]. A

remarkable feature of the distributions displayed is the
presence of an algebraic tail for both delay and decay
times. (Note, however, that in the limit of an infinite
number of channels the tail is absent.) Of course, we can
not directly apply the formulas (18), (19) to our system
of interest [13]. However, relaying on the universality of
chaos, it can be used as “the first approximation”.

The histogram in Fig. 2 shows the distribution of the
Wigner delay time for the parameters of Fig. 1. It is seen
that the peak of the distribution is around zero delay time
and then the function slowly decays. The asymptotic
of the distribution for large 7 is presented in the insert
of the figure, where we plot the integrated distribution
I(y) = ] P(y')dy" of the inverse delay time v = 1/7
in double logarithmic scale. The integrated distribution
of the resonance width I' is also shown. It follows from
the numerical data that I(y) ~ 72, v < 1, and I(T') ~
I T' < 1. Thus P(r) ~ 773, 7 > 1, in agreement
with Eq. (18) for M = 1, and II(T') — const, T — 0,
in agreement with Eq. (19). A more detailed statistical
analysis of the delay time, which includes the case ¢ # 1
and the case of recovered orthogonal symmetry, will be
published elsewhere.

To summarize, we rigorously (no approximations) an-
alyzed the problem of a Bloch particle in ac and dc fields.
The analysis is based on a scattering matrix approach,
which is essentially the familiar scattering theory, how-
ever in momentum space. As the main result, we in-
troduced an effective scattering matrix, which contains
exhaustive information about the system (quasi-)energy
spectrum. In addition and as an example of the appli-
cation of the theory, we analyzed the statistics of the
Wigner delay time for the system parameters, where its
classical dynamics is chaotic. The obtained results are
shown to be consistent with the predictions of random
matrix theory of chaotic scattering. In this connection
we would like to note that the system discussed suggests
to be a nice physical model for testing the predictions of
the random matrix theory — it is not easy to find other
physical system, where the calculation of the resonances
and delay time is so simple and without involving any
additional assumption.
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FIG. 1. Wigner delay time as a gray scale map (a) and
the real part of the complex quasienergy spectrum (b) [for
each k first 13 most stable states is plotted]. The system
parameters are w = 10/6, ¢ = F,/w?> = 1.5, h = 0.5, and
F=h/T, ~013
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FIG. 2. The distribution of the Wigner delay time. The
insert shows integrated distributions of inverse delay time
v = 1/7 and resonance width I



